Geo-thermal Heat Exchange System

By

Bahador Rafie Baharloo

A report presented to the
British Columbia Institute of Technology
in partial fulfilment of the requirement for the degree of

Bachelor of Engineering (Mechanical)

Faculty Advisors: Dr. Vahid Askari, P. Eng.

Dr. Johan Fourie, P. Eng.

Program Head: Dr. Mehrzad Tabatabaian, P. Eng.

Burnaby, British Columbia, Canada, 2019

© Brutus Rafie, 2019

Author’s Declaration

[hereby declare that I am the sole authors of this report.

L. L

Bahador Rafie Baharloo

[further authorize the British Columbia Institute of Technology to distribute digitally, or
printed paper, copies of this report, in total or in part, at the request of other institutions or
individuals for the purpose of scholarly activity.

AN

Bahador Rafie Baharloo

ii

Abstract

Geo-exchange systems allow heat pumps to be operable in colder regions where the low
efficiency of conventional heat pumps prohibit their usage. The barriers to the widespread
usage of the geo-exchange systems are as following: 1) the high costs associated with the
installation of the deep-well heat exchangers and horizontal-trench heat exchangers, 2) the
high cost of real-estate in urban/suburban areas supporting the required footprint. The
aims of this project (phases I-1II) is to increase the energy density of geo-exchange (heat)

systems resulting in reduced installation costs and land requirements.

Theoretically, by burying a fluid (water) filled tank, hosting the outdoor heat-exchanger, in
the ground and below the frost line, a stable temperature could be achieved. This provides
an optimal location for year-round heat transfer from the surrounding ground to the water

within the tank and from the water to the heat-exchanger.

The project focused on the proper instrumentation of the system (using electronic sensors,
a mini-computer, and the required coding/programming) as well as the ground-heat

source (simulation) and aimed to build upon the phases I & II.

The instrumentation of the system was achieved using appropriate electronics. The
installation of the heat belt and the insulation of the tank had no effect on the COP of the
heat pump and/or the heat transfer rate as made possible to be evaluated by the
instrumentation and the data analysis. However, the installation of the heat belt and the

insulation of the tank increased the system lockout time by ~ 14 hours.

iii

Improvements and iterations to this system are still required and include things such as
further increasing heat transfer in the outdoor heat exchanger, multi-domain CFD analysis
of the whole system including the ground heat as well as burying the tank and system

physically into the ground to collect real life data.

iv

Acknowledgements

[would like to thank the project sponsors and members of the department:

e Dr. Vahid Askari, who kindly accepted supervising the third iteration of this project.
¢ Dr.Johan Fourie, who oversaw the entire capstone project including the

management activities.
Also, I would like to extent my thanks and gratitude to:

e Mr. Eric Jacobsohn for providing deeper insight into the operation of the system as
well as support and guidance in developing the MATLAB code for data analysis.
e Mr. Vasyl Baryshnikov for support and guidance through the development of the

instrumentation steps.

Table of Contents

PR T 0102 30 D T<Tol 1 ¢ U (o) o 0TSO ii
ADSEIACT. ... ettt et ees e e e ees s e et RS R AR AR AR R AR AR AR e A iii
ACKNOWIEAZEIMENTS ...ttt et sesse s ses e ses s ses s e e R R p b vii
LIST O TADLES o ettt b b ees s s s s s st ses st s s et seb et snn s xiiii
LIST Of FIGUIES w..ucurivcecriescesesisessssansessessssssssssssssssss s s s s s s s s s ssssssnsssans ixiii
Chapter 1. INTrOAUCTION ..ottt sse s esss s s s 1
1.1 IIETOAUCTION cou e teeceeceeseeree ettt e s R R R s AR b s s bt s bt een 1
1.1.1 PrOJECt ODJECLIVE cooureeereereereeree ettt e s s s s s anssesensens 1

