

ELEX 7660

Now You See Me
Project Report

Ken Do, Andrew Obermeyer
4-14-2017

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 1/19

Contents
1 - Overview .. 3

1.1 - Project Motivation .. 3

1.2 - Goals ... 3

1.3 - System Block Diagram ... 3

1.4 - IP and Hardware Descriptions .. 4

2 - Outcome .. 5

2.1 - Results and Successes ... 5

2.2 - Design Reviews ... 5

2.3 - Possibilities for Future Work ... 5

3 - Description of Design Blocks .. 6

3.1 - Infrared Sensors .. 6

3.2 – Photo-resistor and ADC .. 7

3.3 - Timer Algorithm .. 8

3.4 - Street Light Circuit Model ... 9

4 - Systemverilog Code.. 12

4.1 - ADC.sv Module .. 12

4.2 - top.sv Module ... 17

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 2/19

Table of Figures
Figure 1: System Block Diagram. ... 3

Figure 2: Infrared light can't be seen with the naked eye but can be as purple light with your phone's
camera. This image was taken while cycling through the IR emitter/receiver pairs. 6

Figure 3: Infrared emitter LEDs (clear) directed at the infrared light detectors (black). 7

Figure 4: Photo-resistor circuit.. ... 8

Figure 5: States of the scount[i] signal.. .. 9

Figure 6: The TSL267 side-looker infrared receiver.. .. 10

Figure 7: Circuit diagram of the model street light system. ... 10

Figure 8: As-built model of the street light system containing rows of Street lights (top), IR emitter
(middle), and IR receiver (bottom). Vcc are the red wires, common are the black wires. Photo-resistor
circuit located on top right. FPGA connections are the row of wires on the top left................................. 11

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 3/19

1 - Overview
1.1 - Project Motivation
Our street lighting requirements consume the largest amount of energy in our road
infrastructure. The transition to more efficient light technology such as LED fixtures have
improved the situation, but further reduction of energy consumption can only be realized by
improving the lighting control systems.

The current control scheme turns on the lights at a set time or ambient light level. Once the set
point is reached, the fixtures remain on at 100% output throughout the night. In locations with
minimal to no traffic, these fixtures are consuming energy with no purpose. It is equivalent to
leaving a light on in a vacant room overnight.

1.2 - Goals
Extending the lighting control systems ability to detect traffic will allow the system to provide
sufficient light output when needed, and return to a low energy state once traffic has cleared.
This is achieved by implementing the following system components:

 Use the FPGA’s ADC to determine the output from a photo-resistor which will determine
the amount of ambient light and trigger the device to enter night mode or day mode.

 Use the output from infrared sensors to detect motion on different sections of the
modelled street. This could be accomplished using the ADC, external comparators, or
directly using the outputs from the sensors as signals, if the voltage levels are consistent
with logic levels.

 When at night and motion (a passing car) has been detected, turn on street lights where
the car currently is as well as lights ahead of its path.

o Automatically turn off these lights once the car has passed, by creating timers on
the FPGA.

1.3 - System Block Diagram

Figure 1: System Block Diagram.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 4/19

1.4 - IP and Hardware Descriptions

Hardware / IP Core Function Creator(s)

CDS
Photoconductive
Photocell

 Photocell designed to sense light from 400 to
700 nm.

 Dark resistance = 500 kΩ
 Illuminated resistance = 33 kΩ

Luna
Optoelectronics

Day/Night Detection
System

 Simple resistor divider circuit containing a
photocell.

 Voltage output at the center of the resistor
divider varies due to changes in light intensity
detected by the photocell.

Andrew, Ken

TI ADC128S022 Built-in ADC module used to read Day/Night
Detection voltage output levels.

Texas
Instruments

Adcspi Interfaces with the serial output of the built-in
ADC module on the FPGA and stores the
quantized data from channels 0 and 1.

Ed Casas

myfifo “First In First Out” interface to with adcspi. Ken, Andrew

IR Emitter
(LTR-4206E)

 Emits Infrared light with a wavelength of 940
nm

LITEON

IR Light to Voltage
Converter
(TLS267)

 Converts 940nm IR light intensity to output
voltage

TAOS

Traffic Detection
System

 Reads the voltage output from the IR detector
associated to a street light location to detect
traffic.

