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Introduction

Letter from Matt Knight

At a party a couple years ago, a friend who worked in film approached me and told me about a niche market in film
that required the syncing of frame rates of monitors to shutter rates of cameras. One of the most less controllable of
monitors were CRT televisions as their frame rate could not be changed, unlike many digital monitors. While there were
old converter devices that handled this, these were made by ”weird dudes in their basements”i. These induviduals would
now charge large sums of money for new devices as they did not want to make any more.

This conversation got me researching composite video signals and the NTSC standard. This research changed my goal
to generating composite video digitally. The idea was that one could use an old analog television as a simple display for
whatever project they chose. I first attempted to generate my own video source from a microcontroller, however I easily
ran out of processing power for a black and white pixel display, let alone something with greyscale output or even colour.

And instead of turning to a bigger, faster processor, it made sense to move towards a hardware solution, and that is where
FPGA’s come in.

- Matt Knight

Composite Video Driver for ELEX 7660

This project is a video card that takes a 9-bit parallel interface to transfer video data, and outputs the analog signal
required for composite video. The purpose of this device is to provide an easy to use, and efficient method to display an
image or video on a CRT television. There is little practicality in this project since it is based on such an old technology,
it was chosen more for a challenging goal that suited the premise for using FPGA’s: software is not fast enough.

Our project is hosted on our github repository at ?.

Background

The Composite Video Signal

Originally video was broadcast in black and white, only requiring one channel. In terms of driving the television itself, one
needs only change DC voltage in the active video region of the signal to change luminosity levels.

Once colour televisions became a reality, video needed to be broadcast in colour as well. In order to also be backwards
compatible with black and white televisions still in common use, colour was added to the video signal by adding an
amplitude and phase modulated sinusoid. This allowed for only requiring one additional radio band for broadcast, keeping
the now ”composite” signal on a single wire, and black and white televisions would discard the colour components by
passing the signal through a low-pass filter.

In the CRT television is an electron beam. In order to generate images, this beam sweeps from left to right and changes
intensity. The brightness of the point at which the beam is directed to is proportional to the intensity of the electron
beam. One sweep of the electron beam creates a single line, and it will do this several hundred times in order to generate
a single frame on the television. In North America, televisions will have frame rates of 30 Hz ?, ?, ?, ?.
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Input Output Machine

The simplest way to view this project is as an input output machine. The input being any device that could drive a 9-bit
input and a clock. This input was basically, an image broken down into pixels and colours. Our machine would store the
input signal and covert it to a composite video output. The composite video output is complicated and requires precise
timing, and precise repetition at a high frequency. The purpose of this was to be able to take any device as an input we
could convert it to a component video output.

Objectives

Main Objective

The main objective of this project is to generate a black and white composite video signal that will drive a Cathode
Ray Tube (CRT) television. To accomplish this, we will develop a video card with a serial interface that can generate a
composite video signal. We will be able to achieve a resolution of 240 x 320 pixels on the screen.

Figure 1: System Overview

Secondary Objective

Colour

The colour component of a composite signal is transmitted through the phase and angle modulation of a 3.58MHz carrier.
In order to generate this signal we would need to employ a parallel DAC instead of our cheap, lopsided, but inexpensive
resistor divider DAC. Another project within our class is to create a Ninstendo Entertainment System on an FPGA, and
so we will base our colour output on the NES.

Hardware

To be able to complete this project we will need more hardware than what we currently have. We have a MSP430
microcontroller, the FPGA board, and a mini black and white TV. We need an 8-bit parallel, single channel DAC. We will
use the AD9748 from Analog Devices Inc. which can be ordered from Digikey, and we will also need a breakout board for
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the 32-QFN package which can also be picked up from Digikey. Any hardware we may need, such as parts for filtering
will be provided by us.

Implementation

8-bit DAC Hardware

A relatively high quality DAC is required in order to synthesize composite video. AD9748 was selected as it had a fast rise
and fall time, parallel input, and up to 210 MSPS. The only challenge was that no breakout boards existed for this IC, so
a general breakout board was ordered for the QFN-32 package, and with some help from Ed Casas we managed to reflow
solder the IC successfully:

Figure 2: Surface Mounted DAC IC

As this DAC was going to be operated at 50 MSPS, the clock was put in differential mode, and a shielded twisted pair
was used as the connection between the FPGA and the DAC board. This was to reduce any possible noise. additionally
the analog power was given a separate regulator that recieved power from the external dual power supply. The clock and
digital power was taken from the FPGA.

