BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection
A single-laboratory validation study was conducted on an HPLC method for the detection and quantification of cyanidin-3-O-galactoside (C3Ga), cyanidin-3-O-glucoside (C3GI), cyanidin-3-O-arabinoside (C3Ar), peonidin-3-O-galactoside (P3Ga), and peonidin-3-O-arabinoside (P3Ar) in cranberry fruit (Vaccinium macrocarpon Aiton) raw material and finished products. An extraction procedure using a combination of sonication and shaking with acidified methanol was optimized for all five anthocyanins in freeze-dried cranberry fruit and finished products (commercial extract powder, juice, and juice cocktail). Final extract solutions were analyzed by HPLC using a C18 RP column. Calibration curves for all anthocyanin concentrations had correlation coefficients (r2) of > or = 99.8%. The method detection limits for C3Ga, C3Gl, C3Ar, P3Ga, and P3Ar were estimated to be 0.018, 0.016, 0.006, 0.013, and 0.011 microg/mL, respectively. Separation was achieved with a chromatographic run time of 35 min using a binary mobile phase with gradient elution. Quantitative determination performed in triplicate on four test materials on each of 3 days (n = 12) resulted in RSD(r) from 1.77 to 3.31%. Analytical range, as defined by the calibration curves, was 0.57-36.53 microg/mL for C3Ga, 0.15-9.83 microg/mL for C3GI, 0.28-17.67 microg/mL for C3Ar, 1.01-64.71 microg/mL for P3Ga, and 0.42-27.14 microg/mL for P3Ar. For solid materials prepared by the described method, this translates to 0.06-3.65 mglg for C3Ga, 0.02-0.98 mg/g for C3Gl, 0.03-1.77 mg/g for C3Ar, 0.10-6.47 mg/g for P3Ga, and 0.04-2.71 mg/g for P3Ar., Peer-reviewed article, Published. Received August 5, 2010; Accepted by AP October 27, 2010.
Determination of hydrastine and berberine in goldenseal raw materials, extracts, and dietary supplements by high-performance liquid chromatography with UV
A multilaboratory collaborative study was conducted on a high-performance liquid chromatographic (HPLC) method utilizing UV detection, previously validated using AOAC single-laboratory validation guidelines for determination of hydrastine and berberine in goldenseal (Hydrastis canadensis L.) raw materials, extracts, and dietary supplements at levels ranging from 0.4 to 6% (w/w). Nine collaborating laboratories determined the hydrastine and berberine content in 8 blind samples. Sample materials included powdered botanical raw materials, whole root material, and 4 finished product dietary supplements containing either goldenseal powdered root material or extract. The materials were extracted with an acidified water and acetonitrile solution. HPLC analyses of the extracts were performed on a C18 column using UV detection at 230 nm. Results for powdered root material and capsule products ranged from about 0.2% (w/w) for each alkaloid to about 4% (w/w) for each alkaloid. Liquid tincture results were approximately 4000-5000 microg/mL for each alkaloid. Reproducibility relative standard deviations (RSDR) for hydrastine ranged from 2.68 to 6.65%, with HorRat values ranging from 0.77 to 1.89. RSDR for berberine ranged from 5.66 to 7.68%, with HorRat values ranging from 1.32 to 2.12. All finished products containing goldenseal extract yielded HorRat values <2.0. Based on these results, the method is recommended for Official First Action for determination of hydrastine and berberine in goldenseal raw materials and dietary supplement finished products containing powdered goldenseal and goldenseal extract., Peer-reviewed article, Published.
Determination of major phenolic compounds in Echinacea spp. raw materials and finished products by high-performance liquid chromatography with ultraviolet detection
A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method., Peer-reviewed article, Published.
Quantification of pyrrolizidine alkaloids in North American plants and honey by LC-MS
Pyrrolizidine alkaloids (PAs) are a class of naturally occurring compounds produced by many flowering plants around the World. Their presence as contaminants in food systems has become a significant concern in recent years. For example, PAs are often found as contaminants in honey through pollen transfer. A validated method was developed for the quantification of four pyrrolizidine alkaloids and one pyrrolizidine alkaloidN-oxide in plants and honey grown and produced in British Columbia. The method was optimised for extraction efficiency from the plant materials and then subjected to a single-laboratory validation to assess repeatability, accuracy, selectivity, LOD, LOQ and method linearity. The PA content in plants ranged from1.0 to 307.8 µg/g with repeatability precision between 3.8 and 20.8% RSD. HorRat values were within acceptable limits and ranged from 0.62 to 1.63 for plant material and 0.56–1.82 for honey samples. Method accuracy was determined through spike studies with recoveries ranging from 84.6 to 108.2% from the raw material negative control and from 82.1–106.0 % for the pyrrolizidine alkaloids in corn syrup. Based on the findings in this single-laboratory validation, this method is suitable for the quantitation of lycopsamine, senecionine, senecionineN-oxide, heliosupine and echimidine in common comfrey (Symphytum officinale), tansy ragwort (Senecio jacobaea), blueweed (Echium vulgare) and hound’s tongue (Cynoglossum officinale)and for PA quantitation in honey and found that PA contaminants were present at low levels in BC honey., Peer-reviewed article, Published. Received 4 June 2015; accepted 20 September 2015.
Single-laboratory validation of a method for the detection and/or quantification of select alkaloids in goldenseal supplements and raw materials by reversed-phase high-performance liquid chromatography
Quality of botanical products and raw materials is important to manufacturers, regulators, researchers, and consumers. Many modern botanical quality-assurance schemes set specifications for select phytochemicals and measure against those specifications as one determinant of quality. While numerous publications describe procedures for determining compounds of interest in plant species, few methods have been systematically evaluated for accuracy, precision, or reliability, and often the analysis of finished products is not within the scope of the method. Hydrastis canadensis L., commonly referred to as Goldenseal, is an economically important North American medicinal plant that has been subject to adulteration in commerce. The phytochemicals of interest in the plant are the alkaloids hydrastine, berberine, and canadine. Of interest is also palmatine, an alkaloid found in potential adulterant species but not in goldenseal. In this study, goldenseal materials in raw, capsule, and tablet form, including an Echinacea/ Goldenseal combination product, were extracted with acidified water and acetonitrile and their hydrastine, berberine, canadine, and palmitine content determined by HPLC. The analytical method was optimized and evaluated in a single-laboratory validation study. Calibration curves for hydrastine and berberine were linear from 10 to 150 μ g/mL. The limits of detection for palmatine and canadine were determined to be 0.5 μ g/mL, which translates to detection of levels of 0.004% w/w in test samples. Chromatographic resolution was achieved for all analytes in an isocratic 12.5-min chromatographic run employing a binary mobile phase. Triplicate determinations performed on 10 test materials by two analysts on 3 days resulted in relative standard deviations ranging from 0.9% to 3.4%., Peer-reviewed article, Published.