Andrew, Ken

Top Control System Sets street light output levels according to
information provided by Day/Night and Traffic
detection systems.

Ken, Andrew

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 5/19

2 - Outcome
2.1 - Results and Successes
The Day/Night detection system used a simple resistor divider circuit containing the photocell
and was successful in detecting ambient lighting levels. The ADC quantization provided
sufficient information to allow the programmer to set desired thresholds to distinguish between
day and night scenarios.

The traffic detection system used the IR emitter/receiver pair to detect traffic. Each IR pair was
addressed to match the light fixture location. The voltage output of the IR receiver provided a
digital signal to the Top Control system. When sufficient IR light is detected, a high digital logic
signal is sent to the Top Control system.

The Top Control system used the information provided by the previous two systems to control
street light output. During day mode, all the street lights are deactivated. When night mode is
detected, the street light output is determined by the traffic detection system. The traffic
detection and the Timer algorithm within the Top Control system allowed for an active street
lighting control system. When traffic is detected, the fixture in that location and the two sections
ahead of that location are activated. This system successfully reduced the energy consumption
of the street lights by only providing sufficient street lighting output when needed.

The Timer algorithm ensured the correct street lights were activated for a sufficient amount of
time. The timer allowed for the street lights to remain active for a set period after traffic has
cleared in that location. The traffic in that area will observe adequate lighting on the road ahead
and behind them. The development of the timer algorithm within Quartus provided challenges
due to Quartus not generating the expected hardware. Drawing out the state diagram helped
produce the simplest code, which then generated the required hardware.

2.2 - Design Reviews
Our original plan was to use the ADC to determine the output level from the IR receivers, as
initial testing determined that the ‘blocked’ and ‘unblocked’ voltages were approximately 0.6V
and 1V respectively. We designed the system based on using one ADC channel to measure all
10 IR receivers, by only turning one transmitter/receiver pair on at a time and syncing this with
the ADC conversion time. This was based on the incorrect assumption that the receiver outputs
were high impedance. When this didn’t work, we tested the receiver outputs with a higher
intensity IR from the transmitters, and determined that the ‘blocked’ and ‘unblocked’ output
voltages were 0.3V and 3.2V respectively, when using the FPGA’s Vcc of 3.3V. This is sufficient
for logic levels, and when combined with having all of the transmitters and sensors on 100% of
the time rather than cycling through them, was used directly as the signal for the zone being
tripped.

2.3 - Possibilities for Future Work
The model designed in this project serves as a basis for future expansion of features of a smart
street light control system. Different scenarios could be implemented based on where the
section of road is located. If the road is in a remote area, the auto-off system would be ideal as
there would be limited vehicle traffic and no pedestrian traffic at night. In a more highly
populated area, it might be more practical to have the lights dimmed rather than completely
turned off when there is no traffic. This could simply be done using pulse-width modulation.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 6/19

As stated previously, we attempted to use the ADC to measure the IR intensity at the receiver.
Using the ADC would likely be the best way to implement this, as you could use any kind of IR
sensor. This would require either using more ADC channels, or a means of isolating individual
sensors.

The system as-built only supports one-way traffic, due to the way the timer module was
designed to turn on the next two lights when a sensor is tripped. Upgrading to bi-directional
movement would be possible with using an extra sensor at either end of the road segment to
determine the direction of a moving vehicle.

3 - Description of Design Blocks
3.1 - Infrared Sensors
Infrared light sensors are commonly used for motion detection. While some, such as the yard
light sensors found on many houses, are sensitive enough to pick up the infrared given off as
body heat, others use a transmitter and receiver to create a stronger beam of infrared light
whose intensity is determined by the receiver. This setup is commonly used as the safety
sensor for automatic garage doors, to stop the door from closing if something or someone gets
in the way, similar to Figure 3. We will use this technology as the motion sensors for our street
light control system.