The dual supply is also used to power the video amplifier. This takes the differential current output of the DAC and
converts it into the appropriate range for composite video (-1V to 1V). The output of the amplifier is connected to an
RCA jack so that it can be easily connected to standard televisions. Standard value resistors were used for the video
amplifier while a potentiometer was used to adjust the full scale range of the current output of the DAC.

In application we would not be using an external dual power supply but a switching regulator. This keeps the package
size down while only requiring a single power supply. Additionally the switching power supply would provide some noise
immunity from harmonics created by the 50 MHz clock.
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Figure 3: Prototype DAC Board

Composite Driver

Timing Control

The challenge with generating composite video is that it is a real-time signal. Timing of specific synchronizations is
important to create an undistorted image. The timer module controls these timings using a lookup table, a counter, and
some pointers.

Once a vertical blanking signal is needed, the timer is reset to the beginning. The basic workings of the timer module is
that is will have a specific point in the table, or state. Every clock cycle the counter increments, and once the counter
reaches the value for the next entry in the table, the state increments. For each entry in the table, there is the count value
and the DAC value.

For the vertical blanking state, the DAC output value will be the Hsync and Blanking levels which get sent straight to the
DAC. When in the horizontal line state, some of the outputs are Hsync and blanking, however there is the active video
state which switches the DAC output to be driven by the line buffer. Additional to the clock counter is a pixel counter
which increments every 8 clocks so that each pixel in a line is timed perfectly and correct pixel can be extracted from the
line buffer.

Line Buffer/Block FIFO

In order to deal with different rates of writing to the DAC and incoming video data, a buffer that contains all the pixel
information for one line was instantiated in the video generator. A ”block” FIFO was used for this buffer. The idea behind
this type of FIFO is that once it is full, it will not accept any more data until it is reset. Upon a reset, the old data is still
available to the read side until it is overwritten. The video generator would also tell the SPI module which line it wanted,
and so the buffer would get a burst of writes that would be the line that the video generator was requesting.

Colour Modulation

The colour modulation, which did not get to be tested used lookup tables to decode the colour numbers. A numerically
controlled oscillator generated the phase-time signal for the 3.58 MHz carrier. Phase modulation was done at this stage
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since one only needed the addition operator in order to modulate this signal. Then the phase went into an 8-bit sine lookup
table. This was done in two’s compliment so that the dc offset was referenced to the middle of the sine wave and not
the crest. This made generating the lookup tables far simpler. The sine wave was then amplitude modulated by a value
that was assertained from the colour number using another lookup table. Finally the dc value representing luminosity was
added to the sine wave and the signal was sent to the DAC to be converted.

SPI Module

The SPI module was designed to take a 9-bit input and a clock input. 8 of the 9 bits was to indicate colour. The last bit
was for internal communication. Internal communication included setting individual pixels, resetting the frame and any
other special features the input device could use. Our SPI module was designed this way so any device, slow or fast, could
be used as an input.

Once the SPI module obtained an input, the module would stack two input pixels and store the input on an array 320
elements long. Each element on the array would store 16-bits or two pixels. This make for easy conversion to the SDRAM.
The SDRAM stores 16 bits worth of data at a time.

RAM Interface

The RAM interface was not completed. Although to get this working we would needed to use NIOS 2 software to give
us a file to be able to access the SDRAM. Once this Verilog file would be created we would have to modify it to fit our
needs and properly implement it in our system.

The SDRAM was needed for our project to reach its max potential because the FPGA could not store enough data alone
for a full frame. This is because we needed the FPGA to store 640x480 8-bit pixels. At first, we tried to quarter the
resolution, 320x240, but this still required the use of the SDRAM. When we figured we didnt have enough time to complete
the SDRAM module, we lowered the resolution again to 160x120. With this resolution, we were finally able to be stored
an entire frame on the FPGA without using the SDRAM. We stored the data on the FPGA in the form if a 160x120 matrix
with elements of 8-bit pixels.

Results

In order to get an operable demonstration of working composite video synthesis some of the modules had to be bypassed.
The digital interface was complete and verified in simulation, however we did not have time to finish our video source,
Pong on the MSP430, so the digital interface was replaced by a simple verilog module that fed the video generator a line
that was white for the first half and black for the second half. When displayed, the entire screen would be half white and
half black. Although not incredibly impressive, it did demonstrate that we met our objective of generating a composite
video signal.
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Figure 4: Demonstration Setup. Note: Grey diagonal bars are caused due to differences in the frame rate of the display
and the shutter rate of the camera. The display is in fact half white and black.

Additionally, since we only had a black and white television, we were not able to test our colour generation capability,
however simulations of the module output were successful.

