BCIT Citations Collection | The BCIT cIRcuit

BCIT Citations Collection

Collection of published works from BCIT researchers, faculty, and instructors.


Pages

A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy
A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy
Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK− and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed., Peer-reviewed article, Publsihed.
A novel Volt-VAR Optimization engine for smart distribution networks utilizing Vehicle to Grid dispatch
A novel Volt-VAR Optimization engine for smart distribution networks utilizing Vehicle to Grid dispatch
In recent years, Smart Grid technologies such as Advanced Metering, Pervasive Control, Automation and Distribution Management have created numerous control and optimization opportunities and challenges for smart distribution networks. Availability of Co-Gen loads and/or Electric Vehicles (EVs) enable these technologies to inject reactive power into the grid by changing their inverter’s operating mode without considerable impact on their active power operation. This feature has created considerable opportunity for distribution network planners to explore if EVs could be used in the distribution network as reliable VAR suppliers. It may be possible for network operators to employ some EVs as VAR suppliers for future distribution grids. This paper proposes an innovative Smart Grid-based Volt-VAR Optimization (VVO) engine, capable of minimizing system power loss cost as well as the operating cost of switched Capacitor Banks, while optimizing the system voltage using an improved Genetic Algorithm (GA) with two levels of mutation and two levels of crossover. The paper studies the impact of EVs with different charging and penetration levels on VVO in different operating scenarios. Furthermore, the paper demonstrates how a typical VVO engine could benefit from V2G’s reactive power support. In order to assess V2G impacts on VVO and test the applicability of the proposed VVO, revised IEEE-123 Node Test Feeder in presence of various load types is used as case study., Article, Published. Received 24 May 2014, Revised 23 July 2015, Accepted 29 July 2015, Available online 8 August 2015.
A performance comparison between FRC and WWM reinforced slabs on grade
A performance comparison between FRC and WWM reinforced slabs on grade
Proceedings of 4th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-4) 2009, 22-24 July 2009, Zurich, Switzerland. A comparative experimental study was conducted to investigate the effectiveness of fiber reinforcement as a non-corrosive alternative for welded-wire reinforcement in slabs on grade. Six full-scale slabs-on-grade, reinforced with various combinations of WWM (Welded Wire Mesh), polymeric macro-synthetic fibers (PMF) and cellulose fibers were tested under a centrally concentrated load. Their ductility and load carrying capacity were evaluated and compared. Based on the results of this study, it seems that high dosages of polymeric macrofibers can be used to successfully reinforce concrete slabs. Given that the use of PMF eliminates the possibility of corrosion of reinforcement, this may be a superior option. Furthermore, it seems low dosages of fibers act as an ineffective replacement for WWM. Low dosages of PMF and cellulose fiber when added on their own, or in combination with each other were found to be insufficient in providing sufficient ductility or load carrying capacity compared to the control slab when subjected to the load test. Slabs reinforced with cellulose fiber had a poor mechanical response in comparison to WWM and therefore cellulose fiber on its own is not recommended., Conference paper, Published.
A pilot scale comparison of the effects of chemical pre-treatments of wood chips on the properties of low consistency refined TMP
A pilot scale comparison of the effects of chemical pre-treatments of wood chips on the properties of low consistency refined TMP
Proceedings of the International Mechanical Pulping Conference 2016, IMPC 2016. After decades of research and development, the technology of thermomechanical pulping (TMP) has dramatically improved resulting in higher pulp quality, especially strength. However, the TMP industry is still faced with the challenge of continually increasing energy costs. One approach to reducing the energy costs is to replace the second-stage high consistency (HC) refiner with several low consistency (LC) refiners. This is based on the observation that low consistency refining is more energy efficient than high consistency refining. The limitation of LC refining is loss of paper strength due to the high frequency of fibre cutting especially at high refining intensity. Chemical treatment combined with low consistency refining provides opportunity for even further energy savings. The chemical treatment could improve pulp properties allowing for further energy reduction in the HC refining stage or reduced intensity during LC refining resulting in less fibre cutting. Indeed, it is also possible that the chemical treatment itself will improve the resistance of the fibre to the cutting during LC refining., Conference paper, Published.
A quantitative study of cotyledon positioning in conifer development
A quantitative study of cotyledon positioning in conifer development
The number of cotyledons in angiosperm monocots and dicots is tightly constrained. But in the gymnosperm Pinaceae (pine family), which includes many of the conifers, cotyledon number ( nc) can vary widely, commonly from 2 to 12. Conifer cotyledons form in whorled rings on a domed embryo geometry. We measured the diameter of embryos and counted the cotyledons to determine the radial positioning of the whorl and the circumferential spacing between cotyledons. Results were similar between Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco), Sitka spruce ( Picea sitchensis (L.) H.Karst .), and larch ( Larix × leptoeuropaea, synonymous with L. × marschlinsii Coaz), indicating a common mechanism for cotyledon positioning in conifers. Disrupting transport of the growth regulator auxin (with 1- N-naphthylphthalamic acid (NPA)) led to cup-shaped embryos, indicating that whorl (ring) formation is separable from cotyledon patterning within the ring. NPA inhibits cotyledon outgrowth, but not the spacing (distance) between cotyledons. The NPA effect is direct; it does not operate indirectly on embryo size. These results support a hierarchical model for cotyledon positioning in conifers, in which a first stage (not requiring auxin transport) sets the whorl position, constraining the second stage (which requires auxin transport) to form cotyledons within this whorl. Similarly, recent studies in Arabidopsis have shown that different components of complex developmental patterns can have different transport properties; this aspect of patterning may be shared across plants., Peer-reviewed article, Published. Received 27 November 2015. Accepted 8 April 2016.
A review of the chemistry of the genus Crataegus
A review of the chemistry of the genus Crataegus
