
ELEX Αヶヶ0
Project Report

Friendo Finder

Vladimir Cvjetan

Kyle Soroczka

Page 1 of 26

ELEX 7660 Winter 2017

さFriendo Finderざ

Group 1

3/31/17

Page 2 of 26

Contents

Figures ... 3

Overview ... 4

Project Motivation .. 4

High Level Design: ... 5

Hardware .. 6

Infrared Sensor .. 6

Stepper Motor and Driver ... 7

16x2 LCD screen .. 8

Hardware Schematic ... 8

Modules .. 9

ADC Module .. 9

Stepper Motor Module ... 9

16x2 LCD Screen Module .. 10

Top-Level Module.. 11

Testing Method ... 12

Results ... 12

Conclusions and Final Thoughts.. 12

Appendix (Friendo Finder code) ... 13

ADC_Controller.sv ... 13

Motor_Controller.sv .. 15

LCD_Controller.sv .. 17

Friendo_Finder.sv .. 21

Page 3 of 26

Figures

Figure 1: Friendo Finder .. 4

Figure 2: High-level flowchart ... 5

Figure 3: Module interactions ... 5

Figure 4: IR sensor distance measuring curve .. 6

Figure 5: Stepper motor with horizontal IR sensor (Wall-e?) ... 7

Figure 6: Driver board ... 7

Figure 7: 16x2 LCD screen ... 8

Figure 8: Hardware layout .. 8

Figure 9: LCD state diagram .. 10

Figure 10: Top level module state diagram .. 11

Figure 11: Testing the Friendo Finder ... 12

Page 4 of 26

Overview

For the ELEX 7660 final project we designed and built the Friendo Finder, which detects objects

within a range of 20-70 cm. It uses a stepper motor with an infrared sensor mounted on top to

sweep in a 180 degree arc to detect objects. If an object is detected, the distance it was

detected and the angle it was detected at is displayed on a 16x2 LCD screen.

Figure 1: Friendo Finder

Project Motivation

We originally set out to make something similar to the motion tracker from the Alien movie

series. It used ultrasonic waves to detect objects and put them onto a radar screen. We quickly

came to terms with scaling the project back to deal with time and budgetary constraints. After

some preliminary research, we had decided that accurate ultrasonic sensors were outside of

our budget range and went with an infrared sensor instead. Since the infrared sensor detects

objects in a line, we decided to sweep the sensor over a range with a stepper motor. Instead of

the CRT screen featured in the Alien series, a 16x2 LCD screen would be used instead. As a

stretch goal, we could implement the display onto the LCD screen used in lab 4 that we could

make it look more like a radar screen.

Page 5 of 26

High Level Design:

The design can be divided into three components: the FPGA, a stepper motor, and an infrared

sensor. The final construction is shown in the picture below.

Figure 2: High-level flowchart

Data is read through the infrared sensor and provided to the FPGA as a voltage level. The FPGA

interprets the voltage level as a distance measurement and decides if an object has been

detected. If an object is detected, the motor stops moving and the distance and angle is

displayed on the LCD screen. A high-level diagram showing the interactions is shown below.

Figure 3: Module interactions

Page 6 of 26

Hardware

The Friendo Finder is composed 3 pieces of hardware besides the FPGA: an infrared sensor, a

stepper motor with a driver board and a 16x2 LCD screen. The hardware is connected as per the

high-level flowchart. A complete schematic will be shown at the end of the hardware section.

Infrared Sensor

The sensor we decided upon was the Sharp GP2Y0A02YK0F. It has a advertised measuring

distance of 20 to 150cm. It has 3 wires: power, ground, and a differential voltage signal. This

will be fed directly into an ADC on the FPGA to be interpreted as distance. It requires a 5V

power source, so the FPGA cannot power this module.

This sensor outputs a nonlinear voltage curve when measuring distance, shown below. To

account for this, linear approximation needs to be implemented for accurate results.