Figure 2: Infrared light can't be seen with the naked eye but can be as purple light with your phone's
camera. This image was taken while cycling through the IR emitter/receiver pairs.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 7/19

The IR sensors ‘blocked’ and ‘unblocked’ output voltages are approximately 0.3V and 3.2V
respectively, when using the FPGA’s Vcc of 3.3V. These voltage levels are sufficient for high
and low logic levels, and are used as signals to directly drive the IR_LED_TxRx_Enable[i]
signals for the light timer algorithm.

3.2 – Photo-resistor and ADC
The simple photo-resistor circuit shown in Figure 4 is widely used to detect ambient lighting
levels due to its simplicity. The light intensity detected by the photocell changes its resistance.
This allows the output voltage to vary with changes in light level intensity.

Using the built-in ADC on the FPGA board allowed for adjusting day/night detection threshold.
The adjustability of this parameter enables this system to meet the requirements of different
locations.

The ADC chip on the FPGA board was interfaced with the “adcspi.sv” module developed by Ed
Casas. This module provides the ADC chip with signals for chip select, SCLK, and data in. It
also receives the data out from the ADC. This module is configured to read ADC values from
channels 0 and 1 on the ADC chip. Both values are stored as “data” register in the “adcspi.sv”
module. Interfacing “myfifo.sv” module with “adcspi.sv” ensured that the first data conversion in
was the first data conversion out.

Figure 3: Infrared emitter LEDs (clear)
directed at the infrared light detectors
(black).

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 8/19

3.3 - Timer Algorithm
The auto-off timer control block is used to turn off individual street lights after they have they
have been turned on by the IR_LED_TxRx_Enable[i] from the infrared receivers. The lights
themselves are turned on by the scount[i] signal being greater than 0.

The timer algorithm can be visualized by the state transition diagram for the scount[i] signal
below in Figure 5. Whenever a sensor is tripped, the value of ON_TIME (150,000,000 clock
cycles, which is approximately 3 seconds), is loaded into scount[i] for the corresponding street
light that is to be turned on. Because we wish to light the path ahead of the moving vehicle, the
code also resets scount[i] for the next two street lights in series. The value of scount[i] is
decremented every clock cycle, until it reaches 0, in which case it stays there. At any time, the
value of scount[i] can be reset back to the value of ON_TIME, thus resetting the counter if the
corresponding sensor or one of the previous two sensors are tripped.

The timer control block will only run if the operating mode is set to AUTO_OFF.

Figure 4: Photo-resistor circuit.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 9/19

3.4 - Street Light Circuit Model
The street lights, modelled as a row of LEDs, are individually powered by the output signals
Street_Light[i]. They use a 1kΩ resistor to control the current. The IR transmitter LEDs also use
a 1kΩ resistor to limit current, but are all powered by the 3.3V Vcc of the FPGA. Both of these
sets of LEDs are wired to common rails and connected to common on the FPGA. The IR
receivers, Figure 6, are a 3-pin device, requiring Vcc and common from the FPGA. There is a
10kΩ resistor from output to common, and the output pin is also directly connected to the
IR_LED_TxRx_Enable[i] input signal to the FPGA.

Figure 5: States of the scount[i] signal.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 10/19

Figure 6: The
TSL267 side-
looker infrared
receiver.

Figure 7: Circuit diagram of the model street light system.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 11/19

Figure 8: As-built model of the street light system containing rows of Street lights (top), IR emitter
(middle), and IR receiver (bottom). Vcc are the red wires, common are the black wires. Photo-resistor
circuit located on top right. FPGA connections are the row of wires on the top left.

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 12/19

4 - Systemverilog Code

4.1 - ADC.sv Module
// ADC.sv module - This module interfaces with the ADC of the FPGA board.
// The ADC is used to detect day time status using a photocell.
// Modified by: Ken Do, Andrew Obermeyer
// Date: April 9, 2017

`define MAXIRPAIR 9 // the largest address for IR pairs
`define CLOCK_DIV 10000 // Divisor for the ADC clock
`define THRESHOLD 300 // LED comparison threshold

module ADC
 (
 input logic CLOCK_50,
 input logic [1:0] KEY, // reset_n

 output logic [3:0] IRPAIR, // selects IR pair to be sampled.