0 O b (0] =0t Y o]0) o1 OO 1

1.2 BaCKEGTOUNA ..ottt et ses s ss s sss st s sttt 2
1.2.1 GIrOUNA HEAT .. ettt e e e s e s sssss s ses s ses s es et sttt e s e 2
1.2.2 Numerical Simulation of Vertical Ground Heat........counnrenneeenneeesseeene 2
1.2.3 RASPDEITY Pl ottt ssssse st s sssss s sss st st s ssssssssssssnnes 4
1.2.4 Python (Programming Language)uememieessssssessssssssssssssseess 5
1.2.5 Electronic InStrumentations ... eeeessssssesssssssssssssssssssssssssssssssesans 6
1.2.6 Data Analysis Using the MATLAB COAE ..ot 7
Chapter 2. Detailed Description of the CUrrent Status......coccceeeeeeceneeresnesseeseesee e 9
2.1 Problem StatemMent ... sessssssssessss s sens 9
2.2 Project HYPOTNESIS ..ottt et ses s s sss s s sss s sss s s sesssnen 9
Chapter 3. Theoretical BaCKZIrOUNd.......c.oouuiuieieeeieeeeereesee e ssssssenns 9
Chapter 4. Detailed Project Activities and EQUIPMENt........cooerrererereeereeereeeeseseeseseeeens 11
4.1 LiST Of EQUIPIMIENT .ottt ss st 11
4.2 DeSigN APPIrOACH ...ttt s 14

4.2.1 The CUITENt DESIZN ...t sessesss et ses s s s snssnsenans 14

Chapter 5. DiSCUSSION Of TESUILS ... es s s s s et ses e ses e 19

5.1 Heat Pump COP vs. Time (Heat Belt Off & Heat Belt On)ccooveeeeeeeeeceeernereeneereeneens 19
5.2 Heat Transfer Rate vs. Time (Heat Belt Off & Heat Belt On)......ccccocerevreerecrecreireseresneenns 20
5.3 Temperature vs. Time (Heat Belt Off & Heat Belt On)cccooovnrecrenrereneneneneeresseesesneenns 21
Chapter 6. CONCIUSION .ttt ees s s eesees s ses et ses et ses s ses s s s st 23
Chapter 7. LeSSONS LEAIMIEM.....ooiriereereereereeseeseeseeseese e sss s s s s sssssssssssssssesssssesssssessnssesas 25
Chapter 7. BiblIOGraphy ..ttt st 25
Appendix A — Programming Python COAE ... sesssssssss s sssssssssssssssssssnss 27
Appendix B - Programming MATLAB COAE......eeeeeseeeesseesssesessesssssessessessssssessessssssesssanes 30
Appendix C - Tranquility Compact (TC) SETIeS.... e seeseeseesessssesssssesessessesssssssssssessnes 47

Appendix D - R410A Thermodynamic PrOPerties...... i enenininesesseseesessssssessssssssssssssssesseses 49

List of Tables

Table 1.1 - Various Models of RASPDEITY Pi ... ssssssssssssesssessessnsessseans 5
Table 4.1 - Location/Distribution of the Temperature SENSOTScooeereerererererresesressessesseesenns 15
Table 4.2 - Location of the Pressure SENSOTS ... sssssssssses 15
Table 4.3 - Material Properties of the Insulation Boards ... 16

viil

List of Figures

Figure 1.1- Direct Exchange Heat PUMP OPeration.......nenceseesesseseessssesssssesssssssssssssens 2

Figure 1.2 - Temperature variation at various depths as a function of time for Nicosia,