Figure 4: IR sensor distance measuring curve

During initial testing of the sensor, we found it was quite prone to interference from other light

sources and reflections. Also, sometimes it had difficulty recognizing dark objects. This is due to

the reflective nature of light. More of the light emitted by the IR sensor is absorbed in dark

objects, so lighter targets needed to be utilized.

The sensor had to be mounted vertically to ensure that the ADC received and accurate result.

When horizontal, the sensor’s recei┗e and send sensors are offset and can falsel┞ detect edges.
To minimize this, the sensor is mounted vertically and tall target must be used.

Page 7 of 26

Stepper Motor and Driver

A stepper motor and a driver board was chosen for this project. A stepper motor was

specifically chosen due to precise steps, which can be converted into an angle for display. The

driver board determines various settings for the stepper motor and can fit onto a breadboard.

The control signals can be found in detail in the Stepper Motor Module section.

Figure 5: Stepper motor with horizontal IR sensor (Wall-e?)

Figure 6: Driver board

Page 8 of 26

16x2 LCD screen

The 1602A-1 LCD screen was used for this project. It’s a ヱ6┝ヲ LCD screen ┘ith a displa┞ font of
5x8 pixels. It has the capability of 4 or 8 bit interface for data input. The display is powered by

5V and accepts 5V data signals. However, the lower threshold for a voltage high is 2.2 V so the

FPGA can provide data without having to buffer the signal. A detailed description of the signals

can be found in the LCD module section below.

Figure 7: 16x2 LCD screen

Hardware Schematic

Note that Vss is a 5V supply.

Figure 8: Hardware layout

Page 9 of 26

Modules

A written description of each software module can be found below. We wrote all of the

modules in System Verilog without using software (NIOS II) in the hopes of it being easier to

implement. We recognize this as being inefficient in terms of hardware usage, but we were not

going to do anything else with it so it may as well be implemented in hardware.

ADC Module

The ADC test code from Lab 5 was utilized for this module. It features a 16-bit FIFO buffer,

which is filled by and ADC SPI interface, which continuously reads ADC Channel 0 until filled. It

checks if the FIFO buffer is loaded by checking a done flag. Once filled, it outputs the 16-bit FIFO

onto a 16-bit data out line to be read by the top-level module. The module performs this

operation continuously.

Stepper Motor Module

As you might expect, the stepper motor module is in charge of autonomous motor control. The

motor sweeps back and forth 180 degrees while counting the number of steps from the initial

position. The motor control module has several control signals:

 Direction: selects if the motor steps clockwise or counterclockwise

 Master clock: a square wave which controls how frequent the motor steps, we chose

5Hz to be reasonable

 Sleep: used to halt operation by disregarding input signals

 MS1 and MS2: two bits which control the step size

 Enable: select whether the motor runs or not

 Reset: a switch used to halt the motor step manually and resets the count register

By knowing the change in angle caused by each step and a zeroed position, we can determine

the angle at which an object was detected. The number of steps is counted and stored in a 32-

bit count register. This is fed into the top-level module to be sent into the LCD display.

Page 10 of 26

16x2 LCD Screen Module

This module is based around four states: power up, initialize, ready, and send. It accepts two

signals from the top-level module, an LCD enable signal and a data bus. The module

communicates a byte to the LCD screen, an enable signal, a register select, and read or write

select. A busy flag communicates if the screen is ready to accept a command. A reset button is

used to restart the display if required.

The code is based on a module written for the same LCD screen for ELEX 3305. While the

original was written in C, it was converted into System Verilog for this project.

To write a character to the module, an LCD enable signal is required to send a command. The

command to be sent is driven along the data bus, with the two most significant bytes signifying

where and what the data bus signal is. The two most significant bits are data input or an

instruction input, and either to read or write.

