

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

2018 AHRAE STUDENT DESIGN COMPETITION -DESIGN CALCULATIONS MAY 4TH, 2018

Team Members:

Ahsan Abbasi Mathew Chung

(aabbasi3@my.bcit.ca) Freddy Harjanto (fharjanto@my.bct.ca) (mchung53@my.bcit.ca)

Faculty Advisors:

Dr. Joseph Cheung, Ph.D., P.Eng Bo Li, M.A.Sc., P.Eng

1. EXECUTIVE SUMMARY

This report is submitted by a team from British Columbia Institute of Technology for 2018 ASHRAE student design competition (Design Calculations). The objective of the competition is to perform the design calculations to correctly size the variable air volume HVAC system for a four-story, 70,000 ft² mixed used complex north of Istanbul, Turkey near Arnavutkoy. The facility features retail, office spaces, a restaurant, and a hotel.

The introduction section of the report deals with the owner project requirements and key parameters such as the climate zone, weather, building envelope and zoning. The Design considerations sections shows the compliance with the latest editions of ASHRAE Standard 55, 62.1, and 90.1 as per the owner requirements. Additionally, NFPA 96 was considered for commercial kitchen exhaust and fire suppression system. In the load calculation section of the report the heating and cooling load were done via TRACE 700, a software package by Trane Inc. The results obtained from Trace 700 were verified with manual calculations in Excel. The System Selection section provides a detailed description of the system selected based on the load calculation results. The Duct design section of the report outlines the steps taken in sizing the ducts, diffusers etc. The layout of the ducts are appended at the end of the report. Finally, the Energy analysis section covers the annual energy consumption and life cycle cost analysis of the selected system.

Analysis of Arnavutkoy weather revealed that the climate zone is warm and humid and it's classified as 3A. The building envelope properties for climate zone 3A were selected based on the OPR and building drawings. However the building envelope of the walls due to its irregular geometry needed a mathematical approach. Zoning was conducted based on the amount of VAV boxes (thermostats) used, thus the area of the zoning was controlled to be less than 1000ft² to achieve maximum thermal comfort. Spaces with similar occupancy, lighting, plug loads and temperature requirements were grouped into a single zone. These zones were subsequently used for load calculations.

The total system peak loads for the building, based on the calculations done in TRACE 700 are 656 MBH for cooling and 439 MBH for heating. These load calculations were done by assigning 4 air handling units (AHU), 1 rooftop unit (RTU) and 2 makeup air units (MAU) to the building. Each AHU was assigned to one floor, the RTU was assigned to the dining room and the MAU's were assigned to the two commercial kitchens. This was decided by considering the design requirements, low first cost and efficiency. The building primary system is a water chiller and a boiler.

The energy analysis was also performed for annual energy consumption in eQuest. The annual energy consumption for electricity is 1,031,200 kWh and 2,994.3 kWh for natural gas. Turkey has a huge geographical advantage to use solar energy and future installation of PV panels for renewable energy was also considered.

A 50-year life cycle cost analysis of the building system priced the initial system cost at \$0.8 million and operation and maintenance at \$6.5 million, resulting in the total price for the system over 50 years to be at \$7.3 million.

2. TABLE OF CONTENTS

1.	Exe	ecutive Summary	.1
2.	Tab	ble of Contents	. 2
3.	Tab	oles & Figures	.4
4.	Intr	roduction	. 5
4	.1.	Owner Project Requirements	. 5
4	.2.	Weather & Climate Zone	. 5
4	.3.	Building Envelope	.6
4	.4.	Zoning	. 8
5.	Des	sign Considerations	. 8
5	.1.	Ashrae Standard 55	. 8
	5.1.	1. Calculating Parameters	.9
5	.2.	Ashrae Standard 62.1	10
	5.2.	1. Particulate Matter, Ozone and Other Outdoor Air Contaminants	11
	5.2.	2. Outdoor Airflow Calculations	11
	5.2.	.3. Exhaust System	12
5	.3.	Ashrae Standard 90.1	12
	5.3.	1. HVAC System	12
	5.3.	2. Lighting	13
6.	Loa	d Calculations	13
6	.1.	Introduction	13
6	.2.	Verification	13
6	.3.	Results	13
7.	Syst	tem Selection	14
7	.1.	Overview & Variable Air Volume (VAV)	14
7	.2.	Air Handling Units (AHU)	14
7	.3.	Dedicated Outdoor Air System (DOAS)	15
7	.4.	Energy Recovery	15
7	.5.	Filters, and Noise Control	15
7	.6.	Refrigeration & Heat Production Equipment	15
7	.7.	Special Instruction Area (Restaurant)	16
	7.7.	1. Dining Area	16

		2. Kitchen	~
	/./.	2. Kitchen	b
8.	Duc	t Design19	9
9.	Ene	rgy Analysis	0
ç	.1.	Energy Consumption Summary	0
ç	.2.	Life Cycle Cost Analysis	2
10.	Con	clusion2	3
11.	Ack	nowledgements24	4
12.	Refe	erences	4
Apj	pendi	x2!	5

3. TABLES & FIGURES

Table 1 - Design Requirements	5
Table 2 – Climate Zone Information	6
Table 3 - Building Envelope Values	7
Table 4 - Thermal Comfort Assumptions	9
Table 5 - Calculated Thermal Environmental Conditions	. 10
Table 6 - Turkey Air Quality	
Table 7 - Exhaust Rate	
Table 8 - Verifying Results	. 13
Table 9 - Load Calculation & Airflow Results	. 13
Table 10 - AHU Sizing	. 15
Table 11 - Kitchen Hood & Exhaust	. 17
Table 12 - Kitchen Exhaust Fan Properties	. 18
Table 13 - Kitchen Makeup Air Unit	. 19
Table 14 - Duct Static Pressure loss	. 19
Table 15 - Building Static Pressure Loss	. 20
Table 16 - Energy Consumption	. 21
Table 17 - Equipment & Labor Cost	. 23

Figure 1 - Arnavutkoy Average Temperatures	5
Figure 2 - Arnavutkoy Average Relative Humidity	6
Figure 3 - Layer Break Down	6
Figure 4 - Type 1 Masonry Wall Calculations	7
Figure 5 - Type 2 Masonry Wall Calculations	7
Figure 6 - Zoning - Floor 1 (left) - Floor 2 (right)	8
Figure 7 - Zoning - Floor 3 (left) - Floor 4 (right)	8
Figure 8 - Standard 55 Graphical method	9
Figure 9 - Layout of AHU & VAV box connection	14
Figure 10 - Kitchen Exhaust Hood	17
Figure 11 - Greenheck Wall Canopy Hood	19
Figure 12 -Breakdown of Energy Consumption	21
Figure 13 - Annual Cost	22

4. INTRODUCTION

4.1. OWNER PROJECT REQUIREMENTS

The Owner Project Requirements (OPR) outlines the main goals, requirements and details that must be met by the project. Some of the main highlights from the OPR are:

- Calculate heating and cooling loads.
- Design the Heating, Ventilation and Air Conditioning (HVAC) system for the building.
- Demonstrate compliance with the latest editions of ASHRAE Standards 55 (2017), 62.1 (2013), and 90.1 (2016).
- HVAC system must use a Variable Air Volume (VAV) system for all spaces.
- The interior conditions as noted in *Table 1* must be maintained.

	Office & Administrative Support Spaces	Restaurant	Retail	Lodging	IT support spaces
Occupancy	7 am - 6 pm Mon-Fri 8 am - 1 pm Sat	7 am - 10 pm Mon - Fri	9 am – 10pm Mon–Sat 11am-7pm Sun	24 hour 365 day	, ,
Summer DB	73.4°F	73.4°F	73.4°F	78.8°F	73.4°F
Summer RH	50%	50%	50%	55%	50%
Winter DB	70°F	70°F	70°F	73.4°F	73.4°F
Sound	NC 35	NC 30	NC 30	N/A	N/A

Table 1 - Design Requirements

4.2. WEATHER & CLIMATE ZONE

Due to the limited information available, the climate zone of Arnavutkoy is difficult to determine. Therefore, the climate zone information from Istanbul, which is a city 10 kilometers away from Arnavutkoy, is used. According to ASHRAE Standard 90.1 Istanbul is a 3A climate zone. This implies that the weather is warm and humid. To validate the previous statement, the weather data of Arnavutkoy was plotted.

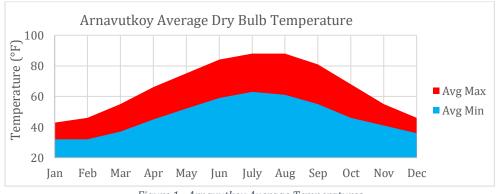
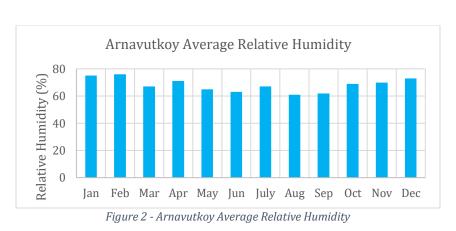
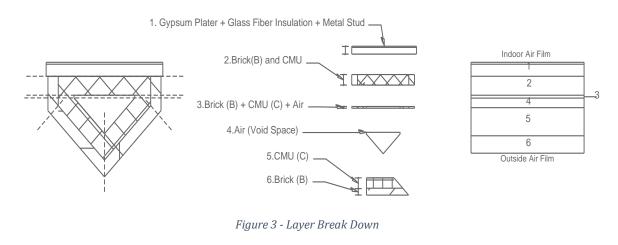



Figure 1 - Arnavutkoy Average Temperatures

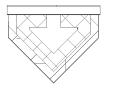

Figures 1 and Figure 2 show the average monthly temperatures and the average monthly relative humidity respectively. From the figures, it can be determined that the peak outdoor conditions in summer as compared to the indoor conditions shown in Table 1 are warm and humid. Therefore, climate zone 3A is a safe assumption.

Based on the OPR, the exterior design conditions should be based on the ASHRAE 2% criteria, heating 99%, evaporation 1% and dehumidification 1% for the climate of Istanbul Turkey. Furthermore, 2017 ASHRAE Fundamentals Handbook was used to determine the heating and cooling degree days as shown in Table 2 below.

Climate Zone	HDD65 (annual)	CDD50 (annual)					
3A	3260	4258					
Table 2 – Climate Zone Information							

4.3. BUILDING ENVELOPE

The building envelope requirements (i.e. insulation values) for climate Zone 3A are defined in both ASHRAE Standard 90.1 and 189.1(Design of High- Performance Green Buildings). Since ASHRAE Standard 189.1 supersedes 90.1, therefore ASHRAE Standard 189.1 (Appendix E, table E-3) was used to determine the maximum u-values for the building envelope. However, the u-values in the standard are determined for plain walls, not the triangular shaped walls shown in Figure 3 (left). Therefore, a mathematical approach was used to simplify the triangular shaped structure to a multiple layered wall with uniform material (Figure 3).


Type 1:

Metal stud wall calculation			R tot = a*R T1 +b*R T3				a=0.	
Wetar stad wall calculation								b=0.
Space of the metal stud	b	insul	ation	9	9.63%			
and insulation		Meta	l stud	(0.37%			
		_	-			1	7	
Wall Type 1 Configuration	т	'nk	Fram		Insulation	R_T3		R_T
			R (ft	^2 F	h / Btu)			R_T
Outside Air Film		-	0.17	7	0.17	0.17		D. T/
Brick (B)	5.	250	0.57	8	0.578	0.578		R_T(
CMU	5.	750	4.02	5	4.025	4.025	1	
Air	2.	875	1.03	8	1.038	1.038		
B+C+Air+C+B	0.	875	0.00	4	0.004	0.004		
B+C+B	5.	688	0.02	8	0.028	0.028		
Metal Stud			0.00	8	0.000	1,923	1	
Glass Fiber Insulation	3.	625	0.00	0	14.500	1.923		
Gypsum Plaster	0.	625	0.39	0	0.390	0.390]	
Indoor Air Film		-	0.68	0	0.680	0.680		
Total			6.92	1	21.413	8.836		

Figure 4 - Type 1 Masonry Wall Calculations

Type 2:

Well Ture 2 Configuration	The	Frame	Insulation	R T3
Wall Type 2 Configuration	Thk	R (ft^2 F	R (ft^2 F h / Btu)	
Outside Air Film	-	0.170	0.170	0.170
Brick (B)	5.25	0.578	0.578	0.578
CMU	5.75	4.025	4.025	4.025
Air	2.875	1.038	1.038	1.038
B+C+Air+C+B	0.875	0.004	0.004	0.004
B+C+Air+C+B	5.6875	0.054	0.054	0.054
Metal Stud		0.008	0.000	1.923
Glass Fiber Insulation	3.625	0.000	14.500	1.925
Gypsum Plaster	0.625	0.390	0.390	0.390
Indoor Air Film	-	0.680	0.680	0.680
Total		6.947	21.439	8.863

R T1	21.275
R_T2	1.923
R_TOT	15.069
U_TOT	0.066362

21.248 1.923 15.042 0.066

Figure 5 -	Type 2	Masonry	Wall	Calculations
------------	--------	---------	------	--------------

Figure 4 and 5 show the calculated U-values for the 2 slightly different type of walls. To calculate the U-values, the total R-value (R_TOT) is required. The R-value is calculated by the summation of the weighted averages of the metal studs/joists and insulation according to their proportions in the assembly. Finally, the U-value is calculated by dividing 1 by R_TOT.

For the remainder of the building envelope (roof, doors and windows), the U-values were obtained from the Trace library since the load calculations were done via Trace 700. The U-values from the standard are used as a maximum limit. The U-values, as shown in Table 3, obtained via the mathematical model and Trace 700 fall within the limits of the ASHRAE Standard 189.1.

Assembly	Max U-Value Standard 189.1 (Btu/hr-ft²-⁰F)	Details	Calculated U- Value (Btu/hr-ft²- ⁰ F)		
Windows	≤0.45	Trace 700: Double glazed, fixed windows	0.29		
Doors	≤0.54	Trace 700: Generic Door	0.29		
Roof	≤0.041	Trace700: 8" HW conc. 6" Ins	0.041		
Walls	≤0.123	Figure 3 and Figure	0.0667		
Table 3 - Building Envelope Values					

4.4. ZONING

An appropriate Zoning technique takes various factors into consideration. Therefore, to maximize the efficiency, cost and thermal comfort, the following rules were determined.

- Zoning is done by considering the perimeter and core of the building.
- The depth of the perimeter can't be more than 15 feet from the exterior wall.
- Area of the zone must be less than 1000 ft².
- Where possible, only 1 side of the zone is exposed to solar heat.
- Based on the OPR, "spaces of similar occupancy shall be considered as a single zone based on ASHRAE Standard 62.1".

The depth of the perimeter was determined by ASHRAE Standard 90.1. The area of the zone was decided to be less than 1000 ft² because the zoning is done based on how many VAV boxes (thermostats) will be used. Therefore, the area had to be controlled to achieve maximum thermal comfort.

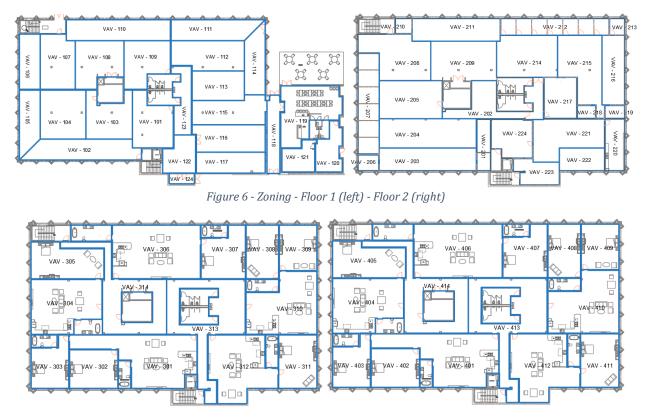


Figure 7 - Zoning - Floor 3 (left) - Floor 4 (right)

5. Design Considerations

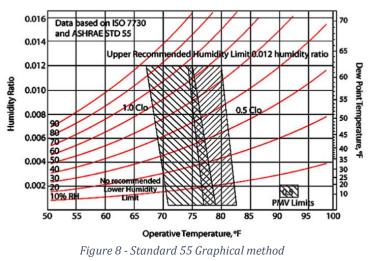
5.1. ASHRAE STANDARD 55

ASHRAE Standard 55 determines the thermal environmental conditions for human occupancy in a building, which are affected by air speed, clothing insulation, temperature, humidity, metabolic rate and radiant temperature. To test the compliance with standard 55 following assumptions were made.

