BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Cyber-Security vulnerabilities: an impediment against further development of Smart Grid
This chapter discusses anomalies which may not be attributed to expected operational deviations and/or mishaps associated with component failure and/or environmental conditions. The question here is: what are known cyber-security vulnerabilities which could be used to aid in the detection of patterns and signatures associated with various types of attacks and intrusions in the system which need to be detected and analyzed using Smart Grid's sensory data, such as Smart meter's and/or PMU's data, to help differentiate between "cyber-attacks in progress" as opposed to "expected system anomalies" due to operational failures of its components?, book chapter, published
Smart Grid and ICT's role in its evolution
While there is debate around the real causes of Climate Change, Green House Gas (GHG) emissions as a result of widespread use of fossil-based fuels by major economies around the world has been thought of playing a significant role in perpetuating the negative impacts of the phenomenon known as Climate Change. Regardless of whether GHG emissions is the sole culprit of the unusual, and often devastating changes in the climate patterns around the world, the global understanding has been sought over mitigating further dependence on fossil fuels by the developed countries. What further accentuates that desire, is not only the political and social instability of the regions which have traditionally supplied such fuels, but the fact that such fuel are finite in nature and due to be substantially exhausted in the not too distant future. It is interesting to note that the political and social turmoil associated with traditional sources of fossil fuels has given rise to the justification for many special interest groups in the developed world to call for "drilling closer to home". This view often ignores the fact that fossil fuel in the developed world often lies in "difficult to reach" and technologically challenging areas, which do not lend themselves to relatively risk-free exploration and exploitation. Recent environmental disasters, such as the oil spill in the Gulf of Mexico is a clear and undisputable indication of the dangers associated with "drilling closer to home". Consequently, to get out of our energy conundrum, it seems that our societies have no choice but to review and question the way our economies generate and utilize energy. Most studies of this nature reveal the wasteful and unsustainable processes and approaches which we have so far used in energy production and use. Conversion of one form of energy into another, transmission of energy from one place to another, distribution of energy through our urban and rural communities, and management of energy resources have all been imperfect, to say the least. Such wasteful approaches to energy use have been the hallmark of the last century, which has now come back to haunt us in terms of devastating consequences associated with Climate Change. It is in that light that Smart Grid has been inadvertently positioned as the silver bullet to address the Climate Change and Energy Independence issues. Smart Grid is expected to enable unprecedented degrees of conservation, efficiencies and utilization of alternative sources of energy, thus substantially reducing this century's dependence on fossil fuels. It is notable that regardless of which development category they belong to, the developed countries, as well as the developing countries, have put together ambitious plans for the development of next generation electric grid, also called Smart Grid, as the main engine for the development of their economies and the well-being of their population. However, the fact remains that Smart Grid is still a collection of concepts and ideas, whose full impact cannot be realized until a rich portfolio of innovative technologies, system architectures, integration solutions and social-economic components are available cost-effectively and in concert to address the energy supply and demand issues which individual countries across the world are grappling with. And as such, energy independence should be perceived by the world community as a global problem longing for global solutions. As will be demonstrated in the rest of this chapter, Information and Communication Technologies are poised to play a critical role in bringing about the full spectrum of functionalities which Smart Grid promises. After all, Smart Grid is all about pervasive monitoring and control, which could not be realized without a comprehensive blanket of communication technologies, encompassing all utility assets, and enabling the intelligence implanted in each node to contribute to the overall system capabilities and functionalities which Smart Grid is expected to provide., book chapter, Book published