As mentioned, the module has four states:

 Power up: waits a relatively long duration to ensure the LCD screen powers up properly

 Initialize: set up the LCD screen settings, such has telling the screen how to interpret the

byte or how the cursor behaves

 Ready: ready to receive a command if the screen is not busy

 Send: the process in which the byte is sent

Timing requirements needed to be met in between instructions within the states. This was

accommodated for by counting the number of clock cycles from the FPGA clock.

Figure 9: LCD state diagram

Page 11 of 26

Top-Level Module

This module unifies the other three. It gathers information from the ADC and stepper motor

and outputs the information onto the LCD screen. It is composed of four states as well: power

up, run, set data, and display. It also features two functions which assist writing information to

the LCD screen. It can be reset manually using one of the onboard switches.

 Power up: similar to the LCD screen, this allows all modules to power up in the correct

sequence and all variables are reset within this state

 Run: the motor is swept back and forth in a 180 degree arc while monitoring the ADC for

a valid input

 Set data: Take the valid input from the ADC, calculate the angle, and prepare to output

the data to the LCD

 Display: Pulse the enable bit for the LCD for writing

The two functions are implemented as tasks in System Verilog. The first task contains a case list

of characters to output to the LCD screen. The case is selected by a 5 bit input variable which

gets incremented in the set data state. The second task performs the distance and angle

conversions from the motor control module and the ADC. Note that since the infrared sensor is

quite non-linear, we had to interpolate between certain voltage ranges to ensure an accurate

output.

Figure 10: Top level module state diagram

Page 12 of 26

Testing Method

Test bench modules were not written for this project. Instead, the SignalTap 2 Logic Analyzer in

Quartus Prime was used heavily to ensure the correct signals were transmitted and received.

Each module was independently verified to work using the SignalTap 2 Logic Analyzer and then

combined into a top-level module. Once combined, we set up a testing area shown below.

Figure 11: Testing the Friendo Finder

The infrared sensor was mounted on top of the stepper motor and secured in the center of a

protractor. Once it powered up, it began to sweep. We would targets at various locations to

confirm the angle and distance measurements were correct.

Results

By interpolating the voltage ranges on the IR sensor and setting the stepper motor range to as

close to 180 degrees as possible, we could achieve quite accurate results. Within the range of

20-70cm we would achieve results within 1cm and an angle within 5 degrees. With some

further refinement on the ADC module and with a stepper motor with smaller steps we would

be able to get more accurate results.

Conclusions and Final Thoughts

While the original project idea was to make something closer to what you see in Alien, we are

still quite pleased with the results. The measurements ended up being quite accurate and we

had a lot to show by the end of the project. If we were to do this project again, we would

implement some features in software using NIOS II and perhaps use the LCD screen used in lab

4 for a fancier display. Using software, the timing would be easier to write and we would use

less hardware overall.

Page 13 of 26

Appendix (Friendo Finder code)

ADC_Controller.sv

// This code is a modification of the ADC_spi Interface written by the
// instructor for ELEX7660 lab5. Code has been edited to read from one
// ADC chanel(0) as well as removing the need for Nios 2.

module adcspi
 (
 output logic sclk, mosi, ssn, // SPI master
 input logic miso,

 output logic [15:0] data, // ready/valid data out

 input logic clk, reset) ;

 parameter MISO = 16'b0 ;

 // clock/bit counter
 struct packed {
 logic [3:0] bitcnt ;
 logic sclk ;
 logic [3:0] clkcnt ; } cnt, cnt_next ;

 logic [15:0] sr ; // shift register

 logic rising, falling, done ;

 assign sclk = cnt.sclk ;

 // done all bits

 assign done = cnt ==? '{'1,'1,'1} ;

 // clock/bit counter

 assign cnt_next = (reset || done) ? '0 : cnt+1'b1 ;
 always@(posedge clk)
 cnt <= cnt_next ;

 assign rising = cnt_next.sclk && ~cnt.sclk ;
 assign falling = ~cnt_next.sclk && cnt.sclk ;

 always@(posedge clk)
 begin
 if (falling) // shift mosi out
 mosi <= sr[15] ;
 if (rising) // shift miso in
 sr <= {sr[14:0],miso} ;
 if (done)
 begin
 data <= sr ; // copy to parallel out
 sr <= MISO ; // channel select serial out
 mosi <= 16'd0;