Conclusion

This was a challenging project that was enjoyable and helped us understand HDL in greater detail. Not only did this
project require understanding and implementing an already existing video transmission method, it required us to deal with
high frequency components, precise timing, multiple device communication, and temporary data buffers (SDRAM or Large
arrays).

Although we did not reach all our initial goals, this project was a success. I can say this because we were able to control
the image displayed on the black and white TV. We would also be able to display this in 8-bit colour. Lastly, with just a
day longer I would confidently say we would be able display an image from an input source.

If we were to change anything about our project we would have wanted to implement the SDRAM because then we
wouldn’t be limited by resolution. This would also let us easily expand our project to other video outputs.
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Future Directions

Given more time, colour could easily be generated with this device. The colour palette could be improved so that 256
colour could be implemented as there was room in the colour encoding word size, Only the look up tables would need to
be regenerated.

Also, later in the project it became clear that it would be advantageous for the composite video driver to use some sort of
communication bus for use with a processor core. Using the NIOS II would expand the capabilities of the system so that
it could multitask while dealing with the data coming into the module.

Additionally, the resolution could be increased to the standard 480x640 pixels, this would require a faster and still reliable
clock.

If we used NIOS II we could have also implemented the SDRAM. This would give us the ability to store an 640x480 image
and possible multiple images. This could be used to upload a few images to the devices then disconnecting the source or
for creating simple animations.
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Appendix

Module Listings

// Copy r i gh t (C) 1991−2016 A l t e r a Co rpo r a t i o n . A l l r i g h t s r e s e r v e d .
// Your use o f A l t e r a Corpo ra t i on ’ s d e s i g n t o o l s , l o g i c f u n c t i o n s
// and o th e r s o f twa r e and t o o l s , and i t s AMPP pa r t n e r l o g i c
// f u n c t i o n s , and any output f i l e s from any o f the f o r e g o i n g
// ( i n c l u d i n g d e v i c e programming or s imu l a t i o n f i l e s ) , and any
// a s s o c i a t e d documentat ion or i n f o rma t i o n a r e e x p r e s s l y s u b j e c t
// to the terms and c o n d i t i o n s o f the A l t e r a Program L i c e n s e
// S u b s c r i p t i o n Agreement , the A l t e r a Quartus Prime L i c e n s e Agreement ,
// the A l t e r a MegaCore Func t i on L i c e n s e Agreement , o r o t h e r
// a p p l i c a b l e l i c e n s e agreement , i n c l u d i n g , w i thou t l i m i t a t i o n ,
// tha t your use i s f o r the s o l e purpose o f programming l o g i c
// d e v i c e s manufactured by A l t e r a and s o l d by A l t e r a or i t s
// a u t h o r i z e d d i s t r i b u t o r s . P l e a s e r e f e r to the a p p l i c a b l e
// agreement f o r f u r t h e r d e t a i l s .

module c ompo s i t eD r i v e r
(

// System Clock
input CLOCK 50 ,

// DAC I n t e r f a c e
output [ 7 : 0 ] dac , // DAC Data
output dacClk , dacClk n , // DAC D i f f C lock
input [ 8 : 0 ] sdata ,
input s c l k

) ;

reg r e s e t = 1 ’ b0 ;
wire w r i t e ;
wire [ 7 : 0 ] d a t a i ;
wire [ 7 : 0 ] l i n e ;
wire r eady ;
reg [ 8 : 0 ] i ;
reg [ 8 : 0 ] p i x e l ;

// D i f f e r e n t i a l C lock s i g n a l to DAC
ass ign dacClk = ˜CLOCK 50 ;
ass ign dacC lk n = ˜ dacClk ;

// Video S i g n a l Gene ra to r Module
v ideoGen v 0 (

. c l k (CLOCK 50 ) ,

. r e s e t ( r e s e t ) ,
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. w r i t e ( w r i t e ) ,

. d a t a i ( d a t a i ) ,

. l i n e ( l i n e ) ,

. r eady ( r eady ) ,

. dac ( dac )
) ;