- Thermal conditions will be determined for level 2(Office Space).
- Occupants are wearing a normal shirt, normal trousers, jacket, underwear, socks and boots.
- The HVAC system will maintain design air humidity and temperature.
- Relatively small temperature difference exists between the surfaces of the enclosure.
- Walls have a high emittance, ε.

Input	Values
Metabolic Rate	1.1
Clothing Insulation	1.01
Indoor Summer Design Temperature	73.4°F
Indoor Winter Design Temperature	70°F
Relative Humidity	50%
Emissivity	1

Table 4 - Thermal Comfort Assumptions


5.1.1. Calculating Parameters

i. Operative Temperature (OT) Range

 $t_{min,Icl} = \frac{(I_{cl} - 0.5clo)t_{min,1.0clo} + (1.0clo - I_{cl})t_{min,0.5clo}}{0.5clo}$ $t_{max,Icl} = \frac{(I_{cl} - 0.5clo)t_{max,1.0clo} + (1.0clo - I_{cl})t_{max,0.5clo}}{0.5clo}$ $I_{cl} = \text{clothing insulation value, clo}$ $t_{min} = \text{lower temperature limit, °F}$

 t_{max} = upper temperature limit, °F

Using the graph shown in Figure 8 below, minimum and maximum temperature for 0.5 and 1.0 clo can be determined at a relative humidity of 50%. These values can be used to obtain the operative temperature range by using the equations above.

ii. <u>Maximum acceptable air velocity</u>

 $V = 31375.7 - 857.295t_a + 5.86288t_a^2$

t_a = design temperature, °F

Using the indoor design temperatures from Table 4, the maximum acceptable air velocity can be determined for winter and summer.

iii. Mean Radiant Temperature (MRT)

The mean radiant temperature (t_r) is a key variable in thermal calculations for the human body. It is the uniform temperature of an imaginary enclosure in which radiant heat transfer from the human body equals the radiant heat transfer in the actual nonuniform enclosure. The following equation from the ASHRAE fundamental handbook can be used if the temperature difference between the planes of the enclosure is assumed to be relatively small and the individual is assumed to be in a seated position. The plane radiant temperature is assumed to be at 68 °F.

$$t_r = \frac{0.18[t_{pr}(\text{up}) + t_{pr}(\text{down})] + 0.22[t_{pr}(\text{right}) + t_{pr}(\text{left})] + 0.30[t_{pr}(\text{front}) + t_{pr}(\text{back})]}{[2 * (0.18 + 0.22 + 0.30)]}$$

t_{or} = plane radiant temperature, °F t_r = mean radiant temperature, °F

iv. **Operative Temperature (OT)**

$$t_o = At_a + (1 - A)t_r$$

 t_0 = operative temperature, °F

t_a = design temperature, °F

A = coefficient representing the ratio of heat transfer (Convection/Radiation)

The coefficient, A, can be determined from the Normative Appendix A by using the maximum acceptable air velocity.

Results v.

Winter	Summer			
OT Range 6	69 °F - 76°F			
V = 93.162 fpm	<i>V</i> = 36.453 <i>fpm</i>			
A = 0.6	<i>A</i> = 0.5			
$t_r = 68 \text{ °F}$				
$t_o = 69.3 {}^{\rm o}{\rm F}$	$t_o = 70.825 \ ^{\circ}\text{F}$			
Table 5 - Calculated Thermal Environmental Conditions				

Table 5 - Calculated Thermal Environmental Conditions

Looking at the results it can be determined that the operative temperatures for both summer and winter lie within operative temperature range.

5.2. ASHRAE STANDARD 62.1

ASHRAE Standard 62.1 determines the ventilation for acceptable Indoor Air Quality (IAQ), in which "there are no known contaminants at harmful concentrations and substantial majority (80% or more) of people exposed do not express dissatisfaction". Two procedures are highlighted to determine mechanical ventilation for buildings: Ventilation Rate Procedure (VRP), and IAQ procedure (IAQP).

VRP produces minimum ventilation rates based on the contaminant source as well as its concentration in the breathing zone of the building occupancy types as tabulated in Table 6.2.2.1 of ASHRAE Standard 62.1.

IAQP is performance-based design, in which outdoor ventilation air rates are calculated based on specific kind of contaminant source, concentrations and perceived air quality target. Since IAQP is limited by insufficient specifications and unavailable data, IAQP method is not used for the ventilation.

VRP Procedure

5.2.1. Particulate Matter, Ozone and Other Outdoor Air Contaminants

Air quality in Turkey is a big concern since measurements show that the number of particulate matter with a diameter of 2.5 and 10 micrometers (PM2.5 and PM10) in Turkey's atmosphere are significantly higher than the European Union and World Health Organization.

	PM 2.5 (μg/m ³)	PM 10 (μg/m ³)
Turkey	39	50
EU Annual limits	25	40
TT 1	1 (11) 1''	

Table 6 - Turkey Air Quality

According to ASHRAE Standard 62.1, particulate filters or air cleaning devices shall be provided to clean the outdoor air with minimum efficiency reporting values (MERV) of 11 or higher when the National guidelines for PM2.5 and PM10 are exceeded. Also, no ozone cleaning devices are needed as the most recent three years average annual fourth-highest daily maximum eight-hour average ozone concentration is below 0.107 ppm (209 μ g/m³).

5.2.2. Outdoor Airflow Calculations

i. <u>Breathing Zone Outdoor Airflow</u>

$$V_{bz} = R_p * P_z + R_a * A_z$$

$$\begin{split} V_{bz} &= \text{Breathing Zone Outdoor Airflow, cfm} \\ A_z &= \text{Zone Floor Area, } \text{ft}^2 \\ P_z &= \text{Zone Population, } \# \text{ of people} \\ R_p &= \text{Outdoor airflow rate per person, cfm/person (Table 6.2.2.1)} \\ \text{Ra} &= \text{Outdoor airflow rate per unit area, cfm/ft}^2 (Table 6.2.2.1) \end{split}$$

ii. Zone Outdoor Airflow

$$V_{oz} = \frac{V_{bz}}{E_z}$$

 V_{oz} = Zone Outdoor Airflow, cfm E_z = Zone Distribution Effectiveness (Table 6.2.2.2)

iii. <u>Primary Outdoor Air Fraction</u>

$$Z_p = \frac{V_{oz}}{V_{pz}}$$

 V_{pz} = Zone Primary Airflow from air handler including outdoor and recirculated air, cfm

 Z_p = Outdoor Air Fraction

iv. <u>Uncorrected Outdoor Air Intake</u>

$$V_{ou} = D \sum_{all \ zones} (R_p * P_z) + \sum_{all \ zones} (R_a * A_z)$$

V_{ou} = Uncorrected Outdoor Air Intake, cfm D = Occupant Diversity (use equation below)

$$D = \frac{P_S}{\sum_{all \ zones} P_z}$$

 P_s = total population in the area served by the system P_z = Zone Population, # of people

v. <u>Outdoor Air Intake</u>

$$V_{ot} = \frac{V_{ou}}{E_{v}}$$

 V_{ot} = Outdoor Air Intake V_{ou} = Uncorrected Outdoor Air Intake, cfm E_v = System Ventilation Efficiency, (find using Z_p in Table 6.2.5.2)

5.2.3. Exhaust System

The two methods to design exhaust systems are Perceptive and Performance Compliance Path. In Perceptive compliance path, the exhaust rate is determined by ASHRAE Standard 62.1 Table-6.5. Whereas, in Performance compliance path, the exhaust rate is determined according to contamination source and concentration using Informative Appendix B. Since the building has no contamination zones or areas, it is safe to use the perceptive compliance path method. The following spaces listed in Table 7 below, require an exhaust system.

Occupancy Category	Exhaust Rate
Storage Rooms	1.5 (cfm/ft ²)
Toilets	50 (cfm/unit)
Kitchen – Commercial	See <u>Section 7.7.2</u>
T-11-7	E-b t D t

Table 7 - Exhaust Rate

5.3. ASHRAE STANDARD 90.1

ASHRAE Standard 90.1 is used to determine the minimum energy efficiency requirements for a building. For compliance, section 6 (HVAC System), and section 9 (Lighting) of standard 90.1 are most applicable. Section 5 (Building Envelope) is not considered because it is superseded by standard 189.1 (*section 4.4*). All other sections are not applicable.

5.3.1. HVAC System

The cooling capacity of the building is greater than 16kW (54,000 BTU/h), and the Climate Zone is 3A. Therefore, an economizer is needed according to the standard 90.1 - Table 6.5.1. The high limit shutoff control settings for an air economizer based on Table 6.5.1.1.3 is $T_{oa} > 65^{\circ}F$

5.3.2. Lighting

The two methods for lighting system compliance are Building area compliance method and Space by Space method. For this project Space by Space method was used and all the lighting power densities allowances were taken from ASHRAE Standard 90.1 - Table 9.6.1 to calculate lighting load.

6. LOAD CALCULATIONS

6.1. INTRODUCTION

Heating and Cooling Load calculations were performed by Trace 700. Templates for internal load, airflow, thermostat, construction were made for different types of spaces such as offices, retail, lodging etc. The templates incorporated values from the ASHRAE standards and the fundamental handbook. The model was inputted as rooms in Trace 700. The rooms were based on the zoning conducted in *Section 4.5.* Systems were also created for each type of space (retail, lodging, offices). Each space was assigned only one type of system due to varying design requirements (*Table 1*) and efficiency. Finally, the weather data file from the ASHRAE website was imported into Trace for calculations.

The team used CLTD/CLF method for cooling load and UATD for heating load calculations.

6.2. VERIFICATION

Excel was used to verify the accuracy of the load calculations completed via Trace 700. For the verification purposes, one zone from the building was chosen as a reference. Heating and cooling load calculations were conducted for the reference zone using excel spreadsheets and compared to the results obtained from Trace 700. The VAV-206 (*Figure 6*) was chosen as the reference zone.

Load Calculations	Trace 700 (Btu/h)	Excel (Btu/h)	% Difference			
Heating	3603	3788	4.85%			
Cooling	5744	5672	1.3%			
Table 8 - Verifying Results						

6.3. **Results**

The summary of the results from Trace 700 are displayed in Table 9 below. The full calculations are shown in the Appendix.

Space Type	Heating (cfm)	Cooling (cfm)	Total Heating Load (Btu/h)	Total Cooling Load (Btu/h)
level 1	3,992	8,485	118,165	201,817
level 2	3,780	9684	105,743	220,925
level 3	2,777	7,229	87,193	95,203
level 4	2,651	7,211	105,823	94,981
Dining Area	587	587	9,269	16,305
Kitchen 1 (VAV-120)	429	1,429	13,013	26,505
Kitchen 2 (VAV-121)	601	2004	14,217	33,477

Table 9 - Load Calculation & Airflow Results

7. System Selection

7.1. OVERVIEW & VARIABLE AIR VOLUME (VAV)

The next step in the process after load calculations is system selection. The objective of the system selection is to control and maintain the building space load since it continuously changes due to varying outdoor air temperature, solar radiation, and internal loads. Therefore, a zone control strategy is implemented. As stated in the OPR, the use of Variable Air Volume (VAV) boxes throughout the building is required to be a part of the control strategy. Due to the various types of VAV boxes, VAV boxes with reheat were selected since they provide a better temperature and humidity control. The VAV boxes model SDV8, as shown in the Appendix, were selected from ehprice. The boxes were sized based on the maximum cfm of each zone determined in Trace. The general layout of the AHU and VAV box connection is shown in Figure 9 below.

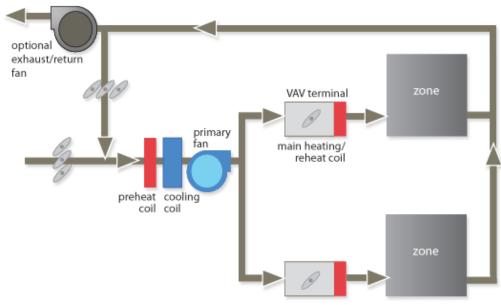


Figure 9 - Layout of AHU & VAV box connection

7.2. AIR HANDLING UNITS (AHU)

Air Handling Unit condition air and direct it to VAV boxes, where it is distributed to its dedicated zone or space. For this building except the restaurant, four Trane Performance Climate Changer AHU shown in Appendix will be used. Each AHU is sized according to the load and ventilation calculations in TRACE 700, and one AHU will serve one floor. This is decided based upon the occupancy variance (*section- 4.1*), which effects the schedules and the load. Thus, having one AHU per floor makes the process more efficient and decreases the amount of duct work needed (low first cost). Table 10 below contains the information needed from the TRACE 700 calculations to size each AHU.

The restaurant area needs special attention due to different design considerations, such as exhaust, makeup air and fire safety (see *section 7.7*).

Cooling Load						Н	eating Load	d	
Floor	Flow	Sensible [Btu/h]	Total [Btu/h]	Total Capacity [Btu/h]	Entering Temp [⁰ F]	Leaving Temp [⁰ F]	Total [BTU/h]	Entering Temp [⁰ F]	Leaving Temp [⁰ F]
1 st Floor	8845	173,808	201,817	29.3	75.4	53.2	345,323	53.2	97.6
2 nd Floor	9684	189,967	220,925	29	75.1	54.2	295,486	54.2	97
3 rd Floor	7229	92,234	95,203	10.3	78	67.5	225,653	67.5	101.3
4 th Floor	7211	92,013	94,981	10.5	78.4	67.5	243,043	67.5	108.9

Table 10 - AHU Sizing

7.3. DEDICATED OUTDOOR AIR SYSTEM (DOAS)

One Trane Performance Climate Changer AHU shown in the Appendix is used as a DOAS. The DOAS will be placed on the roof and it is sized based on the total outdoor air ventilation load of the building except the restaurant. The DOAS will take care of the total outdoor air space ventilation requirements not space load. The DOAS will connect all the AHU's through a single duct passing thorough the mechanical room. The addition of the DOAS will help in annual energy savings from the fan and chiller.

7.4. ENERGY RECOVERY

There are two ways to exhaust room air, a duct return or plenum return. Except the restaurant and bathrooms, the team decided to use plenum return for the remainder of the building. The exhausted air from the plenum will return to the AHU to be conditioned and recirculated, because the return air and supply air are both considered to be Class 1 air. The return air requires less energy and conditioning to return to desired temperature. Therefore, the recirculated air will help recover energy and save money.

7.5. FILTERS, AND NOISE CONTROL

The DOAS and four AHU's will require MERV 11 or higher filters in accordance to the particulate matter analysis presented in *section 5.2.1*.

The OPR provided the design requirements of NC 35 for office and NC 30 for retail and lodging spaces. The noise control requirements will be met by lining the main ducts with acoustical boards and adding flexible ducts to the diffusers. Also, the VAV boxes were sized using the noise attenuation. Since the bathrooms are not regarded as living spaces, the noise from the bathroom exhaust fan was not considered.

7.6. **Refrigeration & Heat Production Equipment**

The primary system selected for the building is a water chiller and a boiler connected to a cooling tower. The cooling tower was sized according to the overall flow rate (GPM) based on the cooling capacity of the building. The cooling tower chosen is from TRANE COOL-PRC002-EN– Galvanized model shown in Appendix. Since Istanbul is located near an ocean, the galvanized model was selected to protect against rust and corrosion. The cooling tower was selected from series of quiet cooling towers since it will be placed on the roof of the building and noise control is needed.

The boiler system will serve SDV8 VAV reheat terminal units. It was sized according to the total heating load of the building from Trace 700. A safety factor of 1.1 was applied to oversize the boiler

to compensate for any error in the load calculations. The boiler chosen for the building is Viessmann VITOCROSSAL 300 – CA3 Series 2.5, which has an output of 2,352 MBTH. Its specifications are available in the Appendix.

Similarly, the chiller of the building was sized based on the total cooling load of the building from Trace 700. A safety factor of 1.1 was once again applied to compensate for any error in the load calculations. The chiller chosen for the building is TRANE ProChill B4k – SS20AC, which has a cooling capacity of 132 TR and 1584 MBTH. The detailed specifications of the chiller are available in the Appendix.

7.7. SPECIAL INSTRUCTION AREA (RESTAURANT)

7.7.1. Dining Area

Based on the provided layout, the restaurant consists of dining area and 2 kitchen areas which are located at VAV 119, VAV 120, and VAV 121 respectively (see *Figure 6*). A separate HVAC system was designed for the restaurant due to different class of air, need for kitchen exhaust and duct work. Therefore, the dining area is only served by a single VAV zone rooftop unit sized based on the load calculation in Trace. Yorkz H037 Predator Series with cooling capacity of 3 Ton and supply air capacity of 1200 CFM was selected for serve the dining area.

