

ELEX 7660 Digital System Design
Term Project

Single Phase Variable Frequency Drive

Abstract

This document is a lab report for the British Columbia Institute of Technology
(BCIT) course ELEX 7660 detailing the steps taken to design, build and test a single
phase variable frequency drive (VFD) using an Altera Cyclone IV DE0 Nano Field
Programmable Gate Array (FPGA). The lab took place over a period of five weeks,
and was completed by a team of two 3 rd year electrical engineering students. The
results of the lab were positive, with the VFD meeting most of the required
specifications being successfully built, and both students gaining valuable insight into
the design process.

Group 16
Tyson Whyte

Jacob Lagassé
Set 6S

Submitted: April 13th, 2018

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Abstract 1

Introduction 3

Design 4

Simulation 6

Construction 7
Rectifier System 7
DC Link System 7
Switching System 7
Control System 7

Results 9
PWM Output 9
Buttons and Display 9
Rectifier System and DC Link 9
Final Testing 10

Appendix A 11
Code 11

Appendix B 31
Parts List 31

2

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Introduction
This project encompassed building a single phase variable frequency drive (VFD) to

control the torque, and the speed of a single phase AC induction motor. Using variable
frequency drives to operate AC induction motors results in reduced inrush current when
starting the motor, higher torque at low speeds, tuneable torque to speed
characteristics for differing motor applications, high speed control, and more efficient
Operation. The motivation for this project came from the team members experience in field
as electricians installing and servicing VFDs for high power motors; after having seen these
devices in operation numerous times over many years, both team members were keenly
interested in learning about their inner workings.

The VFD operates based off of the principle of frequency modulation. This is the
most popular type of VFD design currently in use today. Using a rectified and filtered AC
input, the DC signal is switched at different frequencies dependant upon the speed setting of
the drive. This switching is performed by IGBTs to simulate the required power
characteristics similar to regular AC signal operation. Using this method affords more control
over the motor’s power characteristics. [1]

Using the Altera Cyclone IV FPGA board as a controller, the system controls the
triggering of the IGBTs based off of inputs received from a push button for stop-start control,
and a pair of buttons which allow the adjustment of the speed setting of the motor. This
speed setting is displayed on a series of four 7-segment displays. [4]

The carrier produced by the switching frequencies can results in reflected wave

voltages that can cause voltage spikes that are up to 2.5 times the intended voltage output.
[1] For this reason the components utilised in this project have voltage ratings adequate for
these spikes. The components are also sized to accommodate the typical inrush current of
the motor to protect them during development and calibration of the drive. The VFD system
utilises optical isolators to protect the FPGA from the inductive motor load. Additionally, to
mitigate safety hazards our VFD will operate at approximately 60 V AC.

3

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Design

In order to eliminate problems with harmonics and ground faults, it is necessary to

use a reduced voltage isolated voltage supply to operate the VFD. [1] This was
accomplished by utilising a variac autotransformer to step down the line voltage of 120V AC
to a voltage of approximately 60V AC to help mitigate safety hazards. This transformers has
the capacity to supply the initial inrush current to the motor without damage (rated to 5A).
Additionally, the transformer has overcurrent protection by means of a replaceable fuse.
Overload protection is not vital since the current to the system is monitored during its
operation at all times by means of a clamp-on multimeter.

In the rectification stage the system utilises a bridge rectifier. This rectifier has a peak

inverse voltage rating (PIV) that is able to handle the reflected wave voltages. In the DC link
stage the rectified signal is filtered into a DC signal that goes to the switching stage. In the
switching stage IGBTs are used to switch the DC signal and change the frequency of the
PWM output. [2]

4

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

The FPGA is used to control the user interface as well as control the triggering in the
switching stage of the VFD. In order to isolate the FPGA from the higher voltage circuits
found within the VFD, opto isolators are used in order to relay the signals to the switching
stage of the VFD. The VFD has a seperate DC power supply in order to operate the
electronics such as the IGBTs and buttons. This greatly simplifies the design as the system
does not have to reduce and condition the line voltage again in order to run the electronics.
A separate power supply is used to power the switching stage with +16V DC, and to power
the opto-isolators with +5V DC.

5

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Simulation
Simulation of the system was accomplished by using LTspice to model the

rectification, dc link and switching systems. With these simulations the team was able to
determine the current and voltage ratings required for the various systems utilised.

LTspice Simulation of VFD Rectification, DC Link and Switching Systems

With the selected components the figures below indicate the simulated operation of

our design with a switching load. As seen in the right figure, when voltage is initially applied
to the system the 6800uF capacitor draws a large inrush current. This current was
approximately 130A, which would have triggered our overcurrent protection, and damaged
components. An easy solution to this is to slowly increase the voltage initially to change the
capacitor slowly. Additionally, due to the switching load we found that we were generating
transient voltages of up to 700V. Due to these voltage spikes we needed to install a
free-wheeling diode in parallel with the inductor. The figure on the left shows our input
voltage to the system and the smoothed ripple output that the load sees. This amount of
ripple was adequate to power our load.

LTspice Simulation Voltage and Current Waveforms

6

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Construction
The VFD system is composed of four primary systems: The first system is

the rectifier, the second system is the DC link, the third system is the switching system and
finally the fourth is the control system. These four systems are utilised to control a single
phase 120V AC squirrel cage induction motor.

Rectifier System
The Rectifier System receives an AC input of 60 volts at a maximum of 5 amps and outputs
a DC voltage of approximately 65 volts. The first stage of the system is a 120V AC rated
variac that is used to adjust the 120V AC wall power to the required 60V. The output of the
variac is connected to a bridge rectifier chip. This rectifier chip must
have a peak inverse voltage rating (PIV) that is able to withstand the reflected wave
voltages, however at the very minimum this rating must be as high as the peak voltage of the
AC input. The bridge rectifier outputs a pulsating DC output to the DC Link System.