Page 14 of 26

 end
 end

 always@(posedge clk) // run continously
 ssn <= reset ;

endmodule

Page 15 of 26

Motor_Controller.sv

// This code is a controller for A3967 stepper motor controller.
// This is a modified version of the ELEX7660 lab 3 module.

module motor_control
 (
 input logic clk, reset,

 // Motor control signals mclk is stepper motor square wave,
 // enable_n allows the motor to run, sleep causes motor to
 // disregard all input signals. ms1, ms2 set microsepping
 // ang is number of steps that have been covered used by
 // module friendo_finder in Friendo_Finder.sv

 output logic mclk, mreset_n,
 output logic DIR, enable_n,
 output logic ms1, ms2,
 input logic sleep,
 output logic [31:0] ang
) ;

 logic [31:0] fclk = 32'd50000000; // clock frequancy used by ff's
 logic [31:0] freq = 32'd5; // output frequency Hz
 logic signed [31:0] count, count_next;
 logic mclk_next, DIR_next;
 logic [31:0] ang_next;

 assign fclk = 32'd50000000;
 assign freq = 32'd5;

 always_ff@(posedge clk) begin
 count <= count_next;
 mclk <= mclk_next;
 DIR <= DIR_next;
 ang <= ang_next;
 ms1 = 'd0;
 ms2 = 'd0;
 end

 always_comb begin
 count_next = (reset && sleep) ? fclk : (count >= 0) ? count - (2
* freq) : (count < 0) ? fclk: count;
 mreset_n = reset ? 1'd0 : 1'd1;
 enable_n = reset ? 1'd1 : 1'd0;
 mclk_next = (reset && sleep) ? 1'd0 : (count < 0) ? ~mclk : mclk;
 if(reset) begin
 DIR_next = 1'd1;
 ang_next = 32'd0;
 end
 else if((count < 0) && sleep) begin
 if (ang >= 180) begin
 ang_next = 32'd0;
 DIR_next = ~DIR;
 end
 else begin

Page 16 of 26

 ang_next = ang + 1;
 DIR_next = DIR;
 end
 end
 else begin
 ang_next = ang;
 DIR_next = DIR;
 end
 end
endmodule

Page 17 of 26

LCD_Controller.sv

// 16x2 LCD display has 3 control lines besides power:

// lcd_en = latch data to lcd controller
// lcd_rw = read(1)/write(0) select signal
// lcd_rs = register select signal (1 = data input, 0 = instruction input)
// enable = enable for lcd display
// busy = lcd controller busy

// lcd screen has 8 or 4 bit data mode

module lcd_display
 (
 input logic clk, reset,
 input logic [9:0] lcd_bus, // msb is rs, then rw, then data ms to ls
 input logic lcd_en,
 output logic lcd_rs, lcd_rw, enable, busy,
 output logic [7:0] lcd_data
) ;

 int clk_count = 0 ; // timing count
 int clk_freq = 50 ; // in mhz, for timing
 enum {power_up, initialize, ready, send} state ;

 always_ff@(posedge clk) begin

 if (reset)
 begin
 state <= power_up ;
 clk_count <= 0;
 end

 // power_up

 else if(!reset)
 begin
 // wait to make sure lcd is powered on
 unique case (state)
 (power_up):
 begin
 busy <= '1 ;
 if (clk_count < (20000 * clk_freq)) begin
 clk_count <= clk_count + 1 ;
 state <= power_up ;
 end
 else begin
 clk_count <= 0 ;
 lcd_rs <= '0 ;
 lcd_rw <= '0 ;
 lcd_data <= 8'b00000000 ;
 state <= initialize ;
 end
 end

 // initialize

Page 18 of 26

 (initialize):
 begin
 busy <= '1 ;
 clk_count <= clk_count + 1 ;