7.7.2. Kitchen

Seeing that the restaurant has a commercial kitchen, exhaust and fire safety requirements need to be considered. Therefore, ventilation calculations were done by hand for the commercial kitchen to comply with NFPA 96 standard. Standard NFPA 96 provides minimum exhaust and fire safety requirements related to the design, installation, operation, inspection, and maintenance of all public and private cooking operations. It applies to cooking equipment used for commercial cooking operations but does not apply to cooking equipment located in a single-family dwelling unit. Based on NFPA 96, the following configurations need to be considered.

i. Kitchen Exhaust System

Based on the OPR and the kitchen equipment list, it was determined that the kitchen needs a type 1 hood. This type 1 hood needs to be implemented with grease filters, and fire suppression system underneath the hood. Moreover, the hood must be constructed and supported by steel of not less than 18 gauge or stainless steel of 20 gauge. The hood also requires tight continuous welded seams and joints for the entire hood enclosure in an event of a fire. Furthermore, wall mounted canopy hoods were chosen for their functionality and versatility compared to other types of hoods.

ii. **Filters**

Grease extraction removal devices are used to remove built up grease downstream of the kitchen exhaust hood. These extraction devices are to be mounted with baffle filters not less than 18" from the cooking equipment based on NFPA 96.

iii. Kitchen Airflow Rate (CFM)

Kitchen airflow rate is critical in designing an exhaust system to remove heat during cooking. To correctly size the kitchen airflow rate, it requires two parameters. The parameters being the effective length of the hood and maximum net exhaust flow rate. Figure 10 below illustrates the wall-mounted canopy hood (right side) and the top view of the hood placement (left side). The typical distance of rear gap and front overhang of the hood are 3 inches and 6 inches respectively based on common practice in the industry.

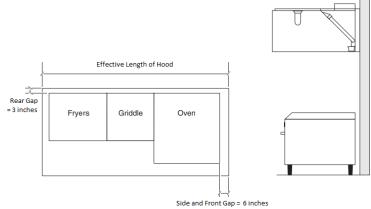


Figure 10 - Kitchen Exhaust Hood

Furthermore, Table 6.5.7.2.2 in ASHRAE standard 90.1 provides the maximum net exhaust flow rate based on the type of hood and equipment. The required CFM can be determined by multiplying the effective length of hood by maximum exhaust flow rate per foot. Below is the summary of required CFM for VAV – 120 (Kitchen #1) and VAV – 121 (Kitchen #2).

	VAV 120	VAV 121
Type of Hood	Wall-mounted canopy	Wall-mounted canopy
Equipment	Medium Duty	Heavy Duty
Max Exhaust Flow Rate	210 CFM/Ft	280 CFM/Ft
Linear Foot of Hood	7 Ft	7.67 Ft
Required CFM	1470 CFM	2147 CFM

Table 11 - Kitchen Hood & Exhaust

iv. Kitchen Duct Construction

Kitchen ducts exhaust air with heat and grease laden vapour through the system termination either at the roof top or an exterior wall. The duct system must have openings to provide sufficient access to permit periodic maintenance and inspection. It must be constructed with materials and connections that will not compromise its integrity should a fire occur in the duct. The termination point for the exhaust air must be located to prevent recirculation of the exhaust air back into the building or any adjacent building. The following must be considered to meet standard NFPA 96:

- 1. Access to Ducts: a minimum 20"x20" opening shall be provided for personnel entry to duct system.
- 2. Duct Clearance: minimum clearance must be provided for limited combustible materials (3 inches) and combustible materials (18 inches).

- 3. Duct materials: ducts must be constructed of and supported by not less than 16-gauge galvanized steel or 18-gauge stainless steel. Moreover, all kitchen ducts must be welded with liquid tight continuous seams, joints, penetrations, and duct hood collar connections.
- 4. Termination of Exhaust System through the roof must provide
 - A minimum of 3 m (10 ft) of horizontal clearance from the outlet to adjacent buildings, property lines and air intakes.
 - A minimum of 1.5 m (5 ft) of horizontal clearance from the outlet (fan housing) to any combustible structure.
 - A vertical separation of 0.92 m (3 ft) below any exhaust outlets for air intakes within 3 m (10 ft) of the exhaust outlet.
 - A drain to collect grease out of any traps or low points formed in the fan or ducts near terminations of the system.
 - An upblast fan installed on 18" high fan curb with flexible weatherproof electric cable and service hold open retainer to permit inspection and cleaning.

v. Kitchen Exhaust Fan

Based on commercial kitchen design, airflow velocity is limited from 1500 FPM to 1800 FPM. For this project 1500 FPM airflow velocity is sufficient as shown in the duct sizing calculations in the Appendix. Furthermore, to select a proper kitchen exhaust fan, the static pressure loss also must be calculated. Following are the parameters to consider for static pressure loss.

- Static pressure loss that comes from removable grease extractor
- Entrance Loss based on exhaust duct velocity
- Static pressure loss that comes from ducts and associated fittings
- Fan system effect, typically ranges from 0.05" w.g to 0.2" w.g

The detailed calculations for static pressure are shown in Appendix. Once the static pressure of exhaust fan is found, the next step is to choose a typical fan used in commercial kitchen. Upblast fan is chosen by considering termination of exhaust fan requirements in kitchen duct construction. The table below provides the summary of static pressure loss for kitchen exhaust and the selected fan properties from Greenheck.

	VAV 120	VAV 121
Static Pressure	1.0638" wg	1.112" w.g
Greenheck Model	Size-161XP-CUBE	Size-180HP-CUBE
Motor HP	1	0.75
Fan RPM	2138	1215
Fan CFM	1743	2286

Table 12 - Kitchen Exhaust Fan Properties

vi. Makeup Air System

The makeup air unit for the kitchen was based on the required cfm (<u>*Table 11*</u>). It was decided to be placed on the roof of the kitchen. Also, the selected makeup air unit is an indirect gas fired with evaporative cooling from Greenheck. The table below shows the selected make up air unit for both kitchens.

	VAV 120	VAV 121
Model	IG-110	IG-112
MBH (Input)	150-175	175-300
Static Pressure	0.75" w.g	0.75" w.g
Airflow	2000 CFM	2600 CFM
RPM	912	761

Table	13 -	Kitchen	Makeup	Air	Unit
-------	------	---------	--------	-----	------

vii. Fire Suppression System

Fire suppression system is critical in commercial kitchen design. NFPA 96 requires all fire extinguishing systems to comply with ANSI/UL 300 to provide minimum fire testing standard in the kitchen. In an event of emergency, the fire extinguishing equipment discharges cold water mist to spray water within the exhaust plenum and turns on the fan circuit. Therefore, it was decided to use Greenheck Wall Canopy Hood equipped with Ansul R-102 fire suppression system. This Ansul R-102 fire suppression system works efficiently due to nozzles and their placement.

Figure 11 - Greenheck Wall Canopy Hood

8. DUCT DESIGN

Duct Design layout for the building is shown in the Appendix, it was done by using equal friction method. Following were the steps used to size ducts.

- Determine the supply air velocity requirement. The supply air velocity for residential and commercial are limited to 1000 FPM and 1200 FPM respectively.
- Using ductulator, a duct sizing calculator online, initial static pressure loss can be obtained by comparing supply air velocity and total CFM.

Building Level	Туре	Airflow (CFM)	Velocity (FPM)	Initial Static Pressure (inch w.g)
1	Commercial	8845	1200	0.055
2	Commercial	9684	1200	0.05
3	Residential	7229	1000	0.04
4	Residential	7211	1000	0.04
Dining (VAV 119)	Commercial	587	1200	0.28

Table 14 - Duct Static Pressure loss

- Once initial static pressure loss is determined, this static pressure will be used to size the ductworks in the building.
- Determine the location of each supply air diffuser, return air grille, and VAV box in the building.
- The final step is to determine the static pressure required for the fan in AHU to overcome resistance or pressure drop in ductworks. The following steps are required to get total static pressure in the building:
 - Fan system effect
 - > Duct equivalent length from straight duct and duct fittings.
 - Pressure drop from terminal unit and diffuser

Below is the summary of the required static pressure for different spaces in the building.

	Level 1	Level 2	Level 3	Level 4	VAV 119
	(Retail)	(Office)	(Lodging)	(Lodging)	(Dining)
Fan system effect (in w.g)	0.15	0.15	0.15	0.15	0.15
Duct Equivalent (in w.g)	0.15	0.12	0.09	0.09	0.21
Terminal Unit (in w.g)	0.10	0.10	0.10	0.10	0.10
Diffuser (in w.g)	0.10	0.10	0.10	0.10	0.10
Total Static Pressure (in w.g)	0.50	0.47	0.44	0.44	0.56

Table 15 - Building Static Pressure Loss

As mentioned in <u>section 7.7.2</u>, commercial kitchen is treated as a special instruction area which needs to comply with standard NFPA 96. However, the process of sizing the ducts is the same. For commercial kitchen duct design calculations look in the Appendix.

9. ENERGY ANALYSIS

9.1. ENERGY CONSUMPTION SUMMARY

For energy analysis, energy modeling software eQuest was used to determine annual energy consumption of the HVAC system in the building. Due to the requirement of using VAV boxes, the energy consumption of the designed VAV system was performed.

The overall annual energy consumption of the building is 1,034,194.3 kWh and it is shown graphically in Figure 12 and numerically in Table 16 below.

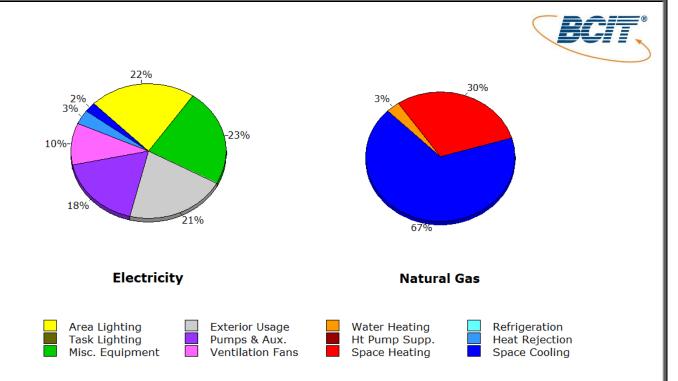


Figure 12 -Breakdown of Energy Consumption

	Electricity (kWh x000)	Natural Gas (kWh)
Space Cool	24.2	2007.8
Heat Reject.	35.6	0
Refrigeration	0	0
Space Heat	0	896.8
HP Supp.	0	0
Hot Water	0	89.7
Vent. Fans	104	0
Pumps & Aux.	183.5	0
Ext. Usage	215.6	0
Misc. Equip.	238.5	0
Task Lights	0	0
Area Lights	229.8	0
Total	1,031.20	2,994.30

Table 16 - Energy Consumption

ASHRAE Standard 189.1 states that on-site renewable energy system is a mandatory provision for future installations. Since this is not a single-story building, the annual energy production of renewable energy systems should not be less than 10kBtu/ft² (32 kWh/m²) multiplied by the gross roof area, which equals to 177,784 kBtu (52103kWh). The renewable energy can cover 5% of annual electricity use.

Due to its geographical location, Turkey has huge economic potential in solar energy. Photo Voltaic modules can be installed on the roof of the main building, where they will have least interference. The shading-series of SunPower solar panel was chosen for its highest efficiency of 21.5% with

345W/panel output. This module has high initial cost compared to others, but it will produce higher returns in the long run. Sizing of PV panel with cost analysis is shown below.

Number of Panels:

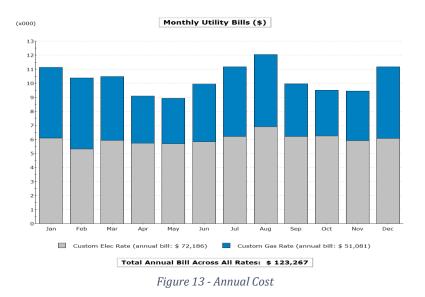
Annual Renewable Energy = $52103 \ kWh$

Annual Mean Solar energy =
$$120.4 \frac{kWh}{ft^2}$$

Efficiency of
$$X - series = 21.5 \%$$

PV array are requirement = $\frac{52103 \ kWh}{0.215 * 120.4 \frac{kWh}{ft^2}} = 2012.79 \ ft^2$

$$Pannel Size = 17.54 ft^2$$


Number of Pannel =
$$\frac{2012.79 ft^2}{17.54 ft^2} = 114.75 \rightarrow 115 pannels$$

Cost of Panels:

Pannel Cost = 360 USD /pannel

9.2. LIFE CYCLE COST ANALYSIS

Life cycle cost analysis was done to ensure it falls within the requirement \$200/ft² budget. Since the building covers 70,000 ft², the total budget is \$14 million. Figure 13 below, shows the total monthly bills for both electricity and gas determined via eQuest.

Equipment Type	Cost
4 - Air Handling Units	\$70,000
1 - DOAS	\$25,000
1 - Rooftop Unit	\$1,200
2 - Makeup Air Units	\$ 2,000
1 - Water Chiller	\$60,000
1 - Boiler	\$10,000
1 - Cooling Tower	\$18,000
1 - Kitchen Hood	\$60,000
1 - Fire Suppression System	\$1,500
76 - VAV boxes	\$85,000
500 - Diffusers & Grills	\$140,000
Duct Work	\$300,000
Total	\$772,700

Using the value for total annual bill across all rates in Figure 13, the operating cost for 50 years is calculated to be \$6.2 million. Table 17 shows that the capital investment needed for the building is \$772,700. It considers both, equipment and labor cost for installation in the building. An additional 3% of the initial investment for maintenance, 3% inflation and 4% return on investment resulted in \$6.5 million for operation and maintenance costs. Combining the operation and maintenance with the initial cost results in a total life cycle cost of \$7.3 million (\$104 USD/ft²). The total life cycle cost is approximately 50% below the budget.

10. CONCLUSION

The load calculations of proposed four story building north of Istanbul, Tukey near Arnavutkoy were performed in compliance with latest edition of ASHRAE Standard 55, 62.1, and 90.1. Additionally, ASHRAE standard 189.1 for high performance energy efficiency and standard NFPA 96 for Ventilation Control and Fire Protection of Commercial Cooking Operations were also considered.

The load calculations were performed by using TRACE 700 and the results were verified by the calculations done in Excel. The zoning was done based on the amount of VAV boxes (thermostats) used, thus the area of the zoning was controlled to be less than 1000ft² to achieve maximum thermal comfort. Spaces with similar occupancy, lighting, plug loads and temperature requirements were grouped into a single zone.

The result, of the overall cooling load for the building is 656 MBH and heating load is 439 MBH. As required, each zone is assigned a VAV box for temperature control. The primary system in the building consists of water chiller, a boiler and a cooling tower to supply and extract the heat. The building is assigned 4 air handling units (AHU), one for each level. The restaurant is assigned 1 rooftop unit (RTU) for the dining area and 2 makeup air units (MAU) for the two commercial kitchens.

A 50-year life cycle cost analysis of the building system is \$104 USD/ft, which is less than the budget of \$200 USD/ft.

11. ACKNOWLEDGEMENTS

The team would like to thank Joseph Cheung (Professor - BCIT) for his time, guidance, and technical reviews throughout the project. The team would also like to extend their thanks to Bo Li (Professor - BCIT) for his help in energy analysis.

12. References

ASHRAE. 2017. *Standard 55 - Thermal Environmental Conditions for Human Occupancy*. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE. 2013. *Standard 62.1 - Ventilation for Acceptable Indoor Air Quality*. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE. 2016. *Standard 90.1 - Energy Standard for Buildings Except Low-Rise Residential Buildings*. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE. 2014. Standard 189.1 – Standard for the Design of high-Performance Green Building –Except Low-Rise Residential Buildings. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE. 2017. ASHRAE Handbook: Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

NFPA96. 2017. *Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations*. National fire Protection Association.

TRACE 700. 2010. User Manual – Building Energy and Economic Analysis, Version 6.2, TRANE.

eQuest. 2010. Introductory tutorial, version 3.64. JAMES J. HIRSCH & ASSOCIATES.

APPENDIX

Static Pressure Calculation – Commercial Kitchen

VAV 120

Hood with Removable Grease Extractor = 0.75" w. g.Enterance Loss = 0.09" w. g.

Fan System Effect = 0.2" w. g.

Straight Duct used for compliance with standard NFPA 96.

Duct Length = 110 in = 9.1671 ft

Static pressure over 100 ft based on 1500 FPM with 1470 CFM is 0.26" w.g.

Static Pressure =
$$\frac{0.26" \text{ w.g.}}{100 \text{ ft}} * 9.1671 \text{ ft} = 0.0238" \text{ w.g.}$$

Overall static pressure of duct for VAV 120 will be sum of each static pressure as shown below.