 // GATE indicates the traffic status on the road. Bits 0 - MAXIRPAIR
 // represent the status of the IR sensors. Bit MAXIRPAIR + 1
 // represents the PHOTOCELL status.

 output logic [(`MAXIRPAIR+1):0] GATE,

 // ADC SPI interface
 output logic ADC_CS_N, // ssn
 output logic ADC_SADDR, // mosi
 output logic ADC_SCLK, // sclk
 input logic ADC_SDAT // miso
);

 logic ready, valid, oready, ovalid;
 logic [31:0] data, odata;
 logic reset_n, clk;
 assign reset_n = KEY[0];

 // Divide module input clock by CLOCK_DIV.
 logic [31:0] count;
 always_ff @(posedge CLOCK_50) begin
 if (count <= 0) begin
 count <= `CLOCK_DIV;
 clk <= ~clk;
 end
 else count <= count - 1'b1;
 end

 adcspi a0
 (
 .sclk(ADC_SCLK), // output to ADC clock
 .mosi(ADC_SADDR), // output to ADC DIN (address)
 .ssn(ADC_CS_N), // output to ADC chip select
 .miso(ADC_SDAT), // input from ADC (DATA)

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 13/19

 .ready(ready), // input
 .valid(valid), // output
 .data(data), // the ADC conversion data

 .clk(clk), .reset(~reset_n)
);

// Photocell data control and output status.
 myfifo fifo0
 (
 .ready(ready),
 .valid(valid),
 .data(data),

 .oready(oready),
 .ovalid(ovalid),
 .odata(odata),
 .IRPAIR(IRPAIR), // OUTPUT TO SYNCHRONIZE IR PAIR WITH ADC DATA
 .reset(reset_n),
 .clk(clk)
);

 assign oready = '1;
 logic [11:0] PHOTOCELL, TRAFFIC;
 assign PHOTOCELL = data[27:16];
 assign TRAFFIC = data[15:0];

 always_ff @(posedge clk)
 GATE[10] = (IRPAIR != 9) ? GATE[10] : (PHOTOCELL < 3000) ? 1'b1 : 1'b0;

endmodule

// -- start of adcspi.sv ---

// SPI master interface for TI ADC128S022
// for ELEX 7660 201710 Lab 5
// Ed.Casas 2017-2-16

// reads channels 0 and 1
// sclk is clk is divided by 16
// output is 16-bit samples from channels 0 and 1
// samples packed into 32 bits (ch 0 in MS byte)

// ADC128S0022 interface:
// 16 bit transfers

// mosi and cs* change on falling edge of sclk
// mosi bits 13:11 are (next) channel number

// miso sampled on rising edge of sclk
// miso data is on ls 12 bits of miso

// sample rate is sclk rate / 16

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 14/19

// sample rate must be 50 to 200 kHz
// sclk rate must be 800 kHz to 3.2 MHz
// e.g. 50 MHz / 32 = 1.5625 MHz sclk, ~98kHz sampling

// mosi timing relative to rising edge of sclk:
// setup is >10ns, hold >10ns

// miso timing is relative to falling edge of sclk:
// access is <27ns, hold ~4ns

module adcspi
 (
 output logic sclk, mosi, ssn, // SPI master
 input logic miso,

 input logic ready, // ready/valid data out
 output logic valid,
 output logic [31:0] data,

 input logic clk, reset
);

 parameter MISO = {5'b00001,27'b0} ;

 // clock/bit counter
 struct packed {
 logic wordcnt ;
 logic [3:0] bitcnt ;
 logic sclk ;
 logic [3:0] clkcnt ; } cnt, cnt_next ;

 logic [31:0] sr ; // shift register

 logic rising, falling, done ;

 assign sclk = cnt.sclk ;

 // done all bits
 assign done = cnt ==? '{'1,'1,'1,'1} ;

 // clock/bit counter
 assign cnt_next = (reset || done) ? '0 : cnt+1'b1 ;
 always@(posedge clk)
 cnt <= cnt_next ;

 assign rising = cnt_next.sclk && ~cnt.sclk ;
 assign falling = ~cnt_next.sclk && cnt.sclk ;

 always@(posedge clk) begin

 if (falling) // shift mosi out
 mosi <= sr[31] ;

 if (rising) // shift miso in
 sr <= {sr[30:0],miso} ;