 // set up 8 bit mode first
 if (clk_count < (100 * clk_freq)) begin
 lcd_data <= 8'b00110000 ; //
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (600 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end
 // set lcd for 2 line mode, 5x8 dot mode, and 8bit mode
 else if (clk_count < (700 * clk_freq)) begin
 lcd_data <= 8'b00111000 ; //
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (1200 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end

 // clear up the screen
 else if (clk_count < (1300 * clk_freq)) begin
 lcd_data <= 8'b00000001 ;
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (21300 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end

 // assign display on, curson on, blink on
 else if (clk_count < (21400 * clk_freq)) begin
 lcd_data <= 8'b00000010 ;
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (22000 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end

Page 19 of 26

 // assigns display on, cursor on, cursor blink on
 else if (clk_count < (22200 * clk_freq)) begin
 lcd_data <= 8'b00001100 ;
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (22800 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end
 // assign cursor shift direction
 else if (clk_count < (23200 * clk_freq)) begin
 lcd_data <= 8'b00010100 ;
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (23800 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end

 // return cursor home
 else if (clk_count < (24200 * clk_freq)) begin
 lcd_data <= 8'b00000010 ; //
 enable <= '1 ;
 state <= initialize ;
 end

 else if (clk_count < (24600 * clk_freq)) begin
 lcd_data <= 8'b00000000 ;
 enable <= '0 ;
 state <= initialize ;
 end

 // complete initialization
 else begin
 clk_count <= '0 ;
 busy <= '0 ;
 state <= ready ;
 end

 end

 // ready

 (ready):
 begin
 // load rs, rw, and data from bus
 if (lcd_en == '1) begin
 busy <= '1 ;
 lcd_rs <= lcd_bus[9] ;
 lcd_rw <= lcd_bus[8] ;
 lcd_data <= lcd_bus[7:0] ;

Page 20 of 26

 clk_count <= '0 ;
 state <= send ;
 end
 else begin
 busy <= '0 ;
 lcd_rs <= '0 ;
 lcd_rw <= '0 ;
 clk_count <= '0 ;
 state <= ready ;
 end
 end

 // send

 (send):
 begin
 busy <= '1 ;
 clk_count <= clk_count + 1 ;
 // wait to complete sending
 if (clk_count < (500 * clk_freq)) begin
 busy <= '1 ;

 // pulse enable lcd
 if (clk_count < clk_freq)
 enable <= '0 ;
 else if (clk_count < (150 * clk_freq))
 enable <= '1 ;
 else if (clk_count < (300 * clk_freq))
 enable <= '0 ;
 else
 state <= send ;
 end
 else begin
 clk_count <= '0 ;
 state <= ready ;
 end

 end
 endcase
 end
 end

endmodule

Page 21 of 26

Friendo_Finder.sv

// Top level module for Friendo Finder.

module Friendo_Finder (
 input logic CLOCK_50,
 input logic [1:0] KEY,

 // Motor Contrtoller Signals
 output logic mclk, mreset_n,
 output logic DIR, enable_n,
 output logic ms1, ms2, sleep,

 // ADC Interface Signals
 output logic ADC_CS_N,
 output logic ADC_SADDR,
 output logic ADC_SCLK,
 input logic ADC_SDAT,

 // LCD interface Signals
 output logic lcd_rs,
 output logic lcd_rw,
 output logic enable,
 output logic [7:0] lcd_data) ;

 // Common variables for all moduels
 logic reset_n, clk;

 // ADC Interface variables
 logic [15:0] data;

 // LCD Interface variables
 logic lcd_en;
 logic [9:0] lcd_bus; // msb is rs, then rw, then data ms to ls
 logic busy;

 // Angle calculation variables
 int angle;
 logic [31:0] ang;
 logic [4:0] ang_out [39:0];

 // Distance Calculation variables
 logic [4:0] dst_out [39:0];
 logic [15:0] high_data, range_data, set_data ;