007401 D PP 4
Figure 4.1 - Functional Block Diagram for MCP3008 ..o sssssessens 11
Figure 4.2 - Electrical Instrumentation of the DeviCe ... 14
Figure 4.3 - Pi to Breadboard CONNECLION ..o sessesssssssesssssss e sssssssssees 14
Figure 4.4 - Ground Heat Simulation Using a 400W Heat Belt.......c.cccoonnrennenesencnessinenenens 16
Figure 4.5 - INSUIAted TanK ...t sss st 17
Figure 5.1 - Heat Pump COP vs. Time (Heat Belt Off)covnnnnriicisisesesesssseesesseesessesseeees 19
Figure 5.2 - Heat Pump COP vs. Time (Heat Belt On)......oinninisssessssssessessessessessesees 19
Figure 5.3 - Heat Transfer Rate vs. Time (Heat Belt Off) ... 20
Figure 5.4 - Heat Transfer Rate vs. Time (Heat Belt On)covvenennenennennennesnessiseesesseesessessesees 20
Figure 5.5 - Temperature vs. Time (Heat Belt Off).................... Error! Bookmark not defined.
Figure 5.6 - Temperature vs. Time (Heat Belt On).......c.ccc........ Error! Bookmark not defined.

15:¢

Chapter 1. Introduction

1.1 Introduction

Very low enthalpy geothermal energy (VLEGE) is heat transfer from the ground at low
depth and low temperatures of less than 40°C [1]. The direct exchange system (also known
as direct-expansion ground source heat pump) used in this project could be classified as a
VLEGE system since it is embedded at low depth of about 3ft. The coefficient of
performance (COP) of VLEGE systems is documented to be at around four [2]. In the case of
the VLEGE systems, the temperature difference of the heat sources is not large and
independent of the seasonal variations. Also, it is known that COP of the heat pump is

inversely proportional to the temperature difference of the heat sources [3].

The purpose of this project is to investigate a geothermal heat exchange system of ~ two
cubic meters dimension with small footprint requirements. Electronic sensors
(temperature and pressure) in conjunction with a Raspberry-Pi will be used to further
collect and investigate the operational parameters of the system. The operational steps to
be carried by the Raspberry Pi are coded using Python language. The collected data will be
analyzed using MATLAB code.

1.1.1 Project Objective
To investigate the effect of the ground temp profile on the performance of the geothermal

heat exchange system based on the current setup.

1.1.2 Project Scope
This project will solely look at the initial start-up conditions focusing only on the heating
mode of the system and will run for at least 10 consecutive hours to simulate the start-up

and initial heating of a dwelling.

The prototype (including the instrumentation) will be in a lab setting rather than being
installed underground. However, the system will be insulated on 5-sides except the top to
separate the system from the lab environment. The initial /starting conditions will be of ~
4.0°C and resemble that observed in the actual environment during the cold months in

Vancouver.

1.2 Background

The following section covers the overall background of this report in the areas of ground

heat, electronic instrumentation, and MATLAB data analysis.

1.2.1 Ground Heat
The typical operation of a geothermal exchange system with heat pump in heating mode is

illustrated (Figure-1.1).

Figure 1.1- Direct Exchange Heat Pump Operation

In VLEGE system(s), the heat exchange takes place by internal fluid flowing through a
collector system also known as the buried pipes. The collectors are placed horizontally
taking on different shapes. The sizing of these collectors is based on the thermal
performance of the soil (composition, density, water content, and the depth) in which the
system is buried in. The two key soil parameters for designing a VLEGE system are the soil

temperature at the collectors depth T(z) and the ground thermal diffusivity at the depth (cz)
[2].

Thermal diffusivity-« (m?/s) is the ability of material to conduct thermal energy in relation
to the material’s capacity to store thermal energy. It is calculated through division of

thermal conductivity by density and specific heat:

k

(x:_
oC

The ground thermal diffusivity values usually range from 1.72 x 10 m2/s to 3.0 x 10-¢ m2/s
based on the characteristics of the soil [4]. The search of the literature indicates that for a
given soil type of constant composition with different densities and/or moisture degrees
the o values range widely. Also, for a given soil and depth, depending on the rainfall a can
vary throughout the year. Therefore, it makes sense to work with average values [2]. The a
values could be estimated using tabulated data, experimentally in the laboratory setting
using a test tube sample of the soil and/or through performing a thermal response test
(TRT). TRT is the most reliable; however, most expensive method for analysis of soil

thermal properties. [5] [6] [7] and not suitable for small/residential scale projects.