Total Static Pressure = $0.75 \text{ w.g.} + 0.09^{\circ} \text{ w.g.} + 0.2^{\circ} \text{ w.g.} + 0.0238^{\circ} \text{ w. g.} = 1.0638^{\circ} \text{ w. g.}$

VAV 121

For VAV 121, two different size of ducts are used.

Hood with Removable Grease Extractor = 0.75" *w.g.*

Enterance Loss = 0.09" w.g.

Fan System Effect = 0.2" w.g.

Straight and fitting duct used for compliance with standard NFPA 96.

Main Duct Length = 76 in = 6.33 ft

Static pressure over 100 ft based on 1500 FPM with 2147 CFM is 0.2" w.g.

Static Pressure =
$$\frac{0.2" \text{ w.g.}}{100 \text{ ft}} * 6.33 \text{ ft} = 0.0127" \text{ w.g.}$$

#2 and #3 Duct Length = 38 in = 3.167 ft

Static pressure over 100 ft based on 1500 FPM with 1074 CFM is 0.28" w.g.

Static Pressure =
$$\frac{0.28" \text{ w.g.}}{100 \text{ ft}} * 3.167 \text{ ft} = 0.00887" \text{ w.g.}$$

Since two size of ducts are used in this system, pressure loss from the expansion joints is considered.

$$Area Ratio = \frac{\text{Main Duct Area}}{\#2 \text{ Duct Area}} = \frac{200 \text{ in}^2}{100 \text{ in}^2} = 2, Gradual Change Angle = 60^{\circ}$$
$$\rightarrow Expansion Loss = 0.0435'' \text{ w. g.}$$
$$Pressure Loss = \left(\frac{\text{New Velocity}}{1500 \text{ fpm}}\right)^2 * Expansion Loss from Table$$
$$= \left(\frac{1613 \text{ fpm}}{1500 \text{ fpm}}\right)^2 * 0.0435 \text{ w.g.} = 0.05030'' \text{ w. g.}$$

Overall static pressure of duct for VAV 121 will be sum of each static pressure as shown below.

Total Static Pressure

= 0.75 w.g. + 0.09"w.g. + 0.2" w.g. + 0.0127" w.g. + 0.00887" w.g. + 0.0530" w.g. = 1.112" w.g.

Duct Size Calculation – Commercial Kitchen

VAV 120

$$Kitchen Type = Medium \, duty = 210 \frac{CFM}{ft}$$

$$Total \ CFM = 7 \ ft \ * \ 210 \frac{CFM}{ft} = 1470 \ CFM$$

Assumed Duct Velocity = 1500 *FPM*

$$Duct Size = \frac{Total CFM}{Duct Velcity} = \frac{1470 CFM}{1500 FPM} = 0.98 ft^2 = 141.12 in^2 \rightarrow 12" \times 12" Duct Size$$

Confirm assumption,

$$Velocity = \frac{1470 \ CFM}{144 \ in^2} * \frac{1 \ ft^2}{144 \ in^2} = 1470 \ FPM$$

It is very close to the standard velocity design range, 1500 FPM to 1800 FPM.

VAV 121

For the main duct (#1) size,

$$Kitchen Type = Heavy \, duty = 250 \frac{CFM}{ft}$$

$$Total \ CFM = 7.67 \ ft \ * \ 280 \frac{CFM}{ft} = 2147 \ CFM$$

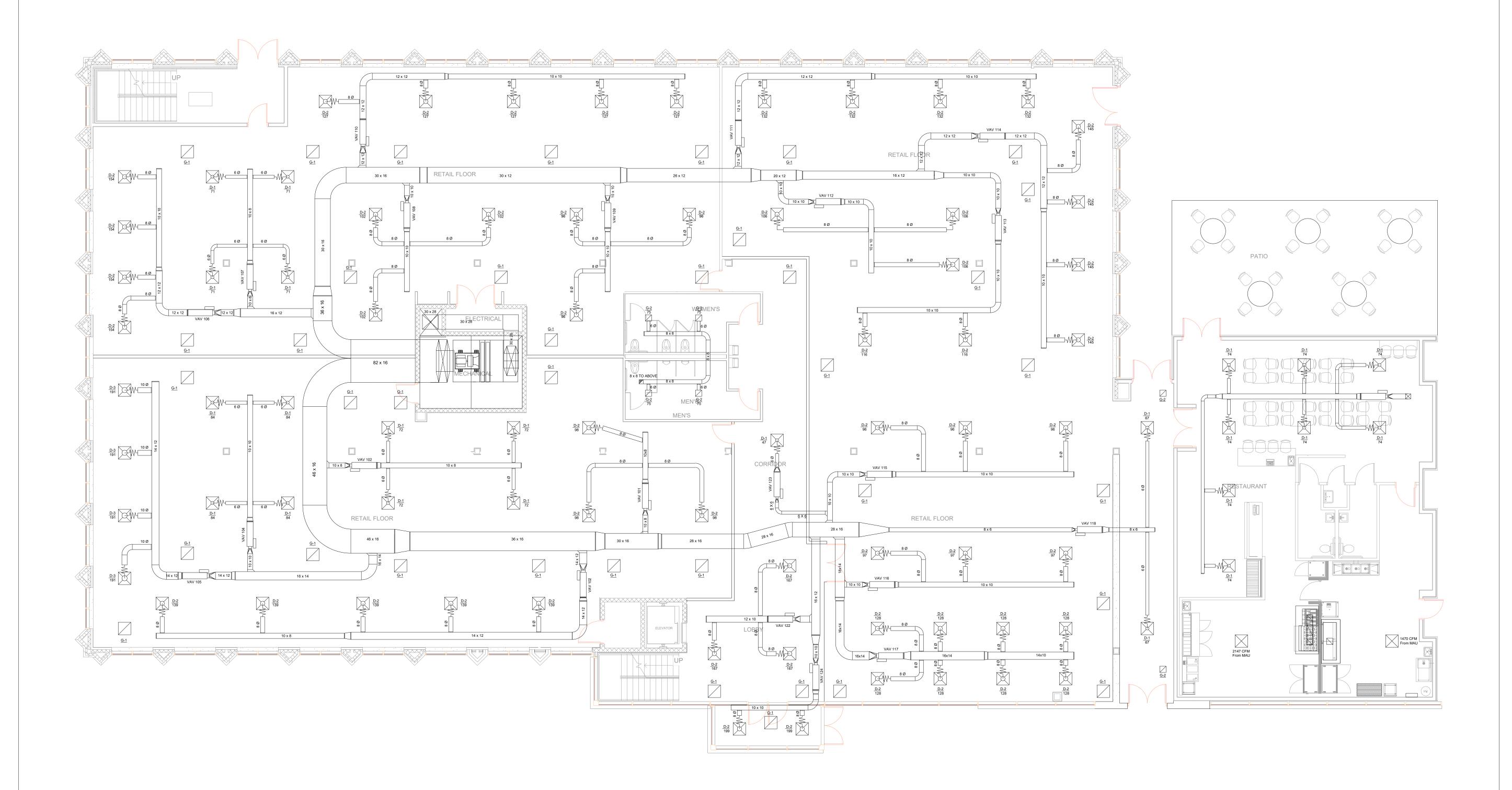
Assumed Duct Velocity = 1500 FPM

 $Main \ Duct \ Size = \frac{Total \ CFM}{Duct \ Velcity} = \frac{2147 \ CFM}{1500 \ FPM} = 1.4313 \ ft^2 = 203.112 \ in^2 \rightarrow 20" \times 10" \ Duct \ Size$

Confirm assumption,

$$Velocity = \frac{2147 \ CFM}{200 \ in^2} * \frac{1 \ ft^2}{144 \ in^2} = 1545.84 \ FPM$$

It is in the velocity design range, 1500 FPM to 1800 FPM


As additional duct size(#2 and #3),

$$CFM = 0.5 * 2147 \ CFM = 1074 \ CFM$$

$$Duct Size = \frac{CFM}{Duct Velcity} = \frac{1074 \ CFM}{1500 \ FPM} = 0.7166 \ ft^2 = 103.102 \ in^2 \rightarrow 10" \times 10" \ Duct Size$$

Confirm assumption,

$$Velocity = \frac{1074 \ CFM}{100 \ in^2} * \frac{1 \ ft^2}{144 \ in^2} = 1546.56 \ FPM$$

NO	Revision	Date				
Project Title						
ASHRAE DESGIN COMPETITION						

Drawing Title

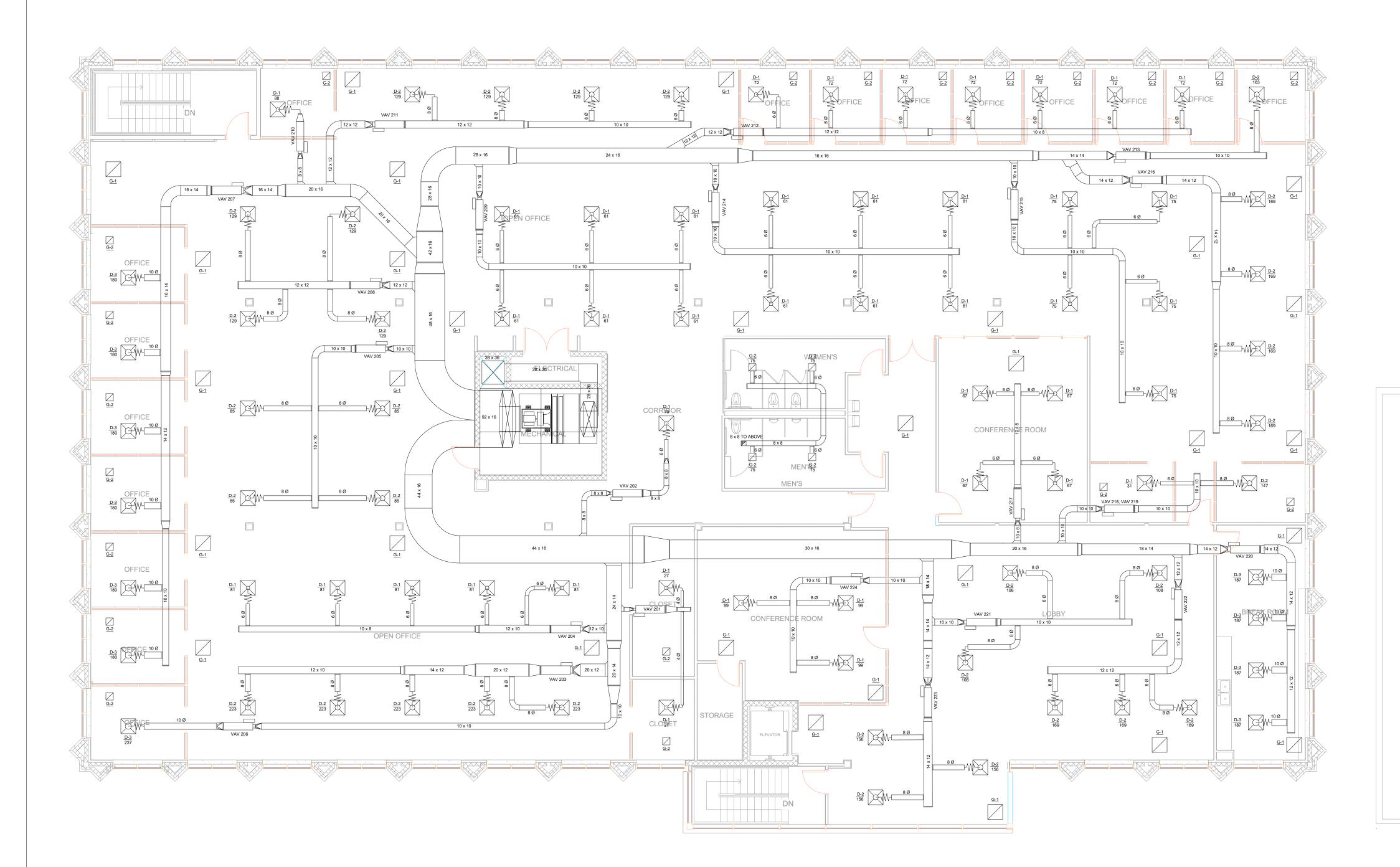
MECHANICAL FLOOR PLAN LEVEL - 1

Job Number

BCIT-ME-1718-06 Drawn

F.H/A.A/M.C

Check J.C.


Date

Drawing No.

Scale SCALE 1/8" = 1' - 0"

2018/05/02

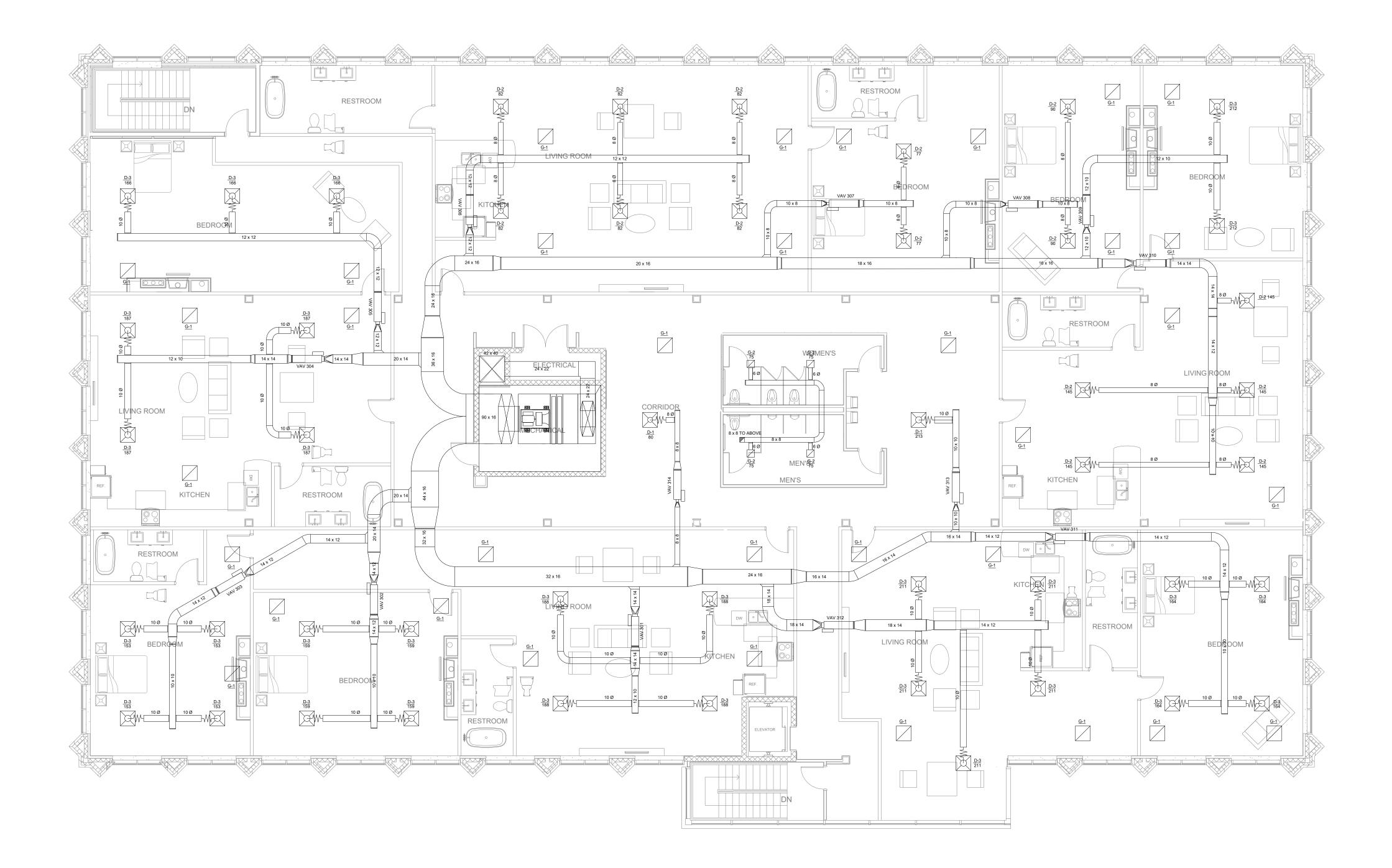
M 1 of 4

NO	Revision	Date
Project 1	Title	
	ASHRAE DESGIN COMPETIT	ION

Drawing Title MECHANICAL FLOOR PLAN LEVEL - 2 Job Number BCIT-ME-1718-06 F.H/A.A/M.C J.C. SCALE 1/8" = 1' - 0"

2018/05/02

Drawn


Check

Scale

Date

Drawing No.