DC Link System
In the DC Link System the rectified signal is filtered into a flat DC signal that is output into
the Switching System. The filter is a high power low-pass LC circuit utilising two capacitors,
one inductor and one free-wheeling diode to protect the system from high voltage spikes
from the inductor. On system startup there are significant inrush currents into this system
(due to the capacitors charging), and care must be taken to mitigate them. For this project
these currents were mitigated by slowly increasing the voltage on the variac from 0V to 60V
AC when turning the VFD on.

Switching System
The Switching System contains a power module that contains six IGBTs in a convenient
single-chip package. Four of the six IGBTs are utilised for this project. The DC Link System
is fed into the power module and the IGBTs are switched on and off by the Control System,
allowing power to flow from the negative and positive buses from the DC Link to the attached
motor.

Control System
The Control System is the heart of the VFD, and contains the FPGA and the opto-isolators
used to protect it from transient voltages from the Switching and DC Link systems. The
opto-isolators utilised are high-speed to minimize propagation delay to the system, as the
switching frequency of the VFD is quite high (2.5kHz). The FPGA is connected to the
opto-isolators by way of two output pins that output the PWM, and the opto-isolators are in
turn connected to the Switching System’s IGBT module inputs.

7

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Control of the FPGA is achieved by way of three buttons: two buttons to increase and
decrease the speed and one button to start and stop the motor. Feedback from the system is
given by way of a four digit 7-segment display and one led to indicate power on (red), and
one led to indicate motor running (yellow).

VFD System Wiring Diagram

VFD System with Control Panel

8

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Results

PWM Output
Testing of the VFD began with testing each system independently. After

approximately two weeks of testing and modifying the verilog code to output the proper
PWM signals, the system was able to accurately reproduce an SPWM waveform. Some
difficulty was encountered in generating the sine and triangle waves in system verilog (sine
values are difficult to generate on an FPGA).

 After some time the team switched to generating the waves in Matlab (see Appendix
A) and creating arrays of PWM values (1,0 and -1). These arrays were generated with a
switching frequency of 2.5kHz (which is set by the triangle wave frequency in the code), and
sine wave frequencies from 5Hz to 30Hz. A constant voltage to frequency ratio of 2V/Hz was
utilised to maintain constant flux in the motor. It should be noted that these arrays are not
included in the code due to their length of ten thousand values.

Buttons and Display
Creating the code for the display and the buttons initially went rather quickly, however

after testing the code with the buttons, some difficulties developed. Debouncing the buttons
became quite difficult, which was possibly due to the poor quality of the buttons utilised
(caused by budget constraints). It took approximately one week of modifying and tweaking
this code to achieve a control system that could reliably detect a button push and latch the
result in the code. Subsequent testing produced positive results, with the system able to
accurately detect button pushes and display the proper frequency selected on the 7-segment
displays.

Rectifier System and DC Link
Building of this system presented significant challenges, as the initial filter in the DC

Link System did not function when places under load, thought it initially seemed to function
when tested unloaded (it displayed a flat DC output). After some investigation it was
determined that the system required much larger inductors and capacitors, which were
quickly ordered. See the parts list in Appendix B for the values. Subsequent testing of the
new system produced positive results, with a flat DC output being produced under a load of
20 ohms at a voltage of 30V AC.

9

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Final Testing
 After having tested the VFD’s component systems separately with positive results,

the team first tested the system with only the Switching System and the control system
connected. This system required some modifications to the wiring and minor changes to the
code, but was quickly able to produce the required results of controlling the igbts and output
a PWM output that varied from 0Hz to 30Hz in 5Hz steps. This test was conducted with the
motor disconnected due to the DC Link not being connected (for safety reasons).

The final test of the system was completed on the day of demoing the VFD to the
ELEX 7660 class. All of the separate systems were connected and powered, and the team
attempted to turn the motor. However, instantly after powering the system and activating the
VFD, the overcurrent protection on the variac blew, and the system was subsequently
powered off. The cause of this event was later determined to be the power supply for the
IGBT power module not being a floating supply, which is required for supplying the high side
IGBTs; their common points are connected to the motor output terminals, and without a
floating supply the positive bus as shorted to ground through this connection point.

The DC Link and Rectifier Systems were disconnected, and the VFD was simply
demoed with the Control and Switching Systems connected. The sinusoidal PWM output
was displayed on an oscilloscope, and the system was shown working by turning it on and
off, and by changing the frequency output from 0Hz to 30Hz.

These results are considered positive, as the team was able to successfully build and
test a functional SPWM output. The VFD itself is considered functional, as the issue was
determined to be hardware related. The digital system design of the VFD was fully
operational, but hardware failure impeded the overall system design from completing the
initial goal of controlling the motor. It is recommended that for future implementations of this
design the IGBT chip be replaced with another IC package or individual IGBTs.

10

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Appendix A

Code
MATlab PWM Array Generation Code

%%%

%%%%%%%%%

%%% pwmgenerator.m

%%%

%%% Sinusoidal Pulse Width Modulation (SPWM) Generator and Plotter

%%%

%%% Authors: Tyson Whyte and Jacob Lagasse

%%%

%%% Description: This module generates the arrays for SPWM and plots

%%% the sinusoidal, triangle and PWM waveforms. It is highly

%%% customizable by changing the sampling frequency (fs), triangle

%%% wave frequency (Fc2),sine wave frequency (Fc) and the sine wave

%%% amplitude (amplitude).

