BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Application of hygrothermal analyses to optimize exterior wall design
Proceedings of 2nd International Conference on Research in Building Physics: 14 September 2003, Leuven, Belgium. The design of exterior walls in a building envelope for optimum moisture management is a challenging task. Many conventional methods or local practice guidelines are available for this purpose, based primarily on regional traditions and with limited performance assessment records. In recent years, new wall systems and unconventional materials have been introduced in every part of North America for reasons such as aesthetic appeal, cost-effectiveness etc. However, neither the long-term moisture management performance of these new wall systems nor the uses of unconventional materials have been assessed rigorously. The primary reason for this lack of such assessment is the absence of a design-oriented technical routine toperform the task. Recent studies at the Institute for Research in Construction (IRC) / National Research Council (NRC) of Canada, show that such an assessment is possible with the use of an advanced hygrothermal modelling tool, such as hygIRC, developed in-house at IRC. This paper presents results from hygrothermal modelling and discussion on walls with the four different cladding systems: stucco, exterior insulated finish systems (EIFS), masonry and siding. These walls were virtually exposed to several North American climates. Their hygrothermal responses were assessed with a novel indicator, called the RHT index, which is derived from relative humidity and temperature. The results and discussion presented in this paper clearly show the need and usefulness of an integrated design methodology for the moisture management of exterior wall systems that can help to optimise various design considerations., Conference paper, Published. A version of this document is published in: Research in Building Physics, Leuven, Belgium, Sept. 14-18, 2003, pp. 417-426.
Application of modeling tool to assess moisture and thermal performance of retrofitted wall assemblies
Proceedings of CIB World Building Congress 2004: 02 May 2004, Toronto, Ontario. As the stock of buildings in Canada ages, it is expected that there will be an increase in building envelope rehabilitation work. Such activities represent an ideal opportunity to add insulation and reduce air leakage to improve energy efficiency and building envelope durability. However, there is very little information available on how to assess the moisture and thermal (i.e. energy) performance of retrofitted building envelope assemblies and select the optimum retrofit options that will maximize the energy efficiency without compromising the long-term moisture performance of the retrofitted building envelopes. This paper depicts selected results from a study that has used a two-dimensional hygrothermal simulation tool, hygIRC-2D, to assess thermal and moisture performance of retrofitted masonry walls used in high-rise construction. The performance analyses of three basic (i.e. base case) masonry wall systems (Brick Veneer - Steel Stud, Brick Veneer - Concrete Masonry, and Precast Concrete Panels - Steel Stud) with four retrofit options, located in the National Capital Region (Ottawa-Gatineau) of Canada, are presented in this paper. The results from the simulations indicate that hygrothermal simulation tools can be used to evaluate the thermal and moisture performance of various wall systems and associated retrofit options. Simulations results also indicate that with specific retrofit options the energy performance of the wall system can be improved significantly without compromising the moisture response of the wall by adding insulation and reducing air-leakage in the wall assembly. However, heat or energy loss through the wall system is directly proportional to the air-leakage characteristics of the wall system. In general, based on the results presented in this paper, it can be concluded that use of a hygrothermal simulation tool can help to identify potentially problematic retrofit strategies while more promising measures can be advanced for additional assessment through full-scale laboratory testing or field demonstration., Conference paper, Published. A version of this document is published in: CIB World Building Congress 2004, Toronto, Ontario, May 2-7, 2004, pp. 1-10.
Hygrothermal modeling of aerated concrete wall and comparison with field experiment
Proceedings of 3rd International Building Physics Conference: 27 August 2006, Montreal, QC. A two-dimensional heat, air and moisture transport model called hygIRC is adapted to simulate a well-documented field exposure of an aerated concrete wall section. Difficulties are encountered due to a few missing information on boundary conditions of the exposure and hygrothermal properties of aerated con-crete. The paper presents how these inadequacies were overcome to simulate the hygrothermal behavior of the wall section. Appropriate assumptions were made due to justifiable reasons. Then the model provides temporal and spatial distributions of temperature and relative humidity for an extended period that are in ex-cellent agreement with the documented field data. The paper presents the justifications for the assumptions and the comparison of experimental and simulation results., Conference paper, Published. A version of this document is published in: 3rd International Building Physics Conference, Montreal, QC., August 27, 2006, pp. 321-328.
Simulation of wind-driven rain effects on the performance of a stucco-clad wall
Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference, Clearwater Beach, Florida, USA, December 02, 2007. This climate sensitivity study studied the effects of wind-driven rain on a stucco-clad wall using the advanced hygrothermal model, hygIRC. Simulations were made for a number of climatic conditions based on the moisture index (MI) and for amounts of water deposited inside a wall. The moisture index was based on the severity of a given climate in respect to wall assemblies and the degree of wetting and drying to which a wall could potentially be subjected. The failure criteria was the concurrent occurrence of temperature and relative humidity above thresholds of 10oC and 95% respectively, for ninety consecutive days at any location of wood-based material in the wall., Conference paper, Published. A version of this document is published in: Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference, Clearwater Beach, FL., Dec. 2-7, 2007, pp. 1-15.