M 2 _{of} 4

NO	Revision	Date				
Project -	Fitle					
	ASHRAE DESGIN COMPETITION					
Drawing	Title					

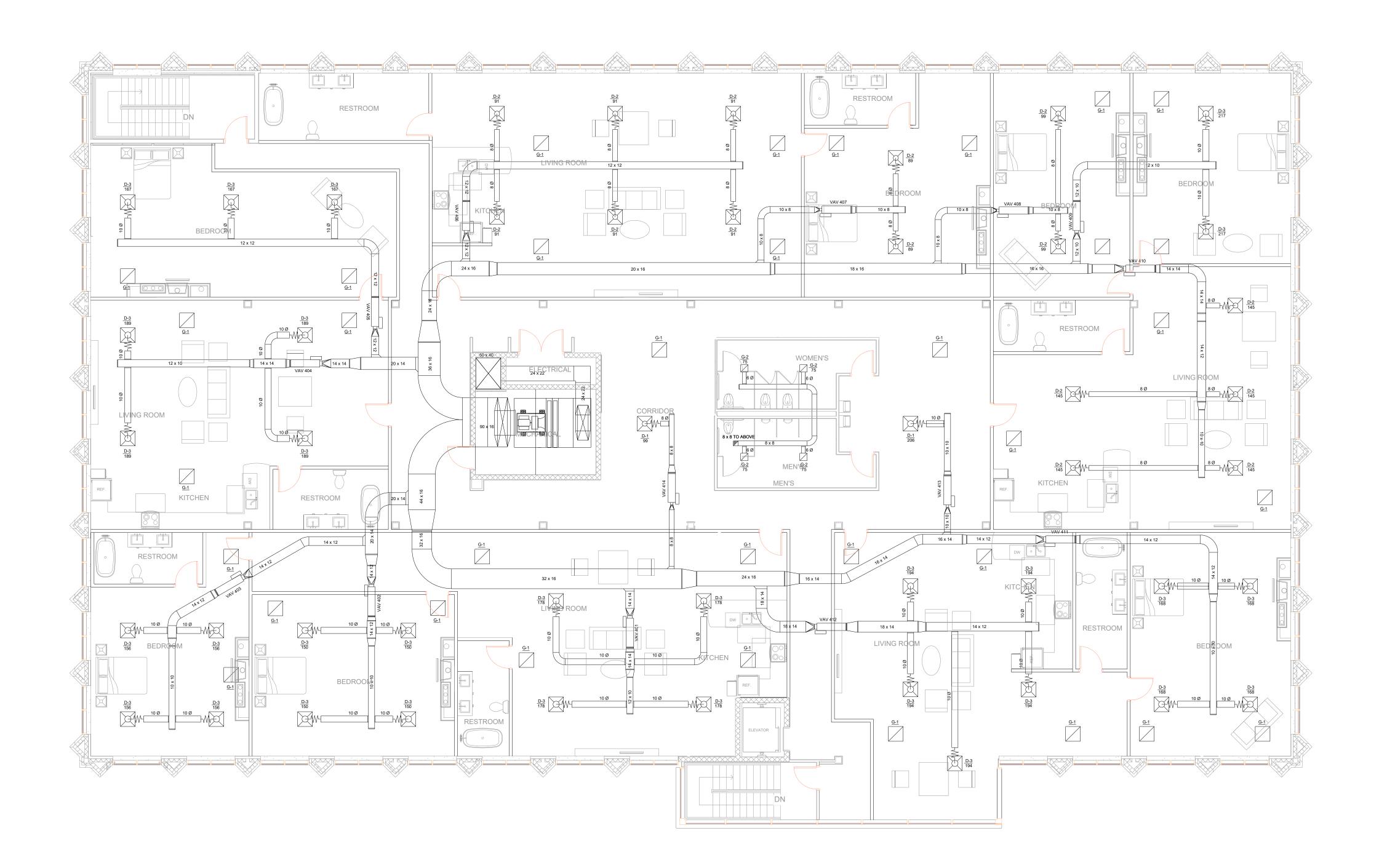
MECHANICAL FLOOR PLAN LEVEL - 3

Job Number

BCIT-ME-1718-06 Drawn

F.H/A.A/M.C

Check J.C.


Scale SCALE 1/8" = 1' - 0"

Date

2018/05/02

Drawing No.

M 3 of 4

NO	Revision	Date
Project -	Title	
	ASHRAE DESGIN COMPETIT	ION
Drawing	Title	
	MECHANICAL FLOOR	

MECHANICAL FLOO PLAN LEVEL - 4

Job Number

BCIT-ME-1718-06

F.H/A.A/M.C

Check J.C.

Date

Drawing No.

Scale SCALE 1/8" = 1' - 0"

2018/05/02

M 4 _{of} 4

System Checksums By BCIT

Let use is in the 1/B is interval is interv	
Label 17: Label 17:	Variable Volume Reheat (30% Min Flow
Outcome Outcome <t< th=""><th>ING COIL PEAK TEMPERATURES</th></t<>	ING COIL PEAK TEMPERATURES
Image: marrow Image: marrow Image: marrow Image: mar	Io/Hr: Heating Design Cooling VADB: 30 SADB 67.5 Ra Plenum 79.2
but but <th>PeakCoil Peak PercentReturn79.2</th>	PeakCoil Peak PercentReturn79.2
Spire Spire	Sens Tot Sens Or Total Retorn 70.0 Btu/h Btu/h (%) Fn MtrTD 0.0 Fn BidTD 0.0
Next 0 0 0 0 <td>0 0 0.00 0 0 0.00 Fn Frict 0.0</td>	0 0 0.00 0 0 0.00 Fn Frict 0.0
discalization 7.430 4 discalization 3.7.40 4 discalization 5.7.1 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 5.9.7 0 0 0 0 0	0 0 0.00
Valid on large	0,413 -30,413 13.48
Account brin 0 0 0 <td>4,977 -34,463 15.27 0 0 0.00 Diffuser 7,229</td>	4,977 -34,463 15.27 0 0 0.00 Diffuser 7,229
Sub Total	0 0 0.00 Terminal 7,229 0 0 0 0 Main Fan 7,229
Internal Loads Interna	6,841 -26,841 11.89 Sec Fan 0 2,231 -91,717 40.65 Nom Vent 2,809
number of the stand stand <td>AHU Vent 2,809 Infil 553</td>	AHU Vent 2,809 Infil 553
Misc. 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 13 99,276 15,097 16 Misc. 15,077 15,07 15,077 15,07 15,077 15,	0 0 0.00 MinStop/Rh 2,777
Column and out of all	0 0 0.00 Return 7,782 0 0 0.00 Exhaust 3,362
Ventilation Load 0 95,99 32 0 0 95,99 32 0 0 95,99 32 0 <t< td=""><td>0 0 0.00 Rm Exh 0 Auxiliary 0</td></t<>	0 0 0.00 Rm Exh 0 Auxiliary 0
Adj Air Trans Heat 0	4,962 0 0.00 Leakage Dwn 0 0 -48,160 21.34 Leakage Ups 0
OV/Undr Sizing 3	
Sup. Fan Heat 0 <	4,524 -2.00 ENGINEERING CK
Indication from the first of the first o	-90,300 40.02 0 0.00 0 0.00 % OA 38.9
Supply Air Leakage 0	cfm/ft ² 0.56
	0 0.00 cfm/ton 703.44 0 0.00 ft²/ton 1,263.21
	Btu/hr·ft² 9.50 7,193 -225,653 100.00 No. People 28
COOLING COIL SELECTION AREAS HEATING COIL SELECTION COOLING COIL SELECTION AREAS HEATING COIL SELECTION AREAS	REAS HEATING COIL SELECTION
COCLING COIL SELECTION AREAS HEATING COIL SELECTION AREAS COOLING COIL SELECTION AREAS Total Capacity Sens Cap. Coil Airflow Enter DB/WB/HR Leave DB/WB/HR Gross Total Glass Gross Total Glass Total Capacity Sens Cap. Coil Airflow Enter DB/WB/HR Leave DB/WB/HR Leave DB/WB/HR Leave DB/WB/HR Gross Total Glass Gross Total Gla	
tain Clg 25.0 299.5 188.0 8,707 75.3 65.9 79.5 56.0 54.9 61.9 Floor 14,965 Main Htg -181.1 3,992 56.0 96.3 Main Clg 25.4 304.2 206.5 9,684 75.0 64.9 75.1 56.0 54.7 61.2 Floor 13,998 Main Htg -165.3 3,780 56.0 94.8 Main Clg 8.2 98.6 85.0 7,229 78.0 67.7 84.5 67.5 63.8 82.0 Floor 12,98.	
Dept Vent 3.9 47.1 46.9 5,341 83.8 69.6 84.9 76.0 67.2 84.9 Int Door 0 Preheat 0.0 0 0.0 0.0 Opt Vent 3.3 39.2 39.1 4,450 83.8 69.6 84.9 76.0 67.2 84.9 Int Door 0 Preheat 0.0 0 0.0 0.0 0.0 Opt Vent 2.1 24.8 24.7 2,809 83.8 69.6 84.9 76.0 67.2 84.9 Int Door	0 Preheat -30.0 2,809 5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 Reheat -18.6 2,777 67 0 0 0 Humidif 0.0 0 0.0
Wall 5,083 2,984 59 Opt Vent -166.6 5,341 30.3 58.0 Wall 5,069 2,777 55 Opt Vent -138.8 4,450 30.3 58.0	

					Sys	stem Checksun By BCIT	ns									Sys	tem Checksur By BCIT	ns									:	System Checksums By BCIT	3			
Level 4 AHU								Variab	ole Volume	Reheat (30%	Min Flow Default)	Dining Area							Variable Vo	olume Re	heat (30% Min Flow	Default) Kith	cen 120								VAV	V w/Baseboard Heating
	COOLING	COIL PEAK		CL	G SPACE PE	EAK	HEATING	COIL PEAK		TEMP	ERATURES			OIL PEAK		CLG SPACE PE	AK	HEATING	COIL PEAK		TEMPERATURE	S	С	COOLING COIL I	PEAK		CLG SPAC	E PEAK	HEATING C	OIL PEAK	TE	EMPERATURES
Р	eaked at Time: Outside Air:		/Hr: 8 / 15 HR: 83 / 70 / 88		Mo/Hr: 8 / 1 OADB: 83	5	Mo/Hr: OADB:	Heating Design 30		SADB Ra Plenum	CoolingHeating67.5108.979.969.1	Pea	aked at Time: Outside Air:	Mo/H OADB/WB/HF	r: 8 / 14 8: 83 / 70 / 87	Mo/Hr: 7 / 1 OADB: 79)	Mo/Hr: I OADB: 5	Heating Design 30	SAD Ra F	Cooling DB 55.8 Plenum 74.5	Heating 84.0 68.1	Peaked a Outs			: 7 / 13 : 82 / 68 / 80	Mo/Hr OADB		Mo/Hr: He OADB: 30	ating Design	SADB Ra Plenum	Cooling Heating 58.2 70.0 n 73.7 68.5
	Space Sens. + Lat. Btu/h	Sens. + Lat	Net Per Total O Btu/h		Space Perc Sensible Of To Btu/h		Space Peak Space Sens Btu/h	Tot Sens	Percent Of Total	Return Ret/OA Fn MtrTD	79.9 69.1 78.4 58.0 0.0 0.0		Space Sens. + Lat. Btu/h	Plenum Sens. + Lat Btu/h	Net Percent Total Of Tota Btu/h (%			Space Peak Space Sens Btu/h	Coil Peak Perce Tot Sens Of T Btu/h	ent Retu	urn 74.5 /OA 82.9	68.1 30.3 0.0	\$		Plenum s. + Lat Btu/h	Net Percent Total Of Total Btu/h (%)			Space Peak Space Sens Btu/b	Coil Peak Percer Tot Sens Of To Btu/h (nt Return	73.7 68.5 73.7 68.5 0.0 0.0
Envelope Load Skylite Solar		0 0	0	0	0	0 Skylite Solar	0	0	0.00	Fn BldTD Fn Frict	0.0 0.0 0.0 0.0	Envelope Loads Skylite Solar	0	0	0	0 0	0 Skylite Solar	0	0 ((/0)	BIdTD 0.0	0.0 Sk	elope Loads ylite Solar	0	0	0 0	0	0 Skylite Solar	0	0 0	.00 Fn Frict	
Skylite Cond Roof Cond Glass Solar	0 0 45.766	0 0 7,652	0 7,652 45.766	0 8 45	0 0 45.766	0 Skylite Cond 0 Roof Cond 50 Glass Solar	0 0	0 -22,891 0	0.00 9.42 0.00	AIF	RFLOWS	Skylite Cond Roof Cond Glass Solar	0 0 428	0 869 0	0 869 428	0 0 3 0 1 504	0 Skylite Cond 0 Roof Cond 4 Glass Solar	0 0	2,010	0.00	AIRFLOWS	Ro	ylite Cond oof Cond ass Solar	0 0 2,221	0 392 0	0 0 392 1 2,221 8	0 0 2,221	0 Skylite Cond 0 Roof Cond 9 Glass Solar	0 0 0	-812 4	.00	AIRFLOWS
Glass/Door Co Wall Cond		0	1,875 14,215	2 14	1,875 10,916	2 Glass/Door Cond 12 Wall Cond	d -30,413 -30,974		12.51 1 16.92		Cooling Heating	Glass/Door Con Wall Cond	.=+	0 16	173 279	1 123 1 487	1 Glass/Door Con 4 Wall Cond	id -941 -1,768	-941 -1,894	2.65 5.34	Cooling 587	Heating Gla	ass/Door Cond all Cond	185 319	0 22	185 1 341 1	185	1 Glass/Door Cond 1 Wall Cond	-1,127 -1,701	-1,127 6 -1,820 9	.03 .73	Cooling Heating
Partition/Door Floor Adjacent Floo	0		0		0	0 Partition/Door 0 Floor 0 Adjacent Floor	0	0	0.00	Diffuser Terminal Main Fan	7,211 2,651 7,211 2,651 7,211 2,651	Partition/Door Floor Adiacent Floor	0 0	0	0 0 0		0 Partition/Door 0 Floor 0 Adiacent Floor	0 -2,047 0	-	0.00 Dimu 5.77 Terr 0 Mair	minal 587	587 Flo	rtition/Door oor liacent Floor	0 0 0	0			0 Partition/Door 0 Floor 0 Adiacent Floor	0 -1,689 0	0 0	.00 Diffuser .03 Terminal 0 Main Fan	1,429 429 1,429 429 1,429 429
Infiltration Sub Total ==>	4,903 63,459		4,903 74,411	5 73	2,802 61,359	3 Infiltration 67 Sub Total ==>	-26,841 -88,228			Sec Fan Nom Vent	0 0 2,806 2,651	Infiltration Sub Total ==>	1,873 2,737	885	1,873 3,623 1	6 512 2 1,626	4 Infiltration 14 Sub Total ==>	-3,791 -8,547	-3,791 1 0 -10,716 30	0.68 Sec Fa ^{(0.19} Nom	n Vent 587	0 Inf	iltration b Total ==>	0 2,725	414	0 0 3,139 12	0 2,725	0 Infiltration	0 -4,517		.00 Sec Fan	0 0 0 0
Internal Loads						Internal Loads				AHU Vent Infil	2,806 2,651 553 553	Internal Loads					Internal Loads			AHU	J Vent 587 85		rnal Loads					Internal Loads			AHU Vent Infil	0 0
Lights People Misc	9,374 2,727 15,032	0	11,717 2,727 15,032	12 3 15	9,374 1,859 15,032	10 Lights 2 People 16 Misc	0 0 0	0 0 0	0.00	MinStop/Rh Return Exhaust	2,651 2,651 7,764 3,204 3,359 3,204	Lights People Misc	1,509 8,707 1,704	377 0 0	1,886 8,707 3 1,704	6 1,692 0 5,704 6 1,936	 Lights People Misc 	0 0 0		0.00 Mins 0.00 Retu 0.00 Exha		671 Pe	ghts cople sc	732 3,795 0	183 0 0	916 3 3,795 14 0 0	732 1,737 0	3 Lights 7 People 0 Misc	0 0 0	0 0 0	.00 MinStop/RI .00 Return .00 Exhaust	kh 429 429 1,429 429 0 0
Sub Total ==>	27,132	2,343	29,476	29	26,265	29 Sub Total ==>	0	0	0.00	Rm Exh Auxiliary	0 0 0 0	Sub Total ==>	11,920	377	12,297 4	2 9,331	80 Sub Total ==>	0	0	0.00 Rm Aux	Exh 0 Kiliary 0	0	ıb Total ==>	4,528	183	4,711 17	2,469	10 Sub Total ==>	0		.00 Rm Exh Auxiliary	1,470 1,470 0 0
Ceiling Load Ventilation Loa Adj Air Trans H	• •	-4,389 0 0	0 1,713 0	0 2	4,389 0	5 Ceiling Load 0 Ventilation Load 0 Adj Air Trans Heat	-17,595 0 0	0 -45,972 0		Leakage Dwn Leakage Ups	0 0 0 0	Ceiling Load Ventilation Load Adj Air Trans He	-	-420 0	0 12,956 4 0	0 691 4 0 0 0	6 Ceiling Load 0 Ventilation Load 0 Adj Air Trans Heat	-722 0 0		0.00 Leal 3.88 Leal	kage Dwn 0 kage Ups 0	0 Ven	ing Load tilation Load Air Trans Heat	50 0 19.202	-50 0	0 0 0 0 19.202 71	50 0 19.202	0 Ceiling Load 0 Ventilation Load 79 Adj Air Trans Heat	-219 0 -8,277		.00 Leakage D .00 Leakage U 44	
Dehumid. Ov S Ov/Undr Sizing Exhaust Heat	-	-4.036	0 0 -4.036	0	0	0 Exhaust Heat OA Preheat Diff.	0	0 15,433 -91,248		ENGINE	EERING CKS	Dehumid. Ov Siz Ov/Undr Sizing Exhaust Heat	-	-842	0 1,227 -842 -	0 4 0 3	0 Exhaust Heat 0 A Preheat Diff.	0	.,	0.00 4.08 0.00	ENGINEERING CI	Deh (S Ov/l	umid. Ov Sizing Undr Sizing aust Heat	0	0		0	Ov/Undr Sizing 0 Exhaust Heat OA Preheat Diff.	0	0 0 0 0	.00 .00 EN	GINEERING CKS
Sup. Fan Heat Ret. Fan Heat		0	0	0		RA Preheat Diff. Additional Reheat		0	0.00	% OA	Cooling Heating 38.9 100.0 0.56 0.20	Sup. Fan Heat Ret. Fan Heat Duct Heat Pkup		0	0	0	RA Preheat Diff. Additional Reheat	t	0	0.00 0.00 % O	Cooling DA 100.0 //ft ² 0.49	Heating Sup 100.0 Ret.	. Fan Heat Fan Heat t Heat Pkup		0			RA Preheat Diff. Additional Reheat		-4,980 26 0 0	.62	Cooling Heating 0.0 0.0 3.05 0.92
Duct Heat Pkup Underfir Sup H Supply Air Lea	Pkup	0	0 0	0		Underflr Sup Ht Pk Supply Air Leakag		0 0	0.00	cfm/ton ft²/ton	685.08 1,233.29	Underflr Sup Ht I Supply Air Leaka		0	0 0	0	Underflr Sup Ht P Supply Air Leakag		0	0.00 cfm/ 0.00 ft²/te	/ton 240.55 on 488.12	Und	erfir Sup Ht Pkup ply Air Leakage		0	0 0 0 0 0 0		Underflr Sup Ht Pkup Supply Air Leakage)		.00 cfm/ton .00 ft²/ton	633.77 207.49
Grand Total ==	94,981	4,870	101,564	100.00	92,013 10	00.00 Grand Total ==>	-105,823	-243,043		Btu/hr·ft² No. People	9.73 -18.56 28	Grand Total ==>	16,305	0	29,261 100.0	0 11,648 10	0.00 Grand Total ==>	-9,269	-35,492 100.0	00 Btu/ No.	/hr·ft ² 24.58 People 34	-29.82 Gra	nd Total ==>	26,505	547	27,052 100.00	24,447	100.00 Grand Total ==>	-13,013	-18,706 100.00	Btu/hr·ft ² No. People	57.83 -39.99 9
	Total Capacity		COIL SELEC	TION Enter DB/WE		Leave DB/WB/HR	AREAS Gross Total	Glass	HE	ATING COIL S Capacity Co MBb	SELECTION oil Airflow Ent Lvg cfm °F °F		Total Capacity ton MBh	COOLING C Sens Cap. Coi MBh	COIL SELECTION	r DB/WB/HR	Leave DB/WB/HR °F °F gr/lb	AREAS Gross Total	Glass ft ² (%)		NG COIL SELECTIO Capacity Coil Airflow	N Ent Lvg	Tot	otal Capacity Ser	DOLING C ns Cap. Coil MBh	OIL SELECTION Airflow Enter	DB/WB/HR °F ar/lb	Leave DB/WB/HR °F °F gr/lb	AREAS Gross Total	Glass	Capac	OIL SELECTION city Coil Airflow Ent Lvg IBh cfm °F °F
Main Clg Aux Clg	8.5 101.6 0.0 0.0	88.0	7,211 78.4	67.8 0.0 0.0	84.5 6	7.5 63.8 82.0 Flor 0.0 0.0 0.0 Par	- ,		Main Htg Aux Htg	мвл -123.5 0.0	2,651 67.5 108.9	Main Clg Aux Clg	ton MBn 2.4 29.3 0.0 0.0	МВП 17.9 0.0	587 82.9	69.6 86.5 5	g.,	or 1,190	π- (%) Main I Aux H		-18.7 587 5 0.0 0 0			3 27.1	25.0 0.0	1,429 73.7 6	F gi/ib 61.4 60.7 0.0 0.0	F F G (<i>I</i>) 58.2 54.9 58.6 Floor 0.0 0.0 0.0 Part	468	Main H	ltg -18.	.7 0 0.0 0.0
Opt Vent	2.1 24.8		2,806 83.8			6.0 67.2 84.9 Int I	Door 0		Preheat Reheat	-29.9 -17.7		Opt Vent	0.0 0.0	0.0				Door 0	Prehe Rehea	eat	-16.8 587 -9.4 587 5	30.3 55.8 Opt	Vent 0.0		0.0		0.0 0.0	0.0 0.0 0.0 0.0 Part 0.0 0.0 0.0 Int Do ExFir	or 0	Prehea	at 0.4	.0 0 0.0 0.0
Total	10.5 126.3					Roc	of 12,982	0 0 2,445 57	Humidif Opt Vent	-17.7 0.0 -87.5 -241.0	0 0.0 0.0 2,806 30.3 58.0	Total	2.4 29.3				Ro Wa	of 1,190	0 0 Humie 0 0 Opt V 54 100 Total	dif /ent	-3.4 307 3 0.0 0 0 0.0 0 0 -35.5	0 0.0 Tota	al 2.3	3 27.1				Roof Wall	468 781	0 0 Humid 0 0 Opt Ve 30 100 Total	if 0.	.0 0 0.0 0.0 .0 0 0.0 0.0