%%%

%%% April 2018

%%%

%%%%%%%%%

%%%close and clear all

close all;
clear all;
clc;

%%%

%%%%%%%%%

%%% Design considerations

%%%

%%%%%%%%%

%%% must maintain Voltage/frequency ratio of nameplate at 120V/60Hz = 2

V/Hz

%%% full voltage (60V DC source): freq = (60V)/(2V/Hz) = 30hz (half

speed)

%%% 6 frequency steps: 5 to 30Hz

%%% HzAmplitude Voltage

%%% 5 0.17 10V

%%% 10 0.33 20V

%%% 15 0.50 30V

%%% 20 0.67 40V

%%% 25 0.83 50V

 %%% 30 1.00 60V

11

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

%%%

%%%%%%%

%%%

%%%%%%%

 %%
 %%% Time, frequency and amplitude specifications
 %%
 amplitude = 1;
 Fs = 5000000; % sampling frequency (samples/sec)

 Fc = 60; % frequency of sine wave in hertz
 Fc2 = 2100; % frequency of tri wave in hertz

 dt = 1/Fs; % seconds per sample

 StopTime = 1/(60); %Stoptime in seconds

 t = (0:dt:StopTime-dt)'; %Time array to step through in seconds

%%%

 % pulse width generation

 ii = 0; %%counter for sine,triangle and PWM arrays

 %%%main loop to calculate waves and populate arrays
for tt = (0:dt:StopTime-dt)

 ii = ii+1;%%increment counter
 %%

 %%% Sine and triangle wave generation

 %%

 ysin(ii) = amplitude*sin(2*pi*Fc*tt); %%calculate sine wave value
 ytri(ii) = triangle(2*pi*Fc2*tt); %%calculate triangle wave value
 yzero(ii) = 0*tt; %%zero line on graph
 ypwm(ii) = 0; %%set default pwm value

 if(ysin(ii)>0) %%for the postive half cycle
 if((ysin(ii)>ytri(ii))&&(ysin(ii)> 0.02)) %%if sin is greater
than triangle

 ypwm(ii) = 1; %%Set pwm to one
 else

 ypwm(ii) = 0; %%else set pwm to zero
 end

 end

 if(ysin(ii)<0) %%for the negative half cycle
 if((ysin(ii) < ytri(ii))&&(ysin(ii)< -0.02)) %%if sin is greater
than triangle

 ypwm(ii) = -1; %%set pwm to negative one
 else

 ypwm(ii) = 0; %%else set pwm to one
 end

 end

12

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

end %%end for loop

 %%
 % Plot the signals versus time
 %%
 figure(1);
 plot(t,ysin,'bl','LineWidth', 3); %%plot sine wave
 hold on;
 plot(t,ytri); %%plot triangle wave
 hold on;
 plot(t,yzero, 'k'); %plot zero line
 xlabel('time (in seconds)');
 title('Signal versus Time');
 zoom xon;
 set(gca,'Color',[1 1 1]) %%set background colour
 hold on;
 plot(t,ypwm, 'bl','LineWidth', 2); %%plot pwm output

%%%

%%triangle wave generator fuction (same use as sin())

%%%

 function y = triangle(t)
y = 2*abs(mod((t+1.5*pi)/pi, 2)-1)-1;
end

%%

Main VFD Module
///

///

//Created by Jacob Lagasse and Tyson Whyte

//This file is the top level module for the VFD.

//It calls the pushbutton modules, display modules, and PWMgen module

///

//VFD is the top-level module

//Inputs: CLOCK_50-the 50MHz clock,

// button-the input from the start/stop buttons

// speed_data-the frequency setting

// button_u-the input signal from the frequency up //button

// button_d-the input signal from the frequency down //button

//Outputs: leds-controls the 7 LEDs in the display

// ct-enables which display to light up

// LED_ON-enable the running light

// RUN-enables the running mode

// PWM_pos_out-switches IGBTs on positive pulses

// PWM_neg_out-switches IGBTs on negative pulses

// test-testing LED on FPGA

module VFD(input logic button, input logic CLOCK_50, input logic [31:0]
speed_data, input logic button_u, input logic button_d,

13

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

 output logic LED_ON, RUN, output logic [7:0] leds, output logic
[3:0] ct,output logic test, output logic PWM_pos_out, output logic
PWM_neg_out);

logic [7:0] freq_setting;
logic pulse_out_u;
logic pulse_out_d;
logic [7:0] counter_up = 32;//used for count up presses
logic [7:0] counter_down = 32;//used for counte down presses

always_comb begin
freq_setting = counter_up - counter_down;//keeps teh frequency setting
between 0 and 6

end

//this logic below keeps the frequency setting between 0 and 6 depending on

//button presses

always @(posedge pulse_out_u) begin
if (freq_setting >= 6)

 counter_up <= counter_up;
else

 counter_up <= counter_up+1;
end

always @(posedge pulse_out_d) begin
if (counter_down >= counter_up)

 counter_down <= counter_down;
else

 counter_down <= counter_down+1;
end

//instantiate dependent modules.

button start_stop(.clk(CLOCK_50),.press_l(button),.press_u(button_u),
.press_d(button_d),.status(RUN),.pulse_out_u,.pulse_out_d);
lab1 display_speed(.CLOCK_50,.freq(freq_setting),.leds,.ct);
PWMgen igbt_outputs(.PWM_pos_out, .PWM_neg_out, .freq_in(freq_setting),
.startstop_in(RUN), .CLOCK_50) ;
endmodule

///

///

Display Modules
///

///

//Created by Jacob Lagasse and Tyson Whyte

//This file creates the functionality for display which displays the

//frequency settings of the VFD

//this is a modified version of lab 1

///

display is the top-level display module

14

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

//Inputs: CLOCK_50-the 50MHz clock,

// freq-the frequency setting for the VFD

//Outputs: leds-controls the 7 LEDs in the display

// ct-enables which display to light up

module display (input logic CLOCK_50, // 50 MHz clock

 input logic [7:0] freq, // speed setting
 output logic [7:0] leds, // 7-seg LED cathodes
 output logic [3:0] ct) ; // digit enable

 logic [1:0] digit ;
 logic [3:0] idnum ;//frequency setting
 logic clk ;

//instatiate dependant display modules

 digitselect dig_sel (.digit,.ct) ;
 displayfreq disp_freq (.digit,.freq,.idnum) ;
 decode decode_1 (.num(idnum),.leds) ;
 displayclk disp_clk (CLOCK_50, clk) ;

//cycles which isplay is powered

 always_ff @(posedge clk)
 digit <= digit + 1'b1 ;
endmodule

///

//This is a setup file for the display

///

// megafunction wizard: %ALTPLL%

// ...

// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

// ...

module displayclk (inclk0, c0);

 input inclk0;
 outputc0;

 wire [0:0] sub_wire2 = 1'h0;
 wire [4:0] sub_wire3;
 wire sub_wire0 = inclk0;
 wire [1:0] sub_wire1 = {sub_wire2, sub_wire0};
 wire [0:0] sub_wire4 = sub_wire3[0:0];
 wire c0 = sub_wire4;

 altpll altpll_component (.inclk (sub_wire1), .clk
 (sub_wire3), .activeclock (), .areset (1'b0), .clkbad
 (), .clkena ({6{1'b1}}), .clkloss (), .clkswitch
 (1'b0), .configupdate (1'b0), .enable0 (), .enable1 (),
 .extclk (), .extclkena ({4{1'b1}}), .fbin (1'b1),
 .fbmimicbidir (), .fbout (), .fref (), .icdrclk (),

15

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

 .locked (), .pfdena (1'b1), .phasecounterselect
 ({4{1'b1}}), .phasedone (), .phasestep (1'b1),
 .phaseupdown (1'b1), .pllena (1'b1), .scanaclr (1'b0),
 .scanclk (1'b0), .scanclkena (1'b1), .scandata (1'b0),
 .scandataout (), .scandone (), .scanread (1'b0),
 .scanwrite (1'b0), .sclkout0 (), .sclkout1 (),
 .vcooverrange (), .vcounderrange ());

 defparam

 altpll_component.bandwidth_type = "AUTO",
 altpll_component.clk0_divide_by = 25000,
 altpll_component.clk0_duty_cycle = 50,
 altpll_component.clk0_multiply_by = 1,
 altpll_component.clk0_phase_shift = "0",
 altpll_component.compensate_clock = "CLK0",
 altpll_component.inclk0_input_frequency = 20000,
 altpll_component.intended_device_family = "Cyclone IV E",
 altpll_component.lpm_hint = "CBX_MODULE_PREFIX=lab1clk",
 altpll_component.lpm_type = "altpll",
 altpll_component.operation_mode = "NORMAL",
 altpll_component.pll_type = "AUTO",
 altpll_component.port_activeclock = "PORT_UNUSED",
 altpll_component.port_areset = "PORT_UNUSED",
 altpll_component.port_clkbad0 = "PORT_UNUSED",
 altpll_component.port_clkbad1 = "PORT_UNUSED",
 altpll_component.port_clkloss = "PORT_UNUSED",
 altpll_component.port_clkswitch = "PORT_UNUSED",
 altpll_component.port_configupdate = "PORT_UNUSED",
 altpll_component.port_fbin = "PORT_UNUSED",
 altpll_component.port_inclk0 = "PORT_USED",
 altpll_component.port_inclk1 = "PORT_UNUSED",
 altpll_component.port_locked = "PORT_UNUSED",
 altpll_component.port_pfdena = "PORT_UNUSED",
 altpll_component.port_phasecounterselect = "PORT_UNUSED",
 altpll_component.port_phasedone = "PORT_UNUSED",
 altpll_component.port_phasestep = "PORT_UNUSED",
 altpll_component.port_phaseupdown = "PORT_UNUSED",
 altpll_component.port_pllena = "PORT_UNUSED",
 altpll_component.port_scanaclr = "PORT_UNUSED",
 altpll_component.port_scanclk = "PORT_UNUSED",
 altpll_component.port_scanclkena = "PORT_UNUSED",
 altpll_component.port_scandata = "PORT_UNUSED",
 altpll_component.port_scandataout = "PORT_UNUSED",
 altpll_component.port_scandone = "PORT_UNUSED",
 altpll_component.port_scanread = "PORT_UNUSED",
 altpll_component.port_scanwrite = "PORT_UNUSED",
 altpll_component.port_clk0 = "PORT_USED",
 altpll_component.port_clk1 = "PORT_UNUSED",
 altpll_component.port_clk2 = "PORT_UNUSED",
 altpll_component.port_clk3 = "PORT_UNUSED",
 altpll_component.port_clk4 = "PORT_UNUSED",

16

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

 altpll_component.port_clk5 = "PORT_UNUSED",
 altpll_component.port_clkena0 = "PORT_UNUSED",
 altpll_component.port_clkena1 = "PORT_UNUSED",
 altpll_component.port_clkena2 = "PORT_UNUSED",
 altpll_component.port_clkena3 = "PORT_UNUSED",
 altpll_component.port_clkena4 = "PORT_UNUSED",
 altpll_component.port_clkena5 = "PORT_UNUSED",
 altpll_component.port_extclk0 = "PORT_UNUSED",
 altpll_component.port_extclk1 = "PORT_UNUSED",
 altpll_component.port_extclk2 = "PORT_UNUSED",
 altpll_component.port_extclk3 = "PORT_UNUSED",
 altpll_component.width_clock = 5;
endmodule

///

///

//This decoder selects which 7 segment display will be active

// It converts a 2 bit input "digit" into a 4 bit active high output "ct"

module digitselect(input logic [1:0] digit,
output logic [3:0] ct) ;
always_comb begin
 unique case (digit)
0: ct = 4'b0001 ;
1: ct = 4'b0010 ;
2: ct = 4'b0100 ;
default: ct = 4'b1000 ; //works for the 3rd bit
 endcase
end

endmodule

///

///

//dislpayfreq is where the numbers to display are selected

//Inputs: digit-inputs which segmetn is active,

// freq-the frequency setting for the VFD

//Outputs: idnum- which numbers are assigned to the 7 segment displays

module displayfreq (input logic [1:0] digit, input logic [7:0] freq,
output logic [3:0] idnum) ;
always_comb begin
//for the first frequency setting (5Hz)