Since the 1800s, natural health products that contain hawthorn (Crataegus spp.) have been used in North America for the treatment of heart problems such as hypertension, angina, arrhythmia, and congestive heart failure. Traditionally, Native American tribes used hawthorn (Crataegus spp.) to treat gastrointestinal ailments and heart problems, and consumed the fruit as food. Hawthorn also has a long history of use in Europe and China for food, and in traditional medicine. Investigations of Crataegus spp. typically focus on the identification and quantification of flavonoids and anthocyanins, which have been shown to have pharmacological activity. The main flavonoids found in Crataegus spp. are hyperoside, vitexin, and additional glycosylated derivatives of these compounds. Reviewed herein are the botany, ethnobotany, and traditional use of hawthorn while focusing on the phytochemicals that have been reported in Crataegus species, and the variation in the described chemistry between individual species., Peer-reviewed article, Published. Received 4 July 2011; Revised 9 December 2011; Available online 17 May 2012.
A roadmap to integration
A roadmap to integration
Smart grid-related blogs, newsletters, and conferences have endured numerous debates and discussions around the issue of whether or not the smart grid integrated correctly. While most debates focus on approach, methodology, and the sequence of what to be done, there is insufficient discussion about actually meant by "smart grid integration." This article attempts to present a holistic view of integration and argues for the importance of developing system integration “maps” based on a utility's strategic smart grid road map., Article, Published
A scoping review of data logger technologies used with manual wheelchairs
A scoping review of data logger technologies used with manual wheelchairs
Proceedings of 2015 RESNA Annual Conference. In recent years, more and more studies are using data logger technologies to document driving and physiological characteristics of manual wheelchair users. However, the technologies used offer marked differences in characteristics such as measured outcomes, ease of use, burden, etc. The objective of this study is to examine the extent of research activity that relied on data logger technologies for manual wheelchair users. We undertook a scoping review of the scientific and gray literature. Five databases were searched from January 1979 to November 2014: Medline, Compendex, CINAHL, EMBASE and Google Scholar. This review retained 104 papers. The selected papers document a wide variety of systems and technologies, measuring a whole range of outcomes. Of all technologies combined, 16.8% were accelerometers installed on the user, 14.8% were magnetic odometers or odometers installed on the wheelchair, 10.2% were accelerometers installed on the wheelchair and 8.67% were heart monitors. So, it is not surprising that the most reported outcomes were distance, speed and acceleration of the wheelchair, and heart rate. In the future, it may be necessary to reach a consensus on what outcomes are important to measure and how. Technological improvements and access to less expensive devices will probably make it possible to easily measure many important outcomes at relatively low cost., Conference paper, Published.
A state-of-the-art on concrete repairs and some thoughts on ways to achieve durability in repairs
A state-of-the-art on concrete repairs and some thoughts on ways to achieve durability in repairs
Thee aim of this chapter is to provide the reader with a general overview of the different phenomena and factors involved with durability of repair and suggest the major aspects which the repair design should focus on. However, it is important to keep in mind that any repair problem needs to be addressed as a unique problem first, and the designer, by developing awareness of the several challenges involved, should be able to make mindful choices, adequate to the specific application that is being considered., Book chapter, Published.
A survey of stakeholder perspectives on exoskeleton technology
A survey of stakeholder perspectives on exoskeleton technology
Background Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. To further understand potential exoskeleton use, and facilitate the development of new technologies, a study was undertaken to explore perspectives of wheelchair users and healthcare professionals on reasons for use of exoskeleton technology, and the importance of a variety of device characteristics. Methods An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend an exoskeleton for four potential reasons. Seventeen design features were rated and compared in terms of their importance. An exploratory factor analysis was conducted to categorize the 17 design features into meaningful groupings. Content analysis was used to identify themes for the open ended questions regarding reasons for use of an exoskeleton. Results 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. The most highly rated reason for potential use or recommendation of an exoskeleton was health benefits. Of the 17 design features, 4 had a median rating of very important: minimization of falls risk, comfort, repair and maintenance cost, and purchase cost. Factor analysis identified two main categories of design features: Functional Activities and Technology Characteristics. Qualitative findings indicated that health and physical benefits, use for activity and access reasons, and psychosocial benefits were important considerations in whether to use or recommend an exoskeleton. Conclusions This study emphasizes the importance of developing future exoskeletons that are comfortable, affordable, minimize fall risk, and enable functional activities. Findings from this study can be utilized to inform the priorities for future development of this technology., Peer-reviewed article, Published. Submission date 13 September 2014 ; Acceptance date 12 December 2014 ; Publication date 19 December 2014.
ABC region
ABC region
Using a biophysical framework of analysis, this paper investigates the interconnections between the political, economic, social and environmental aspects of the de-industrialization of the ABC Region. Particular focus is given to the automobile sector and the responses of civil society and local government to the regional impacts of de-industrialization brought about by global forces. Questions about the role of social networks and the efficacy of government responses are addressed in the paper’s conclusion., Research paper, Published.
AOAC SMPR® 2016.003
AOAC SMPR® 2016.003
AOAC SMPRs describe the minimum recommended performance characteristics to be used during the evaluation of a method. The evaluation may be an on-site verification, a single-laboratory validation, or a multi-site collaborative study. SMPRs are written and adopted by AOAC stakeholder panels composed of representatives from the industry, regulatory organizations, contract laboratories, test kit manufacturers, and academic institutions. AOAC SMPRs are used by AOAC expert review panels in their evaluation of validation study data for method being considered for Performance Tested MethodsSM or AOAC Official Methods of AnalysisSM, and can be used as acceptance criteria for verification at user laboratories., Peer-reviewed article, Published.

Pages