BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Maintenance scheduling of Volt-VAR control assets in smart distribution networks using advanced metering infrastructure
This paper investigates a novel approach for maintenance scheduling of volt-VAR control components (VVCCs) of distribution networks with the aid of new generation of volt-VAR optimization (VVO) solutions called quasi-real-time VVO. The new quasi-real-time VVO technique optimizes distribution network using advanced metering infrastructure (AMI) data of each quasi-real-time stage. As this VVO performs automatically and online, it is necessary for VVCCs to undergo maintenance without disturbing VVO performance. Moreover, the lost benefits that could be gained by online VVO have to be minimized. Hence, this paper proposes an AMI-based VVO consisting of a VVO engine and a maintenance scheduling engine (MSE) that operate in tandem to optimize distribution network and find the optimal maintenance scheduling of different VVCCs. To test the accuracy and the applicability of the proposed solution, a 33-node distribution feeder is employed. Furthermore, five different maintenance scenarios are investigated to check the proposed VVO performance. The results prove that the integration of VVO with MSE could be a reliable approach that can solve maintenance scheduling of VVCCs without interrupting and/or resetting VVO., Article, Published
Real-time co-simulation platform for Smart Grid Volt-VAR Optimization using IEC 61850
This paper presents an implementation of an IEC 61850-based real-time co-simulation platform for verification of the performance of a volt-VAR optimization (VVO) engine for smart distribution networks. The proposed VVO engine is able to minimize grid loss, volt-VAR control asset operational costs, and conservation voltage reduction operational costs through its comprehensive objective functions, weighted by fuzzification using advanced metering infrastructure (AMI) data. The optimization engine receives the AMI data stream through measurement aggregators. Moreover, it sends control commands to volt-VAR control components modeled in real-time digital simulator (RTDS) through DNP.3 protocol. To check the performance and the precision of proposed VVO, a fault scenario is imposed upon the system. IEC 61850 GOOSE messages are generated and sent to change the status of specified breakers, while the VVO engine receives system reconfiguration commands via IEC61850 Manufacturing Message Specification (MMS) protocol. The results of the study on 33-node feeder showed adequate performance of proposed VVO in grid operating scenarios., Article, Published.