Kitchen 121									By BCIT						VAV w/	Baseboard	Heating
	coc	OLING C				CL	.G SPACE	PEAK			HEATING C		EAK			PERATURE	
Pea	aked at T Outside		Mo/H OADB/WB/HF	r: 7 / 21 R: 75 / 63 / 64	Ļ		Mo/Hr: 8 OADB: 7				Mo/Hr: H OADB: 3		Design		SADB	Cooling 59.3	Heating 70.0
		Space	Plenum	Not F	ercent		Space P	orcont			Space Peak		oil Peak	Percent	Ra Plenum Return	73.7 73.7	69.1 69.1
	Sen	s. + Lat.	Sens. + Lat		Of Tota		Sensible O				Space Sens			Of Total	Ret/OA	73.7	69.1
		Btu/h	Btu/h	Btu/h	(%		Btu/h	(%)			Btu/h		Btu/h	(%)	Fn MtrTD	0.0	0.0
Envelope Loads					,	'		()	Envelope Lo	ads				(,	Fn BldTD	0.0	0.0
Skylite Solar		0	0	0		0	0	0	Skylite So	lar	0		0	0.00	Fn Frict	0.0	0.0
Skylite Cond		0	0	0		0	0	0	Skylite Co		0		0	0.00			
Roof Cond		0	592	592		2	0	0	Roof Con		0		-689	3.21			
Glass Solar		0	0	0		0	0	0	Glass Sol		0		0	0.00		RFLOWS	
Glass/Door Con	d	0	0	0		0	0	0	Glass/Doo		0		0	0.00		Cooling	Heating
Wall Cond		309	21	331		1	364	1	Wall Cond		-876		-936	4.36	Diffuser	2,004	60
Partition/Door		0		0		0	0	0	Partition/E)oor	0		0	0.00		2,004	60 ⁻
Floor		0		0		0	0	0	Floor		-613		-613	2.86	Terminal Main Fan	2,004	60 60
Adjacent Floor		0	0	0		0	0	0	Adjacent		0		0	0		7	
Infiltration		0		0		0	0	0	Infiltration		0		0		ec Fan	0	(
Sub Total ==>		309	613	922		3	364	1	Sub Total	==>	-1,489		-2,238	10.43	Nom Vent	0	(
									Internal Lee	-					AHU Vent	0	
Internal Loads									Internal Loa	as					Infil	0	
Lights		654	163	817		2	654	2	Lights		0		0	0.00	MinStop/Rh	601	601
People		3,213	0	3,213		9	1,492	5	People		0		0	0.00	Return	2,004	601
Misc		0	0	0		0	0	0	Misc		0		0	0.00	Exhaust	0	(
Sub Total ==>		3,867	163	4,030	1	2	2,145	7	Sub Total	==>	0		0	0.00	Rm Exh	2,240	2,240
															Auxiliary	0	
Ceiling Load		40	-40	0		0	37	0	Ceiling Load		-116		0	0.00	Leakage Dwn	0	
Ventilation Load		0	0	0		0	0	0	Ventilation I	oad	0		0	0.00	Leakage Ups	0	(
Adj Air Trans Hea	at	29,261		29,261	8	6	29,261	92	Adj Air Trans	Heat	-12,612		-12,612	59			
Dehumid. Ov Sizi	ng			0		0			Ov/Undr Siz	ing	0		0	0.00			
Ov/Undr Sizing	-	0		0		0	0	0	Exhaust Hea	nt –			0	0.00	ENGIN	EERING CH	٢S
Exhaust Heat			0	0		0			OA Preheat	Diff.			0	0.00		-	-
Sup. Fan Heat				0		0			RA Preheat				-6,607	30.79		Cooling	Heating
Ret. Fan Heat			0	0		0			Additional F	leheat			0	0.00	% OA	0.0	0.0
Duct Heat Pkup			0	0		0									cfm/ft ²	5.12	1.54
Underflr Sup Ht F	•			0		0			Underflr Su	•			0	0.00	cfm/ton	702.88	
Supply Air Leaka	ge		0	0		0			Supply Air L	.eakage			0	0.00	ft²/ton	137.24	
															Btu/hr∙ft²	87.44	-54.84
Grand Total ==>		33,477	736	34,213	100.0	0 '	31,806	100.00	Grand Total	==>	-14,217		-21,457	100.00	No. People	8	
			COOLING O			-					AREAS			HE	ATING COIL		
	Total C ton	Capacity MBh	Sens Cap. Co MBh	i l Airflow cfm	Ente °F	r DB/W °F	B/HR gr/lb		°F gr/lb		Gross Total	Glass ft ²	; (%)		Capacity C MBh	cfm	ent Lvg °F
					-		•		J .		001	ii.	` '				
Main Clg	2.9	34.2	32.5	2,001 73		61.4	60.8	59.3 55		Floor	391			Main Htg	-21.5	0 0.	
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0 0.0		Part	0			Aux Htg	0.0	0 0.	
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0 0.0	0.0	Int Door	0			Preheat	0.0		0.0 0
										ExFlr	22	-		Reheat	-7.2	601 59	
Total	2.9	34.2								Roof	391	0	-	Humidif	0.0	0 0.	
										Wall	356	0		Opt Vent	0.0	0 0.	.0 0
										Ext Door	0	0	0	Total	-21.5		

System Checksums

		System Checksums By BCIT	
ume Reheat (30% Min F	Variable Volum		
TEMPERATU	HEATING COIL PEAK	CLG SPACE PEAK	
Cooli SADB 56	Mo/Hr: Heating Design OADB: 30	Mo/Hr: 8 / 14 OADB: 83	7

System Checksums By BCIT

System Checksums

NO	Revision	Date
Project ⁻	ASHRAE DESGIN COMPETIT	ION
Drawing	Title	
	SYSTEM CHECKSUMS FROM TRANE TRACE 700	
Job Nur		
Drawn	BCIT-ME-1718-06	
	F.H/A.A/M.C	
Check	J.C.	
Scale	SCALE	N.T.S
Date	2018/05/02	
Drawing		
	A3 _{of} 4	

Trane Performance Climate Changer Air Handler

Unit Electrica	al							Unit Electrica	I							Unit Electrica	al						
	Circuit		Volta	ge/Phase/Frequenc	y FLA	MCA	Fuse Size		Circuit Voltage/Phase/Frequency FLA MCA Fuse Size Circu					Circui	:	Voltag	ge/Phase/Frequency	, FLA	MCA	Fuse Size			
Circ	cuit number 1 Supp	ply fan motor(s)		575/3/60	10.00 A	12.50 A	20.00 A	Circu	uit number 1 Sup	ply fan motor(s)		575/3/60	10.00 A	12.50 A	20.00 A	Circ	cuit number 1 Sup	ply fan motor(s)		575/3/60	8.60 A	10.75 A	15.00 A
Warranty	Warranty section Std. warranty only Warranty section Std. warranty only Warranty section Std. warranty only																						
Air mixing section - Position: 1								Air mixing se	ction - Positio	on: 1						Air mixing se	ection - Positic	n: 1					
Openings											Oper	nings							Ope	nings			
Face	Path	Туре	Airflow	Face Velocity	Area	Pressure Drop	Hood	Face	Path	Туре	Airflow	Face Velocity	Area	Pressure Drop	Hood	Face	Path	Туре	Airflow	Face Velocity	Area	Pressure Drop	Hood
Back	Return	High velocity parallel damper	8845 cfm	1691 ft/min	5.23 sq ft	0.516 in H2O		Back	Return	High velocity parallel damper	9684 cfm	1852 ft/min	5.23 sq ft	0.619 in H2O		Back	Return	High velocity parallel damper	7229 cfm	1382 ft/min	5.23 sq ft	0.345 in H2O	
Тор	Outside	High velocity parallel damper	8845 cfm	1691 ft/min	5.23 sq ft	0.516 in H2O	N/A	Тор	Outside	High velocity parallel damper	9684 cfm	1852 ft/min	5.23 sq ft	0.619 in H2O	N/A	TopOutsideHigh velocity parallel7229 cfm1382 ft/min5.23 sq ft0.345 in H2ONdamper					N/A		
			Section	n Options							Section	Options							Section	Options			
Door Location Right									Door Loca	ation Right						Door Location Right							

Trane Performance Climate Changer Air Handler

			<u> </u>							- 0				
Unit Overview	- AHU-4						Unit Overview	- DOAS						
Application	Linit Ciza	E:	xternal Dimensions		Weig	ht	A 12 12			External Dimensions		Weight		
Application	Unit Size	Height	Width	Length	Installed	Rigging	Application	Unit Size	Height	Width	Length	Installed	Rigging	
Indoor unit	21	52.8 in	80.0 in	138.5 in	2994 lb	2882 lb	Outdoor unit	66	96.1 in	140.5 in	225.5 in	10340 lb	9626 lb	
Quantity of Shi	Quantity of Shipping Sections		Largest Ship Split		Heaviest Ship Split	Elevation	Quantity of Shin	ning Soctions		Largest Ship Split		Heaviest Ship Split	Elevation	
Quality of Shipping Sections		Height	Width	Length	rieaviest Ship Split	Lievaiion	Quantity of Ship	ping Sections	Height	Width	Length		Elevation	
2 p	ieces	52.8 in	80.0 in	86.9 in	1550 lb	0.00 ft	3 pie	eces	96.1 in	140.5 in	95.3 in	4779 lb	0.00 ft	
Airflow 7	Supply Fan 211 cfm Total Stat	ic Pressure 3.118 in F	Heatin	ng Coil Section			Airflow 33	Supply Fai 000 cfm Total Static		Heating	g Coil Section			
	-			(Coil Performance						C	oil Performance		
Construction F	eatures				Capacity							Capacity		
Pane	l 2in. foam injected R- with thermal break	13			Total 285.44 MBh		Construction F	eatures				Total 1342.07 MBh		
	All unit inner panels - galvanized		Coolii	ng Coil Section				2in, foam injected R- with thermal break		Coolin	ng Coil Section			
Integral Base Frame	e 2.5in. integral base fr	ame			Coil Performance		Panel Material / Integral_Base	All unit inner panels - galvanized			С	oil Performance		
Paint	t Unpainted/field painte	ed			Capacity		Frame	6in. integral base fra	me			Capacity		
Agency Approval	YES				Total 234.44 MBh		Paint	Slate gray				Total 469.92 MBh		
				S	ensible 168.41 MBh		Agency Approval Y	(FS			Se	nsible 452.94 MBh		