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 15/19

 if (done) begin
 data <= sr ; // copy to parallel out
 sr <= MISO ; // channel select serial out
 mosi <= MISO[31] ;
 valid <= '1 ; // data ready
 end

 if (ready && valid) // data was read
 valid <= '0 ;

 end

 always@(posedge clk) // run continously
 ssn <= reset ;

endmodule

// myfifo.sv - FIFO with ready/valid input and output
// for ELEX 7660 201710 lab 5
// Created by: Ed Casas
// Modified by: Ken Do, Andrew Obermeyer

module myfifo
 (
 output logic ready, // ready/valid input
 input logic valid,
 input logic [31:0] data,

 input logic oready, // Avalon-ST output
 output logic ovalid,
 output logic [31:0] odata,
 output logic [3:0] IRPAIR,

 input logic reset, clk
);

 parameter W = 3 ;
 parameter N = 8 ;

 logic [31:0] DPRAM [7:0]; // Dual-ported RAM
 logic [2:0] readp, readp_next,writep, writep_next; // DPRAM in/out
pointers

 always_ff @(posedge clk) begin

 if (reset) begin
 readp <= 3'b0;
 writep <= 3'b0;
 IRPAIR <= 4'b0;
 end

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 16/19

 if (ready) begin
 DPRAM[writep] <= data;

 if (IRPAIR >= 0 || IRPAIR < `MAXIRPAIR)
 IRPAIR <= IRPAIR + 1'b1;
 else
 IRPAIR <= 4'b0;
 end

 if (valid)
 writep <= writep_next;

 if (ovalid && oready)
 readp <= readp_next;
 end

 always_comb begin // combinational logic for RAM status
 // input combinational logic
 ready = ((writep + 1'b1) != readp) ? 1'b1 : 1'b0;

 writep_next = (valid && ready) ? (writep + 1'b1) : writep;

 // output combinational logic

 ovalid = (readp != writep) ? 1'b1 : 1'b0;

 readp_next = (oready && ovalid) ? (readp + 1'b1) : readp;

 odata = DPRAM[readp];
 end

endmodule

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 17/19

4.2 - top.sv Module
// BCIT ELEX 7660 Final Project - Now You See Me
// Ken Do & Andrew Obermeyer

`define LED_COUNT 10 // # of LED sensors and lamps on street
model

`define DAY_MODE 0 // Day mode: all lights off
`define ALWAYS_ON 1 // Night mode: all lights always on full
intensity
`define AUTO_OFF 2 // Night mode: power saving, (auto) lights off
when no traffic
`define AUTO_DIM 3 // Night mode: power saving, (auto) lights dim
when no traffic

`define ON_TIME 32'd150000000 // 3 seconds (3 x 50MHz clock) = on time
for street lights when tripped

module top (input logic CLOCK_50, // System clock

 input logic [1:0] KEY, // Reset signal for ADC

 output logic ADC_CS_N, // ADC chip select (active
low)
 output logic ADC_SCLK, // ADC clock signal
 output logic ADC_SADDR, // ADC control signal out
 input logic ADC_SDAT, // ADC miso

 input logic [`LED_COUNT - 1:0] IR_LED_TxRx_Enable , // Input
from IR recievers
 output logic Street_Light [`LED_COUNT - 1:0], // Output to
individual street lights

 output logic [7:0] LED // on board LED's for testing
);

 logic [3:0] IRPAIR ; // Input signal from ADC module to turn on
selected IR Transmitter/Reciever Pair
 logic [11:0] Lumen_Sensor; // Lumen sensor result from 12-bit ADC
from lumen sensor
 logic [11:0] ADC_Result; // Result of ADC conversion

 logic Street_Light_Mode_Enable [`LED_COUNT - 1:0]; // Street-Light
enable signal from mode selector block

 logic gate [`LED_COUNT - 1:0]; // IR beam broken (motion detected)
tracker

 logic [`LED_COUNT:0] GATE; // Beam broken signal from ADC module
(bits 0 to 9) Night sensor (bit 10)
 // Please note that GATE[9:0] originally was intended to use the ADC to
determine whether the sensors were tripped