 // Display variables
 logic [6:0] i;
 bit done_ang;
 bit done_dst;
 bit done_disp;

 // Control variables
 bit data_flag;
 bit move_flag;
 logic [31:0] count;

Page 22 of 26

 enum {power_up, run, setdat, display} mode;

 assign clk = CLOCK_50;
 assign reset_n = KEY[0];

 motor_control m1
 (
 .clk(clk),
 .reset(~reset_n),

 .mclk(mclk),
 .mreset_n(mreset_n),
 .DIR(DIR),
 .enable_n(enable_n),
 .ms1(ms1),
 .ms2(ms2),
 .sleep(sleep),
 .ang(ang)
);

 adcspi a0
 (
 .sclk(ADC_SCLK),
 .mosi(ADC_SADDR),
 .ssn(ADC_CS_N),
 .miso(ADC_SDAT),
 .data(data),

 .clk(clk),
 .reset(~reset_n)
);

 lcd_display lcd1
 (
 .clk(clk),
 .reset(~reset_n),

 .lcd_en(lcd_en),
 .lcd_bus(lcd_bus),
 .lcd_rs(lcd_rs),
 .lcd_rw(lcd_rw),
 .enable(enable),
 .busy(busy),
 .lcd_data(lcd_data)
);

 always_ff@ (posedge clk)
 begin

 // Reset starts the power up process for all the components
involved
 if(~reset_n)
 begin
 count <= '0;
 mode <= power_up;
 end

Page 23 of 26

 else if (reset_n)
 begin
 unique case (mode)

 // Gives all modules time to power up, mainly lcd module .
 // As well as initializing all variables
 (power_up):
 begin
 if (count < 25000000)
 begin
 i <= '0;
 sleep <= '0;
 done_ang <= '0;
 mode <= power_up;
 count <= count + 1;
 done_disp <= '0;
 data_flag <= '0;
 move_flag <= '0;
 end
 else mode <= run;
 end

 // Waits for a valid data input if none is found the motor
 // control module will continue to turn if found then motor will
 // stop and data will display.
 (run):
 begin
 if(~KEY[1]) move_flag <= '0;
 if((data > 'h045D) && (!done_disp) && (!data_flag))
 begin
 if (count < 20000000) count <= count + 1;
 else
 begin
 set_data = data;
 angle = (DIR == '1) ? ang : (180 - ang);
 mode <= setdat;
 count <= '0;
 count <= '0;
 i <= '0;
 done_ang <= '0;
 done_dst <= '0;
 sleep <= '0;
 data_flag <= '1;
 move_flag <= '1;
 func1(); // Sets data to be displayed
 end
 end
 else if(~move_flag)
 begin
 sleep <= '1;
 mode <= run;
 count <= '0;
 if(data < 'h045D) data_flag <= '0;
 end
 end

Page 24 of 26

 // Sets the data at the pins of the LCD by feeding data to
 // the LCD_Controller module
 (setdat):
 begin
 if(!done_ang)
 begin
 func(ang_out[i]);
 i <= i + 1;
 if(i == 39)
 begin
 done_ang <= '1;
 i <= '0;
 end
 else done_ang <= '0;
 mode <= display;
 end
 else if(!done_dst)
 begin
 func(dst_out[i]);
 i <= i + 1;
 if(i == 39)
 begin
 done_dst <= '1;
 done_disp <= '1;
 end
 else done_dst <= '0;
 mode <= display;
 end
 else
 begin
 lcd_en <= '0;
 mode <= run;
 done_disp <= '0;
 end
 end

 // Trigger the LCD_Controller module and display data on the
lines
 (display):
 begin
 if(~busy)
 begin
 lcd_en <= 1;
 mode <= setdat;
 end
 else
 begin
 mode <= display;
 lcd_en <= 0;
 end
 end
 endcase
 end
 end

 // This task sets the data bus for the LCD_Controller module
 task func;