// SPI C o n t r o l l e r
SPI s p i 0 (

.CLK(CLOCK 50 ) ,

. r e s e t ( r e s e t ) ,

. Nex t L i n e ( r eady ) ,

. c l k SP I ( s c l k ) ,

. Row Se lec t ( l i n e ) ,

. Data ( sda ta ) ,

. Data O ( d a t a i ) ,

. Da ta Va l i d ( w r i t e )
) ;

endmodule

// Thi s Module Takes 8 b i t i n pu t from SPI S i g n a l and s t o r e s the data on temporary b u f f e r
// Ca l l e d Bu f f e r . I t w i l l then send 16 b i t data to the RAM.
// By Wi l l i am Harkness

module SPI ( input wire [ 8 : 0 ] Data ,
input wire [ 7 : 0 ] Row Select ,
input wire c l k SP I , Next L ine , CLK, r e s e t ,
output reg Data Va l id ,
output reg [ 7 : 0 ] Data O ) ;

parameter PTR Max Row = 119 ;
parameter PTR Max Col = 159 ;

reg [ 7 : 0 ] Bu f f e r [ PTR Max Row : 0 ] [ PTR Max Col : 0 ] ; // 320 p i x a l = one l i n

reg [ 8 : 0 ] PTR Read Col , PTR Write Row , PTR Write Col ;
reg Fu l l , L i n e F l a g ;
reg c l k SP I n e x t , Doub le r ;
reg [ 8 : 0 ] Data next ;

// Po

i n i t i a l begin
PTR Read Col <= 8 ’ d0 ;
PTR Write Col <= 8 ’ d0 ;
PTR Write Row <= 8 ’ d0 ;
Data O <= 8 ’ d0 ;
Data next <= 8 ’ d0 ;
F u l l = 1 ’ b0 ;
L i n e F l a g = 1 ’ b0 ;
Da ta Va l i d = 1 ’ b1 ;
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Double r = 1 ’ b0 ;
end

always @( posedge c l k SP I n e x t ) begin

Bu f f e r [ PTR Write Row ] [ PTR Write Col ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d1 ] [ PTR Write Col ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d2 ] [ PTR Write Col ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d3 ] [ PTR Write Col ] <= Data next [ 7 : 0 ] ;

Bu f f e r [ PTR Write Row ] [ PTR Write Col + 8 ’ d1 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d1 ] [ PTR Write Col + 8 ’ d1 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d2 ] [ PTR Write Col + 8 ’ d1 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d3 ] [ PTR Write Col + 8 ’ d1 ] <= Data next [ 7 : 0 ] ;

Bu f f e r [ PTR Write Row ] [ PTR Write Col + 8 ’ d2 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d1 ] [ PTR Write Col + 8 ’ d2 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d2 ] [ PTR Write Col + 8 ’ d2 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d3 ] [ PTR Write Col + 8 ’ d2 ] <= Data next [ 7 : 0 ] ;

Bu f f e r [ PTR Write Row ] [ PTR Write Col + 8 ’ d3 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d1 ] [ PTR Write Col + 8 ’ d3 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d2 ] [ PTR Write Col + 8 ’ d3 ] <= Data next [ 7 : 0 ] ;
Bu f f e r [ PTR Write Row + 8 ’ d3 ] [ PTR Write Col + 8 ’ d3 ] <= Data next [ 7 : 0 ] ;

i f ( ( ( PTR Write Col == PTR Max Col − 8 ’ d3 ) && (PTR Write Row == PTR Max Row −

e l s e i f ( ( PTR Write Col == PTR Max Col − 8 ’ d3 ) | | Data next [ 8 ] ) begin

PTR Write Col = 8 ’ d0 ;

i f ( Data next [ 8 ] )
PTR Write Row = 8 ’ d0 ;

e l s e i f ( PTR Write Row == PTR Max Row − 8 ’ d3 )
PTR Write Row = PTR Max Row − 8 ’ d3 ;

e l s e
PTR Write Row = PTR Write Row + 8 ’ d4 ;

end
e l s e

PTR Write Col = PTR Write Col + 8 ’ d4 ;

end

always @(∗ ) begin
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i f ( ( PTR Write Col == PTR Max Col − 8 ’ d3 ) && (PTR Write Row == PTR Max Row − 8
F u l l = ’ 1 ;

i f ( F u l l )
Data O <= Bu f f e r [ Row Se lec t [ 7 : 1 ] ] [ PTR Read Col ] ;

e l s e
Data O <= 8 ’ d0 ;

end

always @( posedge CLK) begin

c l k SP I n e x t <= c l k SP I ;
Data next <= Data ;

i f ( Nex t L i n e && ˜ r e s e t )
L i n e F l a g = 1 ’ b1 ;

i f ( Nex t L i n e | | L i n e F l a g | | r e s e t ) begin // Video wants

i f ( ˜Doub le r && ˜ r e s e t )
Doub le r = 1 ’ b1 ;

e l s e i f ( ( PTR Read Col == PTR Max Col ) | | r e s e t ) begin
PTR Read Col = 8 ’ d0 ;
L i n e F l a g = 0 ’ b0 ;
Doub le r = 1 ’ b0 ;

end

e l s e begin
PTR Read Col = PTR Read Col + 8 ’ d1 ;
Doub le r = 1 ’ b0 ;

end
end

end

endmodule

// Video S i g n a l Gene ra to r Module

// Author : Matthew Knight
// F i l e : v ideoGen . v
// Date : 2017−04−05

module v ideoGen (
input c l k , r e s e t , w r i t e ,
input [ 7 : 0 ] d a t a i ,
output ready ,
output [ 7 : 0 ] l i n e ,
output [ 7 : 0 ] dac