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 18/19

 // This was changed due to technical difficulties, and only GATE[10] was
used (for the photoresistor).

 logic [1:0] Operating_Mode; // System operating mode:
day/night/power saving
 logic [31:0] scount [`LED_COUNT - 1:0]; // Counters for each light to
turn off
 logic count_reset [`LED_COUNT - 1:0]; // Count reset signal for timer
block

 ADC a1 (.*); // Instantiate ADC module

 // Night/Day selector: change the night mode to one of 3 options based on
desired
 // operating preferences. See defines above for details.
 always_comb begin
 if (GATE[10]) begin // GATE[10] is ADC result from ADC module
for the photoresistor
 Operating_Mode = `AUTO_OFF; // Adjust this for operating mode
 LED[7] = 1; // Turn on on-board LED #7 for verification
 end
 else begin
 Operating_Mode = `DAY_MODE;
 LED[7] = 0;
 end
 end

 // On-board LED's #0-6 for IR sensor verification
 assign LED[0] = ~IR_LED_TxRx_Enable[0];
 assign LED[1] = ~IR_LED_TxRx_Enable[1];
 assign LED[2] = ~IR_LED_TxRx_Enable[2];
 assign LED[3] = ~IR_LED_TxRx_Enable[3];
 assign LED[4] = ~IR_LED_TxRx_Enable[4];
 assign LED[5] = ~IR_LED_TxRx_Enable[5];
 assign LED[6] = ~IR_LED_TxRx_Enable[6];

 // Operating mode selector
 always_comb begin
 unique case(Operating_Mode)
 `DAY_MODE: begin // Day mode - disable lights
 Street_Light_Mode_Enable[`LED_COUNT-1:0] = '{10{'0}};
 end
 `ALWAYS_ON: begin // Night mode - enable all lights at full power
 Street_Light_Mode_Enable[`LED_COUNT-1:0] = '{10{1'b1}};
 end
 `AUTO_OFF: begin // Power saving mode (auto off when no motion
detected)
 Street_Light_Mode_Enable[`LED_COUNT-1:0] = '{10{1'b1}};
 end
 `AUTO_DIM: begin // Power saving mode (auto dim when no motion
detected) (not implemented)
 Street_Light_Mode_Enable[`LED_COUNT-1:0] = '{10{1'b1}};
 end
 endcase

 Project Report: Now You See Me Ken Do
 Andrew Obermeyer
 April 14, 2017

p. 19/19

 end

 // Auto-off timer control block
 always_ff @(posedge CLOCK_50) begin
 if(Operating_Mode == `AUTO_OFF) begin // Only use if this mode
is enabled
 for(int i = 0; i < `LED_COUNT; i = i + 1) begin // Generate hardware
for each light
 gate[i] <= ~IR_LED_TxRx_Enable[i]; // When a gate is
tripped, latch the signal
 if(gate[i]) begin // If a gate has been tripped
and latched:
 count_reset[i] <= 1; // Signal the count reset
for the light and the next 2 in series
 if(i < `LED_COUNT-1) // Stop generating hardware
if at the end of the road segment
 count_reset[i + 1] <= 1;
 if(i < `LED_COUNT-2)
 count_reset [i+2] <= 1;
 gate[i] <= 0; // Reset the gate-tripped latch
 end

 // Reset counter to starting position when gate is tripped, or count
down if count has been reset
 if(count_reset[i]) begin
 scount[i] <= `ON_TIME;
 count_reset[i] <= 0; // Reset the count_reset signal
every time beam is triggered
 end
 else if(scount[i] > 0) // Otherwise keep counting down if
count is not finished
 scount[i] <= scount[i] - 1;
 else
 scount[i] <= 0; // Stay at 0 if count is finished
 end
 end
 end

 // Final enable signal to LED street lights. Must be enabled by both the
night/day sensor and the counters.
 // Signal from street light timers is the scount[i] signal. Lights will
only be on when this counter > 0.
 always_comb begin
 for(int i = 0; i < `LED_COUNT; i = i + 1)
 Street_Light[i] = (scount[i] > 0) & Street_Light_Mode_Enable[i];
 end

endmodule