if (freq == 1) begin
unique case (digit)
0: idnum = 4'd5 ;
1: idnum = 4'd0 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit
endcase

end

17

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

//for the second frequency setting (10Hz)

else if (freq == 2) begin
unique case (digit)
0: idnum = 4'd0 ;
1: idnum = 4'd1 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit
endcase

end

else if (freq == 3) begin
unique case (digit)
0: idnum = 4'd5 ;
1: idnum = 4'd1 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit
endcase

end

else if (freq == 4) begin
unique case (digit)
0: idnum = 4'd0 ;
1: idnum = 4'd2 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit
endcase

end

else if (freq == 5) begin
unique case (digit)
0: idnum = 4'd5 ;
1: idnum = 4'd2 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit
endcase

end

else if (freq == 6) begin
unique case (digit)
0: idnum = 4'd0 ;
1: idnum = 4'd3 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit
endcase

end

else begin
unique case (digit)
0: idnum = 4'd0 ;
1: idnum = 4'd0 ;
2: idnum = 4'd0 ;
default: idnum = 4'd0 ; //works with the 3rd bit

 endcase
end

end

endmodule

18

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

///

///

//decode takes which number to display and decodes it to each LED segment

//It has a 4 bit input "num", which is converted into 7 bit active low

//outputs

module decode (input logic [3:0] num,
output logic [7:0] leds) ;
always_comb begin
 unique case (num)
0: leds = 8'b1100_0000 ; //bits are inverted due to the active low output
1: leds = 8'b1111_1001 ;
2: leds = 8'b1010_0100 ;
3: leds = 8'b1011_0000 ;
4: leds = 8'b1001_1001 ;
5: leds = 8'b1001_0010 ;
6: leds = 8'b1000_0010 ;
7: leds = 8'b1111_1000 ;
8: leds = 8'b1000_0000 ;
default: leds = 8'b1001_0000 ; //acts as bit 7
 endcase
end

endmodule

// 1000_0000 .

// 0100_0000 g

// 0010_0000 f

// 0001_0000 e

// 0000_1000 d

// 0000_0100 c

// 0000_0010 b

// 0000_0001 a

///

///

Button Modules
///

///

//Created by Jacob Lagasse and Tyson Whyte

//This file creates the functionality for the momentary contact active high

//push buttons used to interface with the VFD

///

///

//button is the top-level pushbutton module

//Inputs: clk-the 50MHz clock,

// press_l-the start button,

// press_u-the button to increase the frequency,

// press_d-the button to decrease the frequency,

//Outputs: status-the on/off status of the VFD,

19

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

// pulse_out_u-increases the frequency,

// pusle_out_d-decreases the frequency

module button(input logic clk, press_l,press_u,press_d,
 output logic status=0,output logic pulse_out_u,

 output logic pulse_out_d);

//logical variables for the start/stop button

logic pulse_en_l;
logic pulse_out;
logic Q1,Q2,Q2n;
logic reset_ff_l = 0;
//logical variables for the frequency up button

logic pulse_en_u;
logic Q1_u,Q2_u,Q2n_u;
logic reset_ff_u = 0;
//Logical variable for the frequency down button

logic pulse_en_d;
logic Q1_d,Q2_d,Q2n_d;
logic reset_ff_d = 0;

//instantiate the module for the 3 push buttons

pulse

u1(.clk_p(clk),.press(press_l),.pulse_en(pulse_en_l),.reset(reset_ff_l));
d_ff

d1(.clk_ff(clk),.pulse_en(pulse_en_l),.D(press_l),.reset(reset_ff_l),.Q(Q1))
;

d_ff

d2(.clk_ff(clk),.pulse_en(pulse_en_l),.D(Q1),.reset(reset_ff_l),.Q(Q2));

pulse

u2(.clk_p(clk),.press(press_u),.pulse_en(pulse_en_u),.reset(reset_ff_u));
d_ff

d3(.clk_ff(clk),.pulse_en(pulse_en_u),.D(press_u),.reset(reset_ff_u),.Q(Q1_u
));

d_ff

d4(.clk_ff(clk),.pulse_en(pulse_en_u),.D(Q1_u),.reset(reset_ff_u),.Q(Q2_u));

pulse

u3(.clk_p(clk),.press(press_d),.pulse_en(pulse_en_d),.reset(reset_ff_d));
d_ff

d5(.clk_ff(clk),.pulse_en(pulse_en_d),.D(press_d),.reset(reset_ff_d),.Q(Q1_d
));

d_ff

d6(.clk_ff(clk),.pulse_en(pulse_en_d),.D(Q1_d),.reset(reset_ff_d),.Q(Q2_d));

//set the not values for the d-flipflops

assign Q2n = ~Q2;
//sets condition for pulse output

assign pulse_out = Q1 & Q2n;

assign Q2n_u = ~Q2_u;

20

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

assign pulse_out_u = Q1_u & Q2n_u;

assign Q2n_d = ~Q2_d;
assign pulse_out_d = Q1_d & Q2n_d;

//toggles the on/off status of the VFD with the debounced pushbutton pulse

always @(posedge pulse_out)
status <= ~status;

endmodule

///

///

//pulse sets the timing conditions for the debouncer, and output a debounced

pulse

//Inputs: clk_p-the 50MHz clock,

// press-the raw signal from the pushbutton

//Outputs: pulse_en-enable signal to activate the second d-flipflop,

// reset-a condition that resets the D-flipflops

module pulse(input logic clk_p, press,
 output logic pulse_en, reset);
int count = 0;

always @(posedge clk_p, negedge press) begin
//count sets the timer for the bebouncer

if (press ==0)
 count <= 0;

else

 count <= (count >= 25000)? 0:count+1;
end

//enable flipflops after the count has increased

assign pulse_en = (count == 25000)? 1'b1:1'b0;
//after the putton is released reset the flipflops

always @(posedge clk_p) begin
if ((count == 0) && (press ==0))