Unit Electrica	al														
	Circuit		Volta	ge/Phase/Frequency	r FLA	MCA	Fuse Size	Unit Electrica	l -						
Circ	uit number 1 Sup	ply fan motor(s)		575/3/60	8.60 A	10.75 A	15.00 A		Circuit		Voltag	ge/Phase/Frequency	FLA	MCA	Fuse
								Circuit n	umber 1 Supply f	an motor (each x 4)		575/3/60	10.00 A	12.50 A	20.
Warranty															
		Warranty sec	ction Std. warran	ty only				Warranty							
Air miving og	ection - Positio	n: 1								Warranty see	ction Std. warranty	/ only			
All mixing se		II. I						Air mixing se	ation Dopitio	n: 1					
	1	1	Ор	enings				All mixing se		II. I					
Face	Path	Туре	Airflow	Face Velocity	Area	Pressure Drop	Hood				Ope	nings			
	.	High velocity	7044 6		5.00 (Face	Path	Туре	Airflow	Face Velocity	Area	Pressure Drop	Ho
Back	Return	parallel damper	7211 cfm	1379 ft/min	5.23 sq ft	0.343 in H2O		Back	Outside	High velocity parallel	33000 cfm	2005 ft/min	16.46 sq ft	0.753 in H2O	Ye
Тор	Outside	High velocity parallel	7211 cfm	1379 ft/min	5.23 sq ft	0.343 in H2O	N/A			damper		ļ ļ			
ŕ		damper										Options			
			Section	Options						Door Loca	ation Right				
		Door Loca	ation Right												

Trane Performance Climate Changer Air Handler

Overview -	AHU-2									
liantian	Unit Size	E	external Dimensions	Weight						
olication	Unit Size	Height	Width	Length	Installed	Rigging				
loor unit	21	52.8 in	80.0 in	138.5 in	2771 lb	2659 lb				
antity of Shin	ping Sections		Largest Ship Split		Heaviest Ship Split	Elevation				
	ping Sections	Height	Width	Length	Tieaviest Ship Split	Lievation				
2 pie	eces	52.8 in	80.0 in	86.9 in	1577 lb	0.00 ft				
	Supply Fan			g Coil Section						
ow 9684 cfm Total Static Pressure 3.955 in H2O										
				Coi	I Performance					
struction Fe	eatures				Capacity					
Denels	Dia faona ini astad Du	10			Total 451.60 MBh					
Paner	2in. foam injected R- with thermal break	13								
nel Material A	All unit inner nanels -		Coolin	g Coil Section						
inor matorial ,	All unit inner panels - galvanized									
itegral Base Frame 2	2.5in. integral base fr	ame		Coil Performance						
Paint	Unpainted/field painte	ed		Capacity						
cy Approval Y	'ES			Total 348.00 MBh						
,				Sen	sible 250.52 MBh					

Trane Performance Climate Changer Air Handler

	- AHU-3						
Application	Unit Size	E	External Dimensio	ns	Weig	ht	
Application	Unit Size	Height	Width	Length	Installed	Rigging	
Indoor unit	21	52.8 in	80.0 in	138.5 in	2990 lb	2878 lb	
Quantity of Shi	pping Sections		Largest Ship Spl	it	Heaviest Ship Split	Elevation	
Quantity of Shi	pping Sections	Height	Width	Length	neaviest Ship Split	Lievation	
2 p	ieces	52.8 in	80.0 in	86.9 in	1546 lb	0.00 ft	
	Supply Fan		Hea	ting Coil Section			
Airflow 7	229 cfm Total Stat	ic Pressure 3.114 in	H2O	Ŭ			
			_	C	coil Performance		
Construction I	eatures				Capacity		
Pane	I 2in. foam injected R-1 with thermal break	13			Total 264.99 MBh		
	with thermal break		Co	oling Coil Section			
Panel Materia	All unit inner panels - galvanized						
		ame		C	coil Performance		
Integral Base	2 5in integral base fra				Capacity		
Integral Base Frame	2.5in. integral base fra				Capacity		
Integral Base Frame	t Unpainted/field painte				Total 234.80 MBh		

Trane Performance Climate Changer Air Handler

Trane Single Effect Steam Fired Water Chiller - ProChill B4k, SS20AC

Specification	
Cooling Capacity	132 TR
Chilled Wa	ater
Flow Rate	318.8 GPM
Colling V	Vater
Flow Rate	467 GPM

Viessmann Gas Fired Condesing Boiler - VITOCROSSAL 300, CA3 2.5

Specification	
Output	2352 MBTH

NO	Revision	Date
Project T	ASHRAE DESGIN COMPETIT	ION
Drawing	Title	
	AHU SPECIFICATIONS	
Job Nur	^{nber} BCIT-ME-1718-06	
Drawn	F.H/A.A/M.C	
Check	J.C.	
Scale		