) ;
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// w i r e s to connect modules
wire [ 8 : 0 ] p i x e l ;
wire [ 7 : 0 ] lum ;
wire phaseRese t ;
reg bu fRe se t ;

always @(negedge c l k ) begin
i f ( p i x e l == 9 ’ d330 )

bu fRe se t <= 1 ’ b1 ;
e l s e

bu fRe se t <= 1 ’ b0 ;
end

// Timer Module f o r c o n t r o l l i n g s equence s i n the s i g n a l
t ime r t 0 (

. c l k ( c l k ) ,

. r e s e t ( r e s e t ) ,

. phaseRese t ( phaseRese t ) ,

. p i x e l ( p i x e l ) ,

. v i d e o ( lum ) ,

. dac ( dac ) ,

. l i n e ( l i n e )
) ;

// L ine Bu f f e r to s t o r e the nex t r a s t e r l i n e i n
b l o c k f i f o l i n e B u f f e r (

. c l k ( c l k ) ,

. r e s e t ( r e s e t | bu fRe se t ) ,

. w r i t e ( w r i t e ) ,

. r eady ( r eady ) ,

. d a t a i ( d a t a i ) ,

. r e adPt r ( p i x e l ) ,

. da ta o ( lum )
) ;

endmodule

// Timer Module

// Author : Matthew Knight
// F i l e : t ime r . v
// Date : 2017−04−05

// Thi s module i s to c o n t r o l the t im ing o f the s yn c i n g p u l s e s i n the compos i t e
// v i d eo s t anda rd .

// De f i n e s
‘ d e f i n e CW 16 // Counter Width
‘ d e f i n e SYNC 8 ’ d90
‘ d e f i n e BLANK 8 ’ d127
‘ d e f i n e VIDEO 8 ’hFF
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‘ d e f i n e WHITE 8 ’ d219
‘ d e f i n e BLACK 8 ’ d134

module t ime r (
input c l k , r e s e t ,
input [ 7 : 0 ] v ideo ,
output phaseReset ,
output [ 8 : 0 ] p i x e l ,
output reg [ 7 : 0 ] dac ,
output reg [ 7 : 0 ] l i n e

) ;

reg [ ( ‘CW−1) :0 ] c lockCount ; // coun t e r v a r i a b l e
reg [ ( ‘CW+7) :0 ] v e r t i c a l [ 0 : 5 7 ] ;
reg [ ( ‘CW+7) :0 ] h o r i z o n t a l [ 0 : 5 ] ;
reg [ 6 : 0 ] s t a t eCount ; // Counter f o r moving up s t a t e s
reg [ ( ‘CW+7) :0 ] nex t ;

reg [ 7 : 0 ] v i d e oS t a t e ;
reg s t a t e ;
wire [ ( ‘CW−1) :0 ] p i x e lCoun t ;

ass ign p i x e lCoun t = c lockCount − ’ b111010110 ;
ass ign p i x e l = p i x e lCoun t [ 1 1 : 3 ] ;
ass ign phaseRese t = ’ b0 ;

// Sw i t ch i ng between h o r i z o n t a l s c ann i ng and v e r t i c a l b l a n k i n g
always @(∗ ) begin

i f ( s t a t e ) begin
next = h o r i z o n t a l [ s t a t eCount+1’b1 ] ;
v i d e oS t a t e = h o r i z o n t a l [ s t a t eCount ] ;

end e l s e begin
next = v e r t i c a l [ s t a t eCount+1’b1 ] ;
v i d e oS t a t e = v e r t i c a l [ s t a t eCount ] ;

end

// Mux f o r the dac output
case ( v i d e oS t a t e )