 reset = 0;
else

 reset=1;
end

endmodule

///

///

//d_ff creates the filp-flops used in the debouncer

//Inputs: clk_ff-the 50MHz clock,

// pulse_en-enable signal to activate the second d-flipflop,

// reset-a condition that resets the D-flipflops

//Outputs: Q-the output of the flip-flop

module d_ff(input logic clk_ff, pulse_en,D,reset,
 output logic Q=0);

always @(posedge clk_ff) begin

21

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

 if (pulse_en == 1)
 Q <= D;
 if (reset == 0)
 Q <= 0;

end

endmodule

///

///

PWM Generation Modules
///

///

//Created by Jacob Lagasse and Tyson Whyte

//This file creates the PWM outputs to switch the IGBTs

///

module PWMgen
 (
 //output signals

 output logic PWM_pos_out = 1,
 output logic PWM_neg_out = 1,

//freq input from speed button module comment out for sim

input logic [31:0] freq_in,
 //stop and start buttons

 input logic startstop_in,
 input logic CLOCK_50) ;

//**//**//**//**//**//**//***

//These arrays control the PWM outputs.

//The arrays are 10,000 elements long so they are not included here.

//Their contents cant be generated in the provided matlab code.

 logic [1:0] twentyfive_array [0:9999] = '{ };
 logic [1:0] thirty_array [0:9999] = '{ };

 // internal logic registers
logic PWM_pos_out_next = 1; //next pos pwm value
logic PWM_neg_out_next = 1 ; //next neg pwm value
logic [1:0] next_freq [0:9999] = '{default:0}; //next freq look up

table

logic [1:0] current_freq [0:9999] = '{default:0}; //current freq look
up table

logic pwm_clk = 0; //50khz clk for pwm

22

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

logic [31:0]freq_step = 0; //counter to step through LUT
logic [31:0] counter_PWM = 0; //counter to generate pwm_clk
//logic start_mode = 0;

//comment out later /////////////

//logic [31:0] freq_in = 30;

//logic startstop_in =1;

/////////////////////////////////

always_comb begin
 //latch values to ensure always holding a value

 PWM_pos_out_next = PWM_pos_out;
 PWM_neg_out_next = PWM_neg_out;
 next_freq = current_freq;

// set freq array to step through by reading pushbutton module output (ie

//set motor speed)

 if(startstop_in == 1) begin // start mode must have been pushed
 if(freq_in == 1) begin //freq 1 = 5Hz
 next_freq = five_array;
 end

 else if(freq_in == 2) begin //freq 2 = 10Hz
 next_freq = ten_array;
 end

 else if(freq_in == 3) begin //freq 3 = 15Hz
 next_freq = fifteen_array;
 end

 else if(freq_in == 4) begin //freq 4 = 20Hz
 next_freq = twenty_array;
 end

 else if(freq_in == 5) begin //freq 5 = 25Hz
 next_freq = twentyfive_array;
 end

 else if(freq_in == 6) begin //freq 6 = 30Hz
 next_freq = thirty_array;
 end

 else next_freq = '{default:0}; //else freq is 0
 end

 else next_freq = '{default:0}; //check for stop button (startstop_in
//==0)

 //set next pwm outputs

 if(current_freq[freq_step] == 1)begin
 PWM_pos_out_next = 0; //0 on
 PWM_neg_out_next = 1; //1 off

23

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

 end

 else if(current_freq[freq_step] == 3)begin
 PWM_pos_out_next = 1; //1 off
 PWM_neg_out_next = 0; //0 on
 end

 else if(current_freq[freq_step] == 0)begin
 PWM_pos_out_next = 1; //1 off
 PWM_neg_out_next = 1; //1 off
 end

 else begin
 PWM_pos_out_next = 1; //1 off
 PWM_neg_out_next = 1; //1 off
 end

end

//frequency stepper for LUT position (one window of 200ms)

 always_ff @(posedge pwm_clk) begin
freq_step <= freq_step + 1;

 if(freq_step>=9999) begin
 freq_step <= 0;

//set freq to next freq array

current_freq <= next_freq;
 end

 end

//pwm clock generator (50khz)

 always_ff @(posedge CLOCK_50) begin
 counter_PWM <= counter_PWM + 1;

 if(counter_PWM >= 499) begin
 counter_PWM <= 0;
 pwm_clk <= ~pwm_clk; //50kHz clock for pwm

 end
 end

//set PWM output pins

always_ff @(posedge CLOCK_50) begin

 //set PWM OUTPUT pins

 PWM_pos_out <= PWM_pos_out_next;
 PWM_neg_out <= PWM_neg_out_next;

end

endmodule

///

//

24

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

DE0 Nano Pin Assignments

set_location_assignment PIN_R8 -to CLOCK_50

set_location_assignment PIN_A15 -to LED[0]

set_location_assignment PIN_A13 -to LED[1]

set_location_assignment PIN_B13 -to LED[2]

set_location_assignment PIN_A11 -to LED[3]

set_location_assignment PIN_D1 -to LED[4]

set_location_assignment PIN_F3 -to LED[5]

set_location_assignment PIN_B1 -to LED[6]

set_location_assignment PIN_L3 -to LED[7]

set_location_assignment PIN_J15 -to KEY[0]

set_location_assignment PIN_E1 -to KEY[1]

set_location_assignment PIN_M1 -to SW[0]

set_location_assignment PIN_T8 -to SW[1]

set_location_assignment PIN_B9 -to SW[2]

set_location_assignment PIN_M15 -to SW[3]

set_location_assignment PIN_P2 -to DRAM_ADDR[0]

set_location_assignment PIN_N5 -to DRAM_ADDR[1]

set_location_assignment PIN_N6 -to DRAM_ADDR[2]

set_location_assignment PIN_M8 -to DRAM_ADDR[3]

set_location_assignment PIN_P8 -to DRAM_ADDR[4]

set_location_assignment PIN_T7 -to DRAM_ADDR[5]

set_location_assignment PIN_N8 -to DRAM_ADDR[6]