1.2.2 Numerical Simulation of Vertical Ground Heat
The annual cycles of the daily average soil temperature at the surface and at depth close to
the surface follow a simple harmonic pattern that could be presented according to the

following [8]:

T soil(D,tyear) = Tmean - Tamp * exp(-\/ (T[/(365 * O()) * cos (21’[/365 (tyear - Lshift —

D/2./365/(t *))),

where:

T soil(D tyear) = Soil Temperature at depth D and Time of year

Tmean = Mean surface temperature (average air temperature). The temperature of the
ground at an infinite depth will be this temperature

Tamp = Amplitude of surface temperature [(maximum air temperature - minimum air

temperature) /2]

D = Depth below the surface (surface=0)
a = Thermal diffusivity of the ground (soil)
tyear = current time (day)

tshift = day of the year of the minimum surface temperature

Generally, it is known that the earth temperature beyond a depth of 1 meter is usually

insensitive to the diurnal cycle of air temperature and solar radiation. Also, annual

fluctuation of the earth temperature extends to a depth of about 10 meters. For example,
the temperature distribution with respect to time of the year for various depths is

calculated and tabulated based on the Kasuda formula for Nicosia, Cyprus (Figure-1.2) [9].

Figure 1.2 - Temperature variation at various depths as a function of time for Nicosia, Cyprus.

Florides and Kalogirou argue that the short-period temperature variations in winter are
prominent to a depth of approximately 0.5 m. Because of the high thermal inertia of the
soil, the temperature fluctuations at the surface of the ground are diminished as the depth
of the ground increases and the temperature at 0.25 m depth gets its highest value of the
day with a time lag of five hours compared to the maximum temperature at the depth of 0.1
m. The daily variation below the depth of 0.25 m is small and cannot be observed below the

depth of one meter [9].

1.2.3 Raspberry Pi

The Raspberry Pi(s) are a series of small single-board computers developed in the United
Kingdom by the Raspberry Pi Foundation. All Pi models feature a Broadcom system on a
chip (SoC) with an integrated ARM-compatible central processing unit (CPU) and an on-
chip graphics processing unit (GPU). Some of the related specifications can be summarized
as following: processor speed ranging from 700 MHz to 1.4 GHz for the Pi 3 Model B+; on-
board memory ranging from 256 MB to 1 GB RAM. Secure Digital (SD) cards in MicroSDHC

form factor (SDHC on early models) are used to store the operating system and program

memory. The Raspberry Pi can be accessed and operated with any other
device/component with USB capabilities such as generic USB computer keyboard and
mouse as well as USB storage, and USB to MIDI converters. The use of Raspberry Pi in both
home, industrial, and commercial automation has gained traction in the recent years due to
the low cost and relative simplicity of the system. The following is the complete list of

various Raspberry Pi models:

Table 1.1 - Various models of Raspberry Pi

The Raspberry Pi 3 B+ was used for this project. The following are the related

specifications for the system:

e 1.4 GHz 64-bit Quad-Core Processor,

e 1GBRAM

e Dual band 2.4HGz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN
The Raspberry Pi Foundation provides Raspbian, a Debian-based Linux distribution for
download that was used in this project along with Python programming language that was

used for coding.

1.2.4 Python (Programming Language)
Python was created by Guido van Rossum in 1991. Python is an interpreted language
meaning that it is a type of programming language for which most of its implementations

execute instructions directly and freely, without

previously compiling a program into machine-language instructions. It is also a multi-
paradigm programming language to allow programmers to use the most suitable
programming style and associated constructs for a given job including object-oriented
programming as well as structured programming. Furthermore, Python is highly extensible
in which all its functionality is not built into its core. Its compact modularity has made it
popular as a means of adding programmable interfaces to existing applications. Python is a
high-level programming language. An interesting fact about the Python language is that it
often uses English keywords where other languages use punctuation. The code looks close
to the way human think. Additionally, the Python code is interpreted at runtime instead of
being compiled to native code at compile time. Finally, Python is a dynamically typed
language (meaning that one does not need to type variable type like string, Boolean or int)
in contrast to the statically typed languages such as C, C++ or Java. The above advantages
are at the cost of speed and performance. Regardless of the limitations of the Python, it is a
highly productive, concise and expressive language that requires less time, effort, and lines
of code to perform the same operations compared to the other programming languages.
The above program attributes translate to shorter process development times and financial
savings in the real world. Considering the above advantages, I chose Python as the coding
language of choice to manage the electronic instrumentations for this project including the

temperature and pressure sensors.