‘SYNC : dac = ‘SYNC ;
‘BLANK : dac = ‘BLANK ;
‘VIDEO : dac = v i d eo + ‘BLACK ;
defau l t : dac = ‘BLANK ;

endcase
end

always @( posedge c l k ) begin
i f ( r e s e t ) begin

c lockCount <= ’ b0 ;
s t a t eCount <= ’ b0 ;
s t a t e <= ’ b0 ;

end e l s e begin
i f ( s t a t e ) begin

// Ho r i z o n t a l
i f ( c lockCount >= ’hC6B) begin

c lockCount <= ’ b0 ;
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s t a t eCoun t <= ’ b0 ;
l i n e <= l i n e + 1 ’ b1 ;

i f ( l i n e >= ’ d242 )
s t a t e <= 1 ’ b0 ;

end e l s e begin
c lockCount <= clockCount + 1 ’ b1 ;

end
i f ( c lockCount >= next [ ( ‘CW+7) : 8 ] ) begin

s t a t eCoun t <= sta t eCoun t + 1 ’ b1 ;
end

end e l s e begin
// V e r t i c a l
i f ( c lockCount >= ’ hF86F ) begin

c lockCount <= ’ b0 ;
s t a t eCoun t <= ’ b0 ;
s t a t e <=1’b1 ;
l i n e <= 1 ’ b0 ;

end e l s e begin
c lockCount <= clockCount + 1 ’ b1 ;

end
i f ( c lockCount >= next [ ( ‘CW+7) : 8 ] ) begin

s t a t eCoun t <= sta t eCoun t + 1 ’ b1 ;
end

end
end

end

// Va lue s f o r s i g n a l g e n e r a t i o n
i n i t i a l begin

s t a t e = ’ b0 ;

// Pre−Equ a l i z i n g Pu l s e s
v e r t i c a l [ 0 ] = ’ h0000 + ‘SYNC ;
v e r t i c a l [ 1 ] = ’ h7200 + ‘BLANK ;
v e r t i c a l [ 2 ] = ’ h63500 + ‘SYNC ;
v e r t i c a l [ 3 ] = ’ h6A800 + ‘BLANK ;

v e r t i c a l [ 4 ] = ’ hC6C00 + ‘SYNC ;
v e r t i c a l [ 5 ] = ’hCDE00 + ‘BLANK ;
v e r t i c a l [ 6 ] = ’ h12A100 + ‘SYNC ;
v e r t i c a l [ 7 ] = ’ h131400 + ‘BLANK ;

v e r t i c a l [ 8 ] = ’ h18D800 + ‘SYNC ;
v e r t i c a l [ 9 ] = ’ h194A00 + ‘BLANK ;
v e r t i c a l [ 1 0 ] = ’ h1F0D00 + ‘SYNC ;
v e r t i c a l [ 1 1 ] = ’ h1F8000 + ‘BLANK ;

// V e r t i c a l Sync Pu l s e s
v e r t i c a l [ 1 2 ] = ’ h254400 + ‘SYNC ;
v e r t i c a l [ 1 3 ] = ’ h2A8F00 + ‘BLANK ;
v e r t i c a l [ 1 4 ] = ’ h2B7900 + ‘SYNC ;
v e r t i c a l [ 1 5 ] = ’ h30C400 + ‘BLANK ;
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v e r t i c a l [ 1 6 ] = ’ h31B000 + ‘SYNC ;
v e r t i c a l [ 1 7 ] = ’ h36FB00 + ‘BLANK ;
v e r t i c a l [ 1 8 ] = ’ h37E500 + ‘SYNC ;
v e r t i c a l [ 1 9 ] = ’ h3D3000 + ‘BLANK ;

v e r t i c a l [ 2 0 ] = ’ h3E1C00 + ‘SYNC ;
v e r t i c a l [ 2 1 ] = ’ h436700 + ‘BLANK ;
v e r t i c a l [ 2 2 ] = ’ h445100 + ‘SYNC ;
v e r t i c a l [ 2 3 ] = ’ h499C00 + ‘BLANK ;

// Posy−Equ a l i z i n g Pu l s e s
v e r t i c a l [ 2 4 ] = ’ h4A8800 + ‘SYNC ;
v e r t i c a l [ 2 5 ] = ’ h4AFA00 + ‘BLANK ;
v e r t i c a l [ 2 6 ] = ’ h50BD00 + ‘SYNC ;
v e r t i c a l [ 2 7 ] = ’ h512F00 + ‘BLANK ;

v e r t i c a l [ 2 8 ] = ’ h56F400 + ‘SYNC ;
v e r t i c a l [ 2 9 ] = ’ h576600 + ‘BLANK ;
v e r t i c a l [ 3 0 ] = ’ h5D2900 + ‘SYNC ;
v e r t i c a l [ 3 1 ] = ’ h5D9B00 + ‘BLANK ;

v e r t i c a l [ 3 2 ] = ’ h636000 + ‘SYNC ;
v e r t i c a l [ 3 3 ] = ’ h63D200 + ‘BLANK ;
v e r t i c a l [ 3 4 ] = ’ h699500 + ‘SYNC ;
v e r t i c a l [ 3 5 ] = ’ h6A0700 + ‘BLANK ;