Page 25 of 26

 input [4:0] a;
 begin
 unique case(a)
 0: lcd_bus = 10'b1000110000; // "0"
 1: lcd_bus = 10'b1000110001; // "1"
 2: lcd_bus = 10'b1000110010; // "2"
 3: lcd_bus = 10'b1000110011; // "3"
 4: lcd_bus = 10'b1000110100; // "4"
 5: lcd_bus = 10'b1000110101; // "5"
 6: lcd_bus = 10'b1000110110; // "6"
 7: lcd_bus = 10'b1000110111; // "7"
 8: lcd_bus = 10'b1000111000; // "8"
 9: lcd_bus = 10'b1000111001; // "9"
 10: lcd_bus = 10'b1001000001; // "A"
 11: lcd_bus = 10'b1001001110; // "N"
 12: lcd_bus = 10'b1001000111; // "G"
 13: lcd_bus = 10'b1001000100; // "D"
 14: lcd_bus = 10'b1001010011; // "S"
 15: lcd_bus = 10'b1001010100; // "T"
 16: lcd_bus = 10'b1000111101; // "="
 17: lcd_bus = 10'b1011011111; // "degree symbol"
 18: lcd_bus = 10'b1001100011; // "c"
 19: lcd_bus = 10'b1001101101; // "m"
 default: lcd_bus = 10'b1000100000; // "_"
 endcase
 end
 endtask

 // This task calculates the angle and the distance to be displayed on
the
 // LCD display...NOTE: Highly computationaly intensive find way to trim
down
 task func1;
 begin
 ang_out [0] = 5'd10;
 ang_out [1] = 5'd11;
 ang_out [2] = 5'd12;
 ang_out [3] = 5'd16;
 ang_out [7] = 5'd17;
 ang_out [39:8] = '{32{5'd20}};
 dst_out [0] = 5'd13;
 dst_out [1] = 5'd14;
 dst_out [2] = 5'd15;
 dst_out [3] = 5'd16;
 dst_out [4] = 5'd0;
 dst_out [7] = 5'd18;
 dst_out [8] = 5'd19;
 dst_out [39:9] = '{31{5'd20}};

 ang_out [4] = angle / 100;
 ang_out [5] = (ang_out[4] == 1) ? ((angle - 100) / 10) : (angle /
10);
 ang_out [6] = (ang_out[4] == 1) ? (angle - 100) - ang_out[5] * 10
: angle - ang_out[5] * 10;
 ang_out [6] = (ang_out[6] > 9) ? 5'd0 : ang_out[6];
 if(set_data > 16'h09B2) dst_out[5] = 2;
 if(data <= 16'h09B2 && set_data > 16'h0745) dst_out[5] = 3;

Page 26 of 26

 if(data <= 16'h0745 && set_data > 16'h060F) dst_out[5] = 4;
 if(data <= 16'h060F && set_data > 16'h0555) dst_out[5] = 5;
 if(data <= 16'h0555 && set_data > 16'h045D) dst_out[5] = 6;
 if(data <= 16'h045D) dst_out[5] = 7;

 unique case (dst_out[5])
 2:
 begin
 high_data = 16'h0C1F;
 range_data = 16'h026C;
 end
 3:
 begin
 high_data = 16'h09B2;
 range_data = 16'h026C;
 end
 4:
 begin
 high_data = 16'h0745;
 range_data = 16'h0136;
 end
 5:
 begin
 high_data = 16'h060F;
 range_data = 16'h00BA;
 end
 6:
 begin
 high_data = 16'h0555;
 range_data = 16'h00F8;
 end
 7:
 begin
 high_data = set_data;
 range_data = 16'hFFFF;
 end
 endcase
 dst_out [6] = (dst_out[5] == 'd7) ? 5'd0: ((high_data - set_data)
* 10) / range_data;
 dst_out [6] = (dst_out[6] > 9) ? 5'd0 : dst_out[6];
 end
 endtask
endmodule