1.2.5 Electronic Instrumentations

Instrumentation is defined as the art and science of measurement and control of the
process variables within a production or manufacturing area such as pressure,
temperature, humidity, flow, pH, force, speed, etc. Instrumentation is an inter-disciplinary
branch of engineering involved with development of new and intelligent sensors, smart
transducers, microelectromechanical systems, and Bluetooth technology. Instrumentation
and control engineering have routs in both electrical and electronics engineering and deal
with measurement, automation, and control processes. Instrumentation and ultimately
automation play an important role in reducing the involvement of manpower thus

improving: the productivity, optimization, stability, reliability, safety, and continuity.

The applications of instrumentation and control engineering are vast including bio-med,
chemical, oil & gas, power and many more. The application of building and airport
automation is another area that instrumentation has a huge role in it. Also, Robotics is an
interesting field that requires multidisciplinary skills including instrumentation and
control. The temperature and pressure are the two types of sensors used in this project for

the collection of data. The collected data was analyzed using MATLAB.

1.2.6 Data Analysis Using the MATLAB Code
MATLAB is a high-performance language that integrates computation, visualization, and

programming in an easy-to-use environment developed by MathWorks. The typical uses of

the MATLAB include:

e Math and computation

e Algorithm development

e Modeling, simulation, and prototyping

o Data analysis, exploration, and visualization
e Scientific and engineering graphics

e Application development, including Graphical User Interface building

Since the basic data element in MATLAB is an array that does not require dimensioning, the
program is able to solve many technical computing problems in a fraction of time
compared to scalar noninteractive languages such as C or Fortran. The MATLAB system

consists of five main parts including:

e The MATLAB language

e The MATLAB working environment

e The MATLAB graphics handling

e The MATLAB mathematical function library

e The MATLAB Application Program Interface (API)

Furthermore, MATLAB is a multi-paradigm numerical computing environment that allows

matrix manipulations, plotting of functions/data, implementation of algorithms, creation of

user interfaces, and interfacing with programs written in other languages including C, C++,
C#, Java, Fortran and Python. In addition, it can support object-oriented programing
including classes, inheritance, visual dispatch, packages, pass-by-value semantics and pass-
by-reference semantics. The collected data from the various experimental runs in this
project are saved in the from of *.CSV files and consequently imported to MATLAB for
analysis taking advantage of MATLAB’s inherent and powerful analysis capabilities

outlined above.

Chapter 2. Detailed Description of the Current Status

The ground and water-source heat pump geo-exchange systems aim to improve the
limitations of the current air-source geo-exchange systems related to a drop in the
efficiency (when the ambient temperatures fluctuate around and below freezing) by
removing heat from quasi-constant temperature heat sources via ground or large bodies of
water. The high cost related to the installation and land/real estate values in high density
urban areas are the two main inhibiting factors for the wide adaptation and installation of
the ground and water-source heat pump geo-exchange systems with horizontal loop
collectors.

The focus of this project is to build on the previous years’ projects through the design of the

electronic instrumentation to simulate ground heat profile, data collection and analysis.

2.1 Problem Statement

The previous attempt at designing a multi-source system resulted in a working prototype
that does not lock out before the desired runtime and has a comparable COP to current
standard systems while simultaneously removing the need for expensive external heat
exchanger loops. However, the system lacks proper instrumentation for the collection of

key data points for the purpose of analysis and optimization.

2.2 Project Hypothesis

[t is expected that by using a mini computer and programming/coding in conjunction with
the usage of temperature and pressure sensors one should be able to achieve complete
instrumentation of the system. Furthermore, by using the MATLAB code the collected data

could be analyzed.