// Blank l i n e s
v e r t i c a l [ 3 6 ] = ’ h6FCC00 + ‘SYNC ;
v e r t i c a l [ 3 7 ] = ’ h70B700 + ‘BLANK ;
v e r t i c a l [ 3 8 ] = ’ h7C3800 + ‘SYNC ;
v e r t i c a l [ 3 9 ] = ’ h7D2300 + ‘BLANK ;
v e r t i c a l [ 4 0 ] = ’ h88A400 + ‘SYNC ;
v e r t i c a l [ 4 1 ] = ’ h898F00 + ‘BLANK ;
v e r t i c a l [ 4 2 ] = ’ h951000 + ‘SYNC ;
v e r t i c a l [ 4 3 ] = ’ h95FB00 + ‘BLANK ;
v e r t i c a l [ 4 4 ] = ’ hA17C00 + ‘SYNC ;
v e r t i c a l [ 4 5 ] = ’ hA26700 + ‘BLANK ;
v e r t i c a l [ 4 6 ] = ’hADE800 + ‘SYNC ;
v e r t i c a l [ 4 7 ] = ’hAED300 + ‘BLANK ;
v e r t i c a l [ 4 8 ] = ’ hBA5400 + ‘SYNC ;
v e r t i c a l [ 4 9 ] = ’ hBB3F00 + ‘BLANK ;
v e r t i c a l [ 5 0 ] = ’ hC6C000 + ‘SYNC ;
v e r t i c a l [ 5 1 ] = ’hC7AB00 + ‘BLANK ;
v e r t i c a l [ 5 2 ] = ’ hD32C00 + ‘SYNC ;
v e r t i c a l [ 5 3 ] = ’ hD41700 + ‘BLANK ;
v e r t i c a l [ 5 4 ] = ’ hDF9800 + ‘SYNC ;
v e r t i c a l [ 5 5 ] = ’ hE08300 + ‘BLANK ;
v e r t i c a l [ 5 6 ] = ’ hEC0400 + ‘SYNC ;
v e r t i c a l [ 5 7 ] = ’ hECEF00 + ‘BLANK ;

// H o r i z i n t a l l i n e t im ing
h o r i z o n t a l [ 0 ] = ’ h0000 + ‘SYNC ;
h o r i z o n t a l [ 1 ] = ’ hEA00 + ‘BLANK ;
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h o r i z o n t a l [ 2 ] = ’ h10800 + ‘BLANK ;
h o r i z o n t a l [ 3 ] = ’ h18500 + ‘BLANK ;
h o r i z o n t a l [ 4 ] = ’ h1D500 + ‘VIDEO ;
h o r i z o n t a l [ 5 ] = ’ hC1B00 + ‘BLANK ;

end

endmodule

// Block FIFO Ve r i l o g Module

// Author : Matthew Knight
// Date : 2017−03−21

// The Block FIFO has an output s i g n a l to s i g n a l when f u l l . When f u l l the module
// does not accep t w r i t e s to memory , but a l l ow s f o r r e ad s . The FIFO on l y becomes
// empty when i t i s r e s e t .

module b l o c k f i f o #(
parameter l e n = 320 ,
parameter wid = 8 ,

parameter addrWid = 9
)
(

input c l k , r e s e t , w r i t e ,
output reg ready ,

input [ ( wid −1) :0 ] d a t a i ,
input [ ( addrWid −1) :0 ] r eadPtr ,
output reg [ ( wid −1) :0 ] da ta o

) ;

reg [ ( addrWid −1) :0 ] w r i t eP t r ;

reg [ ( wid −1) :0 ] ram [ 0 : ( l en −1) ] ;

// Comb ina t i ona l
always @(∗ ) begin

// Determine i f b u f f e r i s f u l l
i f ( w r i t e P t r == l e n )

r eady = ’ b0 ;
e l s e

r eady = 1 ’ b1 ;

i f ( r e adPt r < l e n )
da ta o = ram [ r eadPt r ] ;

e l s e
data o = ’ b0 ;

end

// S e q u e n t i a l l o g i c
always @( posedge c l k ) begin

i f ( r e s e t )
w r i t e P t r <= ’ b0 ;
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e l s e begin
i f ( w r i t e & ready ) begin

ram [ w r i t eP t r ] <= da t a i ;
w r i t e P t r <= wr i t eP t r + 1 ’ b1 ;

end
end

end

endmodule

// Co lou r Decoder V e r i l o g Module

// Author : Matthew Knight
// Date : 2017−02−27

// Thi s module t a k e s a c o l o u r code adhe r i n g to the NES c o l o u r p a l e t t e (64
// c o l o u r s ) , a c l k , and asynch ronous r e s e t , and ou tpu t s v i d e o data to be s en t to
// the DAC f o r the c o l o u r b u r s t o r a c t i v e v i d e o .