set_location_assignment PIN_T6 -to DRAM_ADDR[7]

set_location_assignment PIN_R1 -to DRAM_ADDR[8]

set_location_assignment PIN_P1 -to DRAM_ADDR[9]

set_location_assignment PIN_N2 -to DRAM_ADDR[10]

set_location_assignment PIN_N1 -to DRAM_ADDR[11]

set_location_assignment PIN_L4 -to DRAM_ADDR[12]

set_location_assignment PIN_M7 -to DRAM_BA[0]

set_location_assignment PIN_M6 -to DRAM_BA[1]

set_location_assignment PIN_L7 -to DRAM_CKE

set_location_assignment PIN_R4 -to DRAM_CLK

set_location_assignment PIN_P6 -to DRAM_CS_N

set_location_assignment PIN_G2 -to DRAM_DQ[0]

set_location_assignment PIN_G1 -to DRAM_DQ[1]

set_location_assignment PIN_L8 -to DRAM_DQ[2]

set_location_assignment PIN_K5 -to DRAM_DQ[3]

set_location_assignment PIN_K2 -to DRAM_DQ[4]

set_location_assignment PIN_J2 -to DRAM_DQ[5]

set_location_assignment PIN_J1 -to DRAM_DQ[6]

set_location_assignment PIN_R7 -to DRAM_DQ[7]

set_location_assignment PIN_T4 -to DRAM_DQ[8]

set_location_assignment PIN_T2 -to DRAM_DQ[9]

set_location_assignment PIN_T3 -to DRAM_DQ[10]

set_location_assignment PIN_R3 -to DRAM_DQ[11]

set_location_assignment PIN_R5 -to DRAM_DQ[12]

set_location_assignment PIN_P3 -to DRAM_DQ[13]

set_location_assignment PIN_N3 -to DRAM_DQ[14]

set_location_assignment PIN_K1 -to DRAM_DQ[15]

25

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

set_location_assignment PIN_R6 -to DRAM_DQM[0]

set_location_assignment PIN_T5 -to DRAM_DQM[1]

set_location_assignment PIN_L1 -to DRAM_CAS_N

set_location_assignment PIN_L2 -to DRAM_RAS_N

set_location_assignment PIN_C2 -to DRAM_WE_N

set_location_assignment PIN_F2 -to I2C_SCLK

set_location_assignment PIN_F1 -to I2C_SDAT

set_location_assignment PIN_G5 -to G_SENSOR_CS_N

set_location_assignment PIN_M2 -to G_SENSOR_INT

set_location_assignment PIN_A14 -to GPIO_2[0]

set_location_assignment PIN_B16 -to GPIO_2[1]

set_location_assignment PIN_C14 -to GPIO_2[2]

set_location_assignment PIN_C16 -to GPIO_2[3]

set_location_assignment PIN_C15 -to GPIO_2[4]

set_location_assignment PIN_D16 -to GPIO_2[5]

set_location_assignment PIN_D15 -to GPIO_2[6]

set_location_assignment PIN_D14 -to GPIO_2[7]

set_location_assignment PIN_F15 -to GPIO_2[8]

set_location_assignment PIN_F16 -to GPIO_2[9]

set_location_assignment PIN_F14 -to GPIO_2[10]

set_location_assignment PIN_G16 -to GPIO_2[11]

set_location_assignment PIN_G15 -to GPIO_2[12]

set_location_assignment PIN_E15 -to GPIO_2_IN[0]

set_location_assignment PIN_E16 -to GPIO_2_IN[1]

set_location_assignment PIN_M16 -to GPIO_2_IN[2]

set_location_assignment PIN_A8 -to GPIO_0_IN[0]

set_location_assignment PIN_D3 -to GPIO_0[0]

set_location_assignment PIN_B8 -to GPIO_0_IN[1]

set_location_assignment PIN_C3 -to GPIO_0[1]

set_location_assignment PIN_A2 -to GPIO_0[2]

set_location_assignment PIN_A3 -to GPIO_0[3]

set_location_assignment PIN_B3 -to GPIO_0[4]

set_location_assignment PIN_B4 -to GPIO_0[5]

set_location_assignment PIN_A4 -to GPIO_0[6]

set_location_assignment PIN_B5 -to GPIO_0[7]

set_location_assignment PIN_A5 -to GPIO_0[8]

set_location_assignment PIN_D5 -to GPIO_0[9]

set_location_assignment PIN_B6 -to GPIO_0[10]

set_location_assignment PIN_A6 -to GPIO_0[11]

set_location_assignment PIN_B7 -to GPIO_0[12]

set_location_assignment PIN_D6 -to GPIO_0[13]

set_location_assignment PIN_A7 -to GPIO_0[14]

set_location_assignment PIN_C6 -to GPIO_0[15]

set_location_assignment PIN_C8 -to GPIO_0[16]

set_location_assignment PIN_E6 -to GPIO_0[17]

set_location_assignment PIN_E7 -to GPIO_0[18]

set_location_assignment PIN_D8 -to GPIO_0[19]

set_location_assignment PIN_E8 -to GPIO_0[20]

set_location_assignment PIN_F8 -to GPIO_0[21]

set_location_assignment PIN_F9 -to GPIO_0[22]

set_location_assignment PIN_E9 -to GPIO_0[23]