Date 2018/05/02 Drawing No. A2 of 4

SCALE

N.T.S

Intervention Mode	Status	Model	Tag	Unit Size	Inlet Dia	Max Primary (CFM)	Min Primary (CFM)	* Max Discharge NC 2008	Max Discharge NC	EAT (°F)	Supply Air Temp (°F)	Return Air Temp (°F)	LAT (°F)	Fluid Flow (GPM)	Fluid Type	EWT (°F)	LWT (°F)	Weight (lbs)
Internet of the origin 100				6		· · · ·	· · · · · ·					· · · ·		· · · · ·				
Remember Gaugett Die Die <thdie< th=""> Die <thdie< th=""></thdie<></thdie<>	Performance Calculated	SDV8	VAV 102	8	8	695	208			56	56	134.9	142.3	9.47	WTR	180	175.7	46
Increment possible Yot	Performance Calculated	SDV8	VAV 103	6	6	288	86			56	56	79.8	111.2	4.76	WTR	180	177.7	36
Processed PR Des J S DE DE <thde< th=""> DE DE <t< td=""><td>Performance Calculated</td><td>SDV8</td><td>VAV 104</td><td>6</td><td>6</td><td>337</td><td>101</td><td></td><td></td><td>56</td><td>56</td><td>79.8</td><td>110.2</td><td>1.34</td><td>WTR</td><td>180</td><td>170.6</td><td>36</td></t<></thde<>	Performance Calculated	SDV8	VAV 104	6	6	337	101			56	56	79.8	110.2	1.34	WTR	180	170.6	36
Processedent Dis Dis Const. Const. Const. Processed					_													
Physical Condex 905 907 10 907 10 907 10 907 10 907 10 907 10 907 10 907 10 907 10 907 10 907 100 907 100 100 <td></td> <td></td> <td></td> <td>8</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>+ +</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				8	-					+ +								
Pertonscription Fig. No. M. M. M. M. M.				6	6													
Intervance Lats Data Data <thdata< th=""> Data Data<td></td><td></td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td>. ,</td><td>+ +</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdata<>				4	4				. ,	+ +								
Intervance landed Disk Disk <td></td> <td></td> <td></td> <td>8</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				8	-					-								
Informatical Ass. USB					_					-								
endersenvender MD MD L MD L MD L MD L MD L MD L MD <	Performance Calculated	SDV8	VAV 112	6	6	318	95			56	56	79.8	110.8	1.17	WTR	180	169.8	36
Intervance Laterie GSP WEX A B BAB BAB BAB P SA BAB BAB CAL URL CAL URL CAL URL A BAB BAB <th< td=""><td>Performance Calculated</td><td>SDV8</td><td>VAV 113</td><td>4</td><td>4</td><td>233</td><td>70</td><td>20 (3)</td><td>29 (2)</td><td>56</td><td>56</td><td>79.8</td><td>109.9</td><td>0.88</td><td>WTR</td><td>180</td><td>170.1</td><td>37</td></th<>	Performance Calculated	SDV8	VAV 113	4	4	233	70	20 (3)	29 (2)	56	56	79.8	109.9	0.88	WTR	180	170.1	37
informational and a star in a sta	Performance Calculated	SDV8	VAV 114	8	8	581	174			56	56	111.8	117.9	0.7	WTR	180	145.1	46
International Ander OPE Int Set				6	6					+				2.94				
Propress Galente Mol				6	_					-				4				
Informaticalized Other A A B97 PP <				8	8					+								
referemant clubing dots dots <td></td> <td></td> <td></td> <td>4 8</td> <td>4 8</td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				4 8	4 8				. ,									
Interversicalized Mole Mole <td></td> <td></td> <td></td> <td>6</td> <td><u> </u></td> <td></td>				6	<u> </u>													
informance Calance of 1908 1908 0 3 3 5 55 55 16.2 18.3 97.4 18.4 19.4				4	4				22 (2)	+ +								
Instrument Calculate Jary Ward 4 4 Num	Performance Calculated			6	6													
Informer status 507 9029 10 10 110 1333 45 45 902 101 100 103 400 Informer status 307 107.00 10 100 100 <td></td> <td></td> <td></td> <td>4</td> <td>4</td> <td></td> <td>45</td> <td></td> <td></td> <td>+ +</td> <td></td> <td></td> <td>106.9</td> <td></td> <td>WTR</td> <td></td> <td></td> <td></td>				4	4		45			+ +			106.9		WTR			
Interforman Calcular Int 6 6 6 6 6 6 6 6 6 6 7 0		-		4	4					+ +								
Internance Granter Sol				10						++								
Intervance Guadase 509 WX 05 4 4 108 77 12.1 12.1 12.0				6	_					+								
Informatic Calabiar Way 20 S </td <td></td> <td></td> <td></td> <td>о Д</td> <td>о Д</td> <td></td>				о Д	о Д													
Instrume Open Ware 6 6 6.0 10.2 15.0 Dell 10.2 10.0 10				10	10													
Internance Calculated See No Vice No See No<		-		6	6	517			20 (2)	-			96.5		WTR	180	169.5	36
referemance Calculated SSW VV2.11 6 5 J31 J31 56 56 J12.1 J12.4 U.S. WTT 180 J73.1 38 Informance Calculated SSW W20.13 6 6 53.0 11.1 50 56.0 11.21 11.2 23.0 Informance Calculated SSW W20.13 6 6 33.0 11.0 13.0 </td <td>Performance Calculated</td> <td>SDV8</td> <td>VAV 209</td> <td>6</td> <td>6</td> <td>367</td> <td>110</td> <td></td> <td></td> <td>56</td> <td>56</td> <td>86.1</td> <td>92.7</td> <td>0.33</td> <td>WTR</td> <td>180</td> <td>151.8</td> <td>36</td>	Performance Calculated	SDV8	VAV 209	6	6	367	110			56	56	86.1	92.7	0.33	WTR	180	151.8	36
informance Caluality SNN Variable 8 8 903 111 56 56 124 184 2.88 MIR 180 183 48 Performance Caluality SNN Variable 6 6 66 66 66.1 67.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1				4	4					-								
performance Culuation SNN VAX.3 4 4 16.0 49 23 (2) 50 56 50.0 134.8 0.78 VUIR 130.0				6	-					+ +								
Informance Calculard Symbol Vick 1.9 9.9 9.9 9.8 8.8 1.2.2 9.10 1.10 1.20 1.11 3.90 1.12 3.90 3.90 1.12 3.90 3.90 1.12 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90 <td></td> <td></td> <td></td> <td>8</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>+ +</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				8	8					+ +								
Informance Celebric SVV WV2 VS 6 6 3/4 112 56 56 56.1 92.0 0.34 WIR 130 12.4 46 Performance Culuted SV8 WV17 4 4 263 30 2018 27.0 56 56 98.7 108.1 10.5 WIR 180 124.5 Performance Culuted SV8 WV20 8 8 750 22.5 26.5 56 98.4 10.5 2.5 WIR 180 17.5 38.5 Performance Culuted SV8 WV22 8 8 65.5 182.1 11.0 17.5 38.5 39.5 39.5 39.6 39.5 39.5 39.5 39.6 39.5 39.5 39.6 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5				6	6													
Performance Calculated SVP WV212 8 8 975 120 "" "" "56 56 "97.7 1043 0.021 WTR 180 124.4 50 Performance Calculated SVP WV212 4 4 214 45 "" 28.(2] 55 56 94.4 10.9 2.2 WTR 180 14.4 50 Performance Calculated SVP WV212 4 4 215 64 "" 28.(2] 56 56 94.4 10.9 2.2 WTR 180 17.6 37.6 Performance Calculated SVP WV212 6 6 562 12.6 ""<"<">" 56 56 94.1 11.6 18.0 17.6 38.0 17.5 38.0 18.0 18.0 17.6 38.0 17.6 38.0 17.6 38.0 17.6 18.0 18.0 18.0 18.0 18.0 18.0 18.0 17.6 18.0				6	-					+ +								
Performance Calculated Solve YV 249 4 4 21.4 45 28 (2) 56 56 98.4 10.9 V2.1 WIR 13.00				8	8	675	202			+ +		98.7			WTR	180	134	
Derformance Circulated Story VX 270 K B 750 225 ~ ~ ~ 56 56 94 101 0.7 VTR 100 170.6 44 Performance Circulated Stys VX 222 6 6 508 152 ~ ~ ~ ~ 56 56 96.6 105.0 84.0 VTR 160 17.0 36.0 Performance Circulated Stys VX 224 8 8 228.0 ~ ~ ~ 65 56 7.7. 10.4 0.10.0 17.0 47.0 Performance Circulated Stys VX 302 8 8 7.3 1.44 VTR 160 15.6 44 Performance Circulated Stys VX 302 8 8 63.7 91.0 17.0 4.44 17.6 4.44 Performance Circulated Stys VX 302 8 8 7.47 16.0 15.0 17.6 17.5	Performance Calculated	SDV8	VAV 217	4	4	268	80	20 (3)	27 (2)	56	56	75.7	104.3	0.57	WTR	180	164.4	50
Performance Cruciated Synv VAV22 4 4 715 64 780 56 561 1149 1970 WTR 180 175.8 380 Performance Cruciated Synv VAV221 8 8 558 188 56 560 97.2 988 2.34 WTR 180 17.5 38 Performance Cruciated Synv VAV21 8 8 57.2 12.44 88 57.6 67.5 67.5 67.5 33.4 WTR 180 17.6 44 Performance Cruciated Synv VAV30 8 8 67.7 19.5 67.5 67.5 10.5 10.8 10.8 17.6 44 Performance Cruciated Synv VAV30 8 8 67.8 67.5 67.5 10.5 10.8 10.8 17.6 37.8 10.8 17.6 37.8 10.8 17.6 37.8 10.8 17.8 17				4	4													
Performance Calulate SVN WW 223 8 6 508 156 556 99.8 105.8 3.44 WIR 180 175 380 Performance Calulate SVN WW 223 8 8 625 138 56 56 92.2 99.9 2.44 WIR 180 175 367 Performance Calulate SVN WW 301 8 8 722 226 67.5 67.5 93.6 105.6 0.71.1 WIR 180 157.6 44 Performance Calulate SVN WV303 8 6313 134 67.5 67.5 103.1 1.63 WIR 180 166.9 44 Performance Calulate SVN WV305 6 6 49.2 148 67.5 157.1 135.1 147.8 178 178 178 178 178 178 178 178 <t< td=""><td></td><td></td><td></td><td>8</td><td>8</td><td></td><td></td><td></td><td></td><td>++</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				8	8					++								
Performance Calculated Story WV224 8 6 625 188 56 56 92.2 9.90 2.34 W/IR 180 17.19 44 Performance Calculated Story W49301 8 8 722 226 675 67.5 97.1 105.7 3.34 W/IR 180 17.42 44 Performance Calculated Story W4301 8 8 637 191 67.5 67.5 101.6 101.8 47.2 W/IR 180 17.9 Performance Calculated Story W430.4 8 6.6 6.032 1.04 67.5 67.5 103.1 1.04 1.05				4	4													
Performance Calculate Synx Viva 21 6 6 928 89 56 56 97.1 10.4 0.8 W/R 180 157.2 34 Performance Calculate SUNX W/N 201 8 8 65.7 105.7 67.5 97.1 105.7 33.4 W/R 180 156.6 44 Performance Calculate SUNX W/N 301 8 8 65.3 116.4 67.5 67.5 95.1 103.4 1.6.3 W/R 180 156.8 44 Performance Calculate SUN W/N 30.6 6 48.8 1.4.9 20.12 67.5 95.5 103.8 1 W/R 180 156.8 36 Performance Calculate SUN W/N 30.6 6 4492 148 21.21 67.5 102.7 13.5 W/R 180 17.6 35 37 Performance Calculates SUN W/N 301				8	_					++								
Performance Galaxied SWN VAV 302 8 972 226 ··· ··· 675 673 971 1057 3.34 WTR 180 1542 44 Performance Calculated SWN 4V 303 8 8 613 184 ··· ··· 675 675 1005 1098 4.72 WTR 180 1563 44 Performance Calculated SWN VAV 30 8 8 613 184 ··· ··· 675 675 1005 1098 4.72 WTR 180 1683 44 Performance Calculated SWN VAV 305 6 6 448 ··· 20(2) 675 675 103.4 1.0 WTR 180 178 38 Performance Calculated SWN VAV 303 4 4 131 14 76 675 115.7 135.1 457.7 WTR 180 178 38 Performance Calculated				6	6					+ +								
Performance Calculated SDV8 VM 303 8 8 613 184 67.5 67.5 100.5 109.8 4.72 WTR 180 176.3 44 Performance Calculated SDV8 VM 305 6 6 498 140 67.5 67.5 95.5 103.8 1 WTR 180 167.9 36 Performance Calculated SDV8 VM 305 6 6 492 148 67.5 67.5 112.7 103.1 47.7 180 178.5 37.7 Performance Calculated SDV8 VAV 308 4 4 181 54 22 (2) 67.5 67.5 112.7 108.1 173.5 39 Performance Calculated SDV8 VAV 300 8 8 72.7 21.8 - 67.5 67.5 112.2 138.0 163.3 39 Performance Calculated SDV8	Performance Calculated	SDV8	VAV 301	8	8	752	226			67.5	67.5	97.1	105.7	3.34	WTR	180	174.2	44
Performance Calculated SVN8 VA 394 8 8 7.49 225 67.5 67.5 95.1 103.4 1.63 WR 120 168.9 44 Performance Calculated SVN8 VAV 306 6 6 4492 148 67.5 67.5 124.2 140.7 7.68 WIR 180 176.8 38 Performance Calculated SVN8 VAV 306 6 6 442 148 67.5 67.5 112.7 135.1 4.5.7 WTR 180 176.8 38 Performance Calculated SVN8 VAV 309 6 6 424 127 67.5 67.5 112.2 123.3 0.61 WTR 180 153 38 Performance Calculated SVN8 VAV 311 8 8 657 197 67.5 67.5 104.5 115.5 0.5 WTR	Performance Calculated	SDV8	VAV 302	8	8	637	191			67.5	67.5	93.6	101.6	0.71	WTR	180	159.6	44
Performance calculated SVM VAX05 6 6 498 149 ··· 720 (2) 67.5 67.5 195.5 103.8 1 WTR 180 167.9 358 Performance Calculated SDV8 VAX07 4 4 154 466 ··· 22 (2) 67.5 67.5 111.57 135.1 4.57 WTR 180 176.8 389 Performance Calculated SDV8 VAX 307 4 4 181 54 ··· 22 (2) 67.5 67.5 111.57 135.1 4.57 WTR 180 178.5 371 Performance Calculated SDV8 VAX 30 8 8 727 218 ··· ··· 67.5 67.5 101.5 WTR 180 167.3 44 Performance Calculated SDV8 VAX 312 8 64 ··· 27 (2) 67.5 67.5 101.3 2.0.2.8 WTR 180 173.5 39				8	8					+ +								
Performance Calculated SVN WAY 306 6 402 148 67.5 67.5 124.2 140.7 7.68 WTR 180 17.6.8 33 Performance Calculated SDV8 VAV 307 4 4 181 54 22 (2) 67.5 67.5 112.2 138.9 0.22 WTR 180 178.3 37 Performance Calculated SDV8 VAV 309 6 6 42.4 127 67.5 67.5 112.2 125.3 0.61 WTR 180 153 38 Performance Calculated SDV8 VAV 311 8 8 657 197 67.5 67.5 104.5 115.5 0.5 WTR 180 133.8 4 4 213 64 67.5 67.5 104.5 115.5 0.5 WTR 180 137.5 436.4 Performance Calculated SDV8 VAV 313 </td <td></td> <td></td> <td></td> <td>8</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.63</td> <td> </td> <td></td> <td></td> <td></td>				8	-									1.63				
Performance Calculated SV% VAV 307 4 4 154 46 22 (2) 67.5 67.5 115.7 <th< td=""><td></td><td></td><td></td><td>6</td><td>-</td><td></td><td></td><td></td><td></td><td>+ +</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></th<>				6	-					+ +				1				
Performance Calculated SVM VV 308 4 4 181 54 25(2) 67.5 67.5 122.2 138.9 0.3.2 WTR 180 153 399 Performance Calculated SVM VX 309 6 6 424 127 67.5 67.5 112.2 125.3 0.61 WTR 180 153 38 Performance Calculated SVM VX 310 8 8 657 197 67.5 67.5 104.5 115.5 0.5 WTR 180 138.2 46 Performance Calculated SVM VX 313 4 4 121.3 64 27 (2) 67.5 67.5 101.4 WTR 180 173.8 37 Performance Calculated SVM VX 401 8 71.1 213 - 67.5 67.5 100.1 108 1.97 WTR 180 173.8 37		-		<u> </u>	<u> </u>					+ +								
Performance Calculated SVM VMV309 6 6 424 127 67.5 67.5 112.2 12.5.3 0.61 WTR 180 15.3 38 Performance Calculated SVM VV310 8 8 727 21.8 67.5 67.5 98.7 107.9 1.55 WTR 180 163.2 44 Performance Calculate SVM VV312 8 8 1056 317 67.5 67.5 101.5 10.5 WTR 180 138.2 46 Performance Calculate SVM VV313 4 4 213 64 77.0 67.5 67.5 110 132 0.28 WTR 180 147.5 39 Performance Calculate SVM VV401 8 8 711 213 - 67.5 67.5 100.1 108 197 WTR 180 171.8		-		4	4		1			+ +								
Performance Calculated SDV8 VAV 311 8 8 657 197 67.5 67.5 104.5 115.5 0.5 WTR 180 138.2 46 Performance Calculated SDV8 VAV 312 8 8 1056 317 67.5 67.5 93 100.5 3.64 WTR 180 173.6 44 Performance Calculated SDV8 VAV 31 4 4 150 45 22(2) 67.5 67.5 102.4 126.6 1.41 WTR 180 139.9 46 Performance Calculated SDV8 VAV 401 8 8 711 213 67.5 67.5 100.1 108 19.7 WTR 180 17.8 44 Performance Calculated SDV8 VAV 403 8 8 554 188 67.5 67.5 100.1 108 17.1 44 <td< td=""><td></td><td></td><td></td><td>6</td><td>6</td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td></td<>				6	6					+								
Performance Calculated SV8 VAV 312 8 8 1056 317 67.5 67.5 93 100.5 3.64 WTR 180 17.6 44 Performance Calculated SDV8 VAV 313 4 4 213 64 27 (2) 67.5 67.5 110 132 0.28 WTR 180 147.5 397 Performance Calculated SDV8 VAV 401 8 8 711 213 67.5 67.5 100.4 108 1.97 WTR 180 17.8 44 Performance Calculated SDV8 VAV 402 8 8 598 179 67.5 67.5 100.1 108 1.97 WTR 180 17.3 44 Performance Calculated SDV8 VAV404 8 8 625 188 67.5 67.5 100.1 108 1.070 44 173.6 44 1				8	8					+		98.7	107.9		WTR			44
Performance Calculated SDV8 VAV 313 4 4 213 64 27 (2) 67.5 67.5 110 132 0.28 WTR 180 147.5 39 Performance Calculated SDV8 VAV 314 4 4 150 45 67.5 67.5 100.4 126.6 1.41 WTR 180 175.8 37 Performance Calculated SDV8 VAV 402 8 8 711 213 67.5 67.5 100.1 108 1.97 WTR 180 17.8 44 Performance Calculated SDV8 VAV 402 8 8 625 188 67.5 105.5 114.4 4.01 WTR 180 17.1 44 Performance Calculated SDV8 VAV 404 8 8 754 22.6 55 55 75 95.4 2.1 WTR 180 169.9 36				8						+ +								
Performance Calculated SDV8 VAV 314 4 4 150 45 ··· 22 (2) 67.5 67.5 102.4 126.6 1.41 WTR 180 175.8 37 Performance Calculated SDV8 VAV 401 8 8 711 213 ··· ··· 67.5 67.5 105.8 115.3 0.57 WTR 180 139.9 46 Performance Calculated SDV8 VAV 402 8 8 598 179 ··· 67.5 67.5 100.1 108 1.97 WTR 180 17.8 44 Performance Calculated SDV8 VAV 404 8 8 754 226 ··· ··· 55 55 75 95.4 2.1 WTR 180 170.8 44 Performance Calculated SDV8 VAV 405 6 6 501 150 ···<				8	8					+ +								
Performance Calculated SDV8 VAV 401 8 8 711 213 67.5 67.5 105.8 115.3 0.57 WTR 180 139.9 46 Performance Calculated SDV8 VAV 402 8 8 598 179 67.5 67.5 100.1 108 1.97 WTR 180 171.8 44 Performance Calculated SDV8 VAV 403 8 8 625 188 67.5 67.5 100.1 108 1.97 WTR 180 171.8 44 Performance Calculated SDV8 VAV 404 8 8 754 226 55 57 95.4 2.1 WTR 180 170.4 44 Performance Calculated SDV8 VAV 405 8 8 542 163 67.5 67.5 131.6 146.9 3.15 WTR 180<		+		4	4													
Performance Calculated SV8 VA V402 8 8 598 179 67.5 67.5 100.1 108 1.97 WTR 180 17.8 44 Performance Calculated SDV8 VAV 403 8 8 625 188 67.5 67.5 105.5 114.4 4.01 WTR 180 17.0 44 Performance Calculated SDV8 VAV 404 8 8 754 226 55 55 75 95.4 2.1 WTR 180 170 44 Performance Calculated SDV8 VAV 405 8 8 542 163 67.5 67.5 131.6 140.9 WTR 180 163.9 36 Performance Calculated SDV8 VAV 407 4 4 177 53 24(2) 67.5 67.5 131.6 140.2 0.33 WTR 180 154.3 39 Perf				8	8													
Performance Calculated SDV8 VAV 403 8 8 625 188 67.5 67.5 105.5 114.4 4.01 WTR 180 175.1 44 Performance Calculated SDV8 VAV 404 8 8 754 226 55 55 75 95.4 2.1 WTR 180 170 44 Performance Calculated SDV8 VAV 405 6 6 501 150 20(2) 67.5 67.5 101.4 109.7 1.4 WTR 180 169.9 365 Performance Calculated SDV8 VAV 405 6 6 501 150 20(2) 67.5 67.5 101.4 109.7 1.4 WTR 180 169.9 365 Performance Calculated SDV8 VAV 407 4 4 177 53 24(2) 67.5 67.5 113.6 140.2 0.33 WTR 180 161.3				8	_					+ +								
Performance CalculatedSDV8VAV 40566650115020 (2)67.567.5101.4109.71.4WTR180169.936Performance CalculatedSDV8VAV 4068854216367.567.5131.6146.93.15WTR180169.936Performance CalculatedSDV8VAV 407441775324 (2)67.567.5125.4140.20.33WTR180154.339Performance CalculatedSDV8VAV 408441996026 (2)67.567.5125.4140.20.33WTR180161.339Performance CalculatedSDV8VAV 4096643513067.567.5119.4131.71.05WTR180161.339Performance CalculatedSDV8VAV 4096643513067.567.5119.4131.71.05WTR180162.238Performance CalculatedSDV8VAV 4108867220267.567.5110.1120.20.7WTR180146.1460Performance CalculatedSDV8VAV 4118867220267.567.5110.1120.20.7WTR180146.1460Per				8	8					67.5					WTR	180	175.1	44
Performance Calculated SDV8 VAV 406 8 8 542 163 67.5 67.5 131.6 146.9 3.15 WTR 180 170.8 460 Performance Calculated SDV8 VAV 407 4 4 1777 53 24 (2) 67.5 67.5 125.4 140.2 0.33 WTR 180 154.3 39 Performance Calculated SDV8 VAV 408 4 199 60 26 (2) 67.5 67.5 125.4 140.2 0.33 WTR 180 154.3 39 Performance Calculated SDV8 VAV 408 4 199 60 26 (2) 67.5 67.5 119.4 0.55 WTR 180 162.2 38 Performance Calculated SDV8 VAV 40 8 722 217 67.5 67.5 105.8 114.9 0.57 WTR 180 139.6 46.1		-		8	8					-				2.1				
Performance CalculatedSDV8VAV 4074417753 $$ 24 (2)67.567.5125.4140.20.33WTR180154.339<Performance CalculatedSDV8VAV 4084419960 $$ 26 (2)67.567.5751440.55WTR180161.339<Performance CalculatedSDV8VAV 40966435130 $$ 26 (2)67.567.5119.4131.71.05WTR180162.238<Performance CalculatedSDV8VAV 40966435130 $$ $$ 67.567.5119.4131.71.05WTR180162.238<Performance CalculatedSDV8VAV 40966435130 $$ $$ 67.567.5110.1120.20.7WTR180130.314				6	_					-								
Performance CalculatedSDV8VAV 4084419960 $\overline{}$ 26 (2)67.567.5751440.55WTR180161.339Performance CalculatedSDV8VAV 40966435130 $\overline{}$ $\overline{}$ 67.567.567.5119.4131.71.05WTR180162.238Performance CalculatedSDV8VAV 4088722217 $\overline{}$ $\overline{}$ 67.567.5110.1120.20.57WTR180162.238Performance CalculatedSDV8VAV 4188672202 $\overline{}$ $\overline{}$ 67.567.5110.1120.20.7WTR180162.238Performance CalculatedSDV8VAV 4188672202 $\overline{}$ $\overline{}$ 67.567.5110.1120.20.7WTR180162.238Performance CalculatedSDV8VAV 4188672202 $\overline{}$ $\overline{}$ 67.567.5110.1120.20.7WTR180146.146Performance CalculatedSDV8VAV 4121010967290 $\overline{}$ 27 (2)67.567.5110.518.68.92WTR18017.639Performance CalculatedSDV8VAV 4134420662 $\overline{}$ 27 (2)67.567.567.5120.3				8	8					+								
Performance Calculated SDV8 VAV 409 6 6 435 130 67.5 67.5 119.4 131.7 1.05 WTR 180 162.2 38< Performance Calculated SDV8 VAV 400 8 8 722 217 67.5 67.5 105.8 114.9 0.57 WTR 180 139.6 46 Performance Calculated SDV8 VAV 410 8 8 672 202 67.5 67.5 110.1 120.2 0.7 WTR 180 146.1 46 Performance Calculated SDV8 VAV 411 8 8 672 202 67.5 67.5 110.1 120.2 0.7 WTR 180 146.1 46 Performance Calculated SDV8 VAV 412 10 10 967 290 67.5 67.5 100.5 108.6 8.92 WTR 180 17.6 39				4 //	4 1					+ +								
Performance CalculatedSDV8VAV 4108872221767.567.5105.8114.90.57WTR180139.646Performance CalculatedSDV8VAV 4118867220267.567.5110.1120.20.7WTR180146.146Performance CalculatedSDV8VAV 41210010096729067.567.5100.5108.68.92WTR18017752Performance CalculatedSDV8VAV 41342066227 (2)67.567.5122.3151.91.4WTR180171.639				6	6													
Performance Calculated SDV8 VAV 41 8 8 672 202 67.5 67.5 110.1 120.2 0.7 WTR 180 146.1 460 Performance Calculated SDV8 VAV 412 10 10 967 290 67.5 67.5 100.5 108.6 8.92 WTR 180 147.7 52 Performance Calculated SDV8 VAV 413 4 40 62 67.5 67.5 100.5 108.6 8.92 WTR 180 147.7 52 Performance Calculated SDV8 VAV 413 4 40 62 67.5 67.5 100.5 18.0 140.7 140.7 52 Performance Calculated SDV8 VAV 413 4 40 62 67.5 67.5 122.3 151.9 1.40 WTR 180 171.6 39				8	_					+ +								
Performance Calculated SDV8 VAV 413 4 4 206 62 27 (2) 67.5 67.5 122.3 151.9 1.4 WTR 180 171.6 39				8	_					++								
		-		10	10					+								
Performance Calculated SDV8 VAV 414 4 4 150 45 22 (2) 67.5 67.5 113.9 147.1 0.4 WTR 180 159.9 39				4	4													
	Performance Calculated	SDV8	VAV 414	4	4	150	45		22 (2)	67.5	67.5	113.9	147.1	0.4	WTR	180	159.9	39

NO	Revision	Date								
		Bate								
Project 7	Project Title									

ASHRAE DESGIN COMPETITION

= N.T.S

Drawing Title

VAV SCHEDULES

Job Number BCIT-ME-1718-06

Drawn F.H/A.A/M.C

Check

J.C.

SCALE

Drawing No.

Scale

Date

2018/05/02

A1 _{of} 4