‘ i n c l ude ” . . / s ou r c e /nco . v”
‘ i n c l ude ” . . / s ou r c e / s y n t h e s i z e r . v”

module co l ou rDecode r (
input c l k , r e s e t ,
input [ 5 : 0 ] colourNum ,
output [ 7 : 0 ] v i d e o

) ;

wire [ 7 : 0 ] phase ;

// Frequency c o n t r o l word f o r a 3579545 Hz output and a 50Mhz c l o c k
reg [ 2 3 : 0 ] fcw = 24 ’ d1201096 ;

// I n s t a n t i a t i o n o f NCO
nco #(24) osc (

. c l k ( c l k ) ,

. r e s e t ( r e s e t ) ,

. fcw ( fcw ) , . out ( phase )
) ;

// I n s t a n t i a t i o n o f c o l o u r s y n t h e s i z e r
s y n t h e s i z e r s 0 (

. c l k ( c l k ) ,

. r e s e t ( r e s e t ) ,

. colourNum ( colourNum ) ,

. phase ( phase ) ,

. v i d e o ( v i d eo )
) ;

endmodule

// Nume r i c a l l y C o n t r o l l e d O s c i l l a t o r V e r i l o g Module

// Author : Matthew Knight
// Date : 2017−02−21
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// N i s the width o f the f r e qu en c y c o n t r o l word and
// M i s the width o f the t r un c a t e d output

module nco
#(parameter N = 16 , M = 8)
(

input c l k , r e s e t ,
input [ (N−1) :0 ] fcw ,
output [ (M−1) :0 ] out

) ;

// count r e g i s t e r s
reg [ (N−1) :0 ] count , c oun t n e x t ;

ass ign out = count [N : (N−M) ] ;

always @(∗ )
c oun t n e x t = count + fcw ;

always @( posedge c l k or posedge r e s e t )
i f ( r e s e t ) begin

count <= 1 ’ b0 ;
end e l s e begin

count <= coun t n ex t ;
end

endmodule

// Look−up Table V e r i l o g Module

// Author : Matthew Knight
// Date : 2017−02−25

// Thi s i s a pa r ame t e r i z e d model f o r c r e a t i n g Look−up Tab le s .

module l u t #(
parameter L = 256 , // Length o f the t a b l e
parameter W = 8 , // Width o f each e l ement
parameter f i l e = ”” // F i l e to s ou r c e rom data

)
(

input c l k , r e s e t , // Clock i npu t
input [ ( addrWid −1) :0 ] addr , // Address f o r e l ement s e l e c t i o n
output reg [ (W−1) :0 ] data // Table output data

) ;

// Address width
parameter addrWid = $c l og2 (L ) ;

// I n s t a n t i a t i o n o f ROM
reg [ (W−1) :0 ] rom [ 0 : ( L−1) ] ;

// Data f o r lookup t a b l e
i n i t i a l
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$readmemb ( f i l e , rom ) ;

// data i s updated on the p o s i t i v e edge
always @( posedge c l k or posedge r e s e t ) begin

i f ( r e s e t )
data = ’ b0 ;

e l s e begin
i f ( addr < L)

data <= rom [ addr ] ;
e l s e

data <= ’ b0 ;
end

end

endmodule

// Delay V e r i l o g Module

// Author : Matthew Knight
// Date : 2017−02−26

// Thi s module i s s imp l y a D F l i p−f l o p f o r the purpose o f d e l a y i n g a s i g n a l f o r
// a s i n g l e c l o c k c y c l e .

module de l a y #(
parameter W = 8 // Width o f the bus

)
(

input c l k , r e s e t , // Clock i npu t
input [ (W−1) :0 ] D, // Data i n pu t
output reg [ (W−1) :0 ] Q // Delayed output

) ;

always @( posedge c l k or posedge r e s e t )
i f ( r e s e t )

Q <= ’ b0 ;
e l s e

Q <= D;

endmodule
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