26

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

set_location_assignment PIN_C9 -to GPIO_0[24]

set_location_assignment PIN_D9 -to GPIO_0[25]

set_location_assignment PIN_E11 -to GPIO_0[26]

set_location_assignment PIN_E10 -to GPIO_0[27]

set_location_assignment PIN_C11 -to GPIO_0[28]

set_location_assignment PIN_B11 -to GPIO_0[29]

set_location_assignment PIN_A12 -to GPIO_0[30]

set_location_assignment PIN_D11 -to GPIO_0[31]

set_location_assignment PIN_D12 -to GPIO_0[32]

set_location_assignment PIN_B12 -to GPIO_0[33]

set_location_assignment PIN_T9 -to GPIO_1_IN[0]

set_location_assignment PIN_F13 -to GPIO_1[0]

set_location_assignment PIN_R9 -to GPIO_1_IN[1]

set_location_assignment PIN_T15 -to GPIO_1[1]

set_location_assignment PIN_T14 -to GPIO_1[2]

set_location_assignment PIN_T13 -to GPIO_1[3]

set_location_assignment PIN_R13 -to GPIO_1[4]

set_location_assignment PIN_T12 -to GPIO_1[5]

set_location_assignment PIN_R12 -to GPIO_1[6]

set_location_assignment PIN_T11 -to GPIO_1[7]

set_location_assignment PIN_T10 -to GPIO_1[8]

set_location_assignment PIN_R11 -to GPIO_1[9]

set_location_assignment PIN_P11 -to GPIO_1[10]

set_location_assignment PIN_R10 -to GPIO_1[11]

set_location_assignment PIN_N12 -to GPIO_1[12]

set_location_assignment PIN_P9 -to GPIO_1[13]

set_location_assignment PIN_N9 -to GPIO_1[14]

set_location_assignment PIN_N11 -to GPIO_1[15]

set_location_assignment PIN_L16 -to GPIO_1[16]

set_location_assignment PIN_K16 -to GPIO_1[17]

set_location_assignment PIN_R16 -to GPIO_1[18]

set_location_assignment PIN_L15 -to GPIO_1[19]

set_location_assignment PIN_P15 -to GPIO_1[20]

set_location_assignment PIN_P16 -to GPIO_1[21]

set_location_assignment PIN_R14 -to GPIO_1[22]

set_location_assignment PIN_N16 -to GPIO_1[23]

set_location_assignment PIN_N15 -to GPIO_1[24]

set_location_assignment PIN_P14 -to GPIO_1[25]

set_location_assignment PIN_L14 -to GPIO_1[26]

set_location_assignment PIN_N14 -to GPIO_1[27]

set_location_assignment PIN_M10 -to PWM_pos_out

set_location_assignment PIN_L13 -to PWM_neg_out

set_location_assignment PIN_J16 -to button_d

set_location_assignment PIN_K15 -to button_u

set_location_assignment PIN_J13 -to RUN

set_location_assignment PIN_J14 -to button

set_location_assignment PIN_A2 -to qspb

set_location_assignment PIN_A8 -to qsa

set_location_assignment PIN_B8 -to qsb

set_location_assignment PIN_A12 -to ct[0]

27

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

set_location_assignment PIN_A5 -to leds[0]

set_location_assignment PIN_C11 -to ct[1]

set_location_assignment PIN_B6 -to leds[1]

set_location_assignment PIN_E11 -to ct[2]

set_location_assignment PIN_B7 -to leds[2]

set_location_assignment PIN_C9 -to ct[3]

set_location_assignment PIN_A7 -to leds[3]

set_location_assignment PIN_C8 -to leds[4]

set_location_assignment PIN_E7 -to leds[5]

set_location_assignment PIN_E8 -to leds[6]

set_location_assignment PIN_F9 -to leds[7]

set_location_assignment PIN_D5 -to kpc[3]

set_location_assignment PIN_A6 -to kpc[2]

set_location_assignment PIN_D6 -to kpc[1]

set_location_assignment PIN_C6 -to kpc[0]

set_location_assignment PIN_E9 -to kpr[0]

set_location_assignment PIN_F8 -to kpr[1]

set_location_assignment PIN_D8 -to kpr[2]

set_location_assignment PIN_E6 -to kpr[3]

set_location_assignment PIN_D9 -to rgb_din

set_location_assignment PIN_E10 -to rgb_clk

set_location_assignment PIN_B11 -to rgb_cs

set_location_assignment PIN_D11 -to rgb_dc

set_location_assignment PIN_B12 -to rgb_res

set_location_assignment PIN_G15 -to jstk_sel

set_location_assignment PIN_A10 -to ADC_CS_N

set_location_assignment PIN_B10 -to ADC_SADDR

set_location_assignment PIN_A9 -to ADC_SDAT

set_location_assignment PIN_B14 -to ADC_SCLK

set_location_assignment PIN_B3 -to spkr

set_location_assignment PIN_D12 -to point

set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to jstk_sel

28

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Appendix B

Parts List

FPGA:
Intel DE0 Nano field programmable gate-array, Supplied

Motor:
Single phase, 115V, ¼ hp , 4 amperes full load (FLA), Supplied

Transformer:
Variable autotransformer, 10 ampere rating,Supplied

Overcurrent Protection:
10A circuit breaker, Supplied

Opto-Isolators:
Toshiba Semiconductor and Storage TLPN137(F), $1.88, Quantity 4
https://www.digikey.ca/product-detail/en/toshiba-semiconductor-and-storage/TLPN137-F/TLPN137-F
ND/7595004

Switching:
IGBT IC, $14.73
https://www.digikey.ca/product-detail/en/infineon-technologies/IGCM10F60GAXKMA1/IGCM10F60GA
XKMA1-ND/5960108

Rectification:
Bridge Rectifier, $2.37
https://www.digikey.ca/product-detail/en/diodes-incorporated/GBJ2004-F/GBJ2004-FDI-ND/815143

Filtering:
1mH Inductor, 10A, $24.88
https://www.digikey.ca/product-detail/en/hammond-manufacturing/157D/HM1524-ND/455024

6800uF capacitor, 250V, $38.16
https://www.digikey.ca/product-detail/en/cornell-dubilier-electronics-cde/382LX682M250B102VS/338-
1996-ND/2256604

180uF capacitor, 400V, supplied

Push-Button:
SPDT PB x 3, Supplied

Display:
4 digit, 7 segment LCD Display, Supplied

29

ELEX 7660 Digital System Design Tyson Whyte
 Jacob Lagasse

 Single Phase Variable Frequency Drive

Misc:
Connectors and wiring, Supplied

References

30