Chapter 3. Theoretical Background

The complete theoretical background for this project could be found and is covered in depth in

the previous years’ reports namely phases I & II.

Chapter 4. Detailed Project Activities and Equipment

4.1 List of EQuipment

The following electronic components were used for the design and assembly of this project:
¢ Breadboard

e ADC-MCP3008

The MCP3008 is a low cost 8-channel 10-bit analog to digital converter. The MCP3008
is programmable to provide four pseudo-differential input pairs or eight single-ended
inputs. Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) are specified at +1
LSB. Communication with the devices is accomplished using a simple serial interface
compatible with the SPI protocol. The devices are capable of conversion rates of up to 200
ksps. The MCP3004/3008 devices operate over a broad voltage range (2.7V - 5.5V). Low-
current design permits operation with typical standby currents of only 5 nA and typical
active currents of 320 uA. The MCP3008 is offered in 16- pin PDIP and SOIC packages. The
functional block diagram of the MCP3008 is presented in Figure 4.1.

Vo Yss

CH7"la

Fr—— - — —

Figure 4.1 - Functional block diagram for MCP3008

This chip is a great option for reading simple analog signals, like from a temperature or

pressure sensor. Having 8 channels one can read quite a few analog signals from the Pi.

e DS18B20 temperature sensor(s)
DS18B20 is a digital temperature sensor. Digital temperature sensors are typically silicon
based integrated circuits. Most contain the temperature sensor, an analog to digital

converter (ADC), memory to temporarily store the temperature readings, and an interface

11

that allows communication between the sensor and a microcontroller. Unlike analog
temperature sensors, calculations are performed by the sensor, and the output is an actual
temperature value. The digital sensors differ from analog thermistors in several important
ways. In thermistors, changes in the temperature cause changes in the resistance of a
ceramic or polymer semiconducting material. Usually, the thermistor is set up in a voltage
divider, and the voltage is measured between the thermistor and a known resistor. The
voltage measurement is converted to resistance and then converted to a temperature value
by the microcontroller [10]. Moreover, DS18B20 communicates with the “one-wire”
communication protocol. This is a serial communication protocol that uses only one wire to
transmit the temperature readings to the microcontroller. Under normal operations the
DS18B20 requires 3 wires for proper operation: the Vcc, ground, and data wires. (In the
parasite power mode, only the ground and data lines are used, and power is supplied
through the data line). Additionally, A 64-bit ROM stores the device’s unique serial code.
This 64-bit address allows a microcontroller to receive temperature data from a virtually
unlimited number of sensors at the same pin. The address tells the microcontroller which
sensor a temperature value is coming from. Finally, this sensor is waterproof, has a wide
working range of -55°C to 125°C relevant to this project, and cheap.
e Pressure transducer sender sensor for oil fuel air water,1/8"NPT thread stainless steel
(500PSI)
A linearity curve was established according to the following series of equations and using

laboratory experimental setup in which the out put was measured using a gauge:

Pressure Voltage (V)
(psi)

500 4.5

V=(P 0)(hild >+05V
B 500psi '

12

Voltage (V) | ADC (bits)

5 1023

1023bits

ADC:(V—O)(=

) + Obits

1023bits

ADC (V@0.5V) = (V — 0) (=

) + Obits

ADC (V@0.5V) = 102.3 bits = 102 bits

ADC (V@4.5V) = 920.7 bits = 921 bits

ADC (bits) Pressure (psi)

102 0
921 500

P = (ADC 102)(500p5i>+0 ;
- 819bits) P

e (CanaKit Raspberry Pi 3 B+ (B Plus) Ultimate Starter Kit - 32 GB
e 15mm X4200mm 400W 120V KEENOVO Silicone Heater, Flexible Pipe Heating
Strip/Belt

4.2 Design Approach

The following section covers the steps that were taken to create the end design.

4.2.1 The Current Design

The following electrical drawing (Figure 4.2) describes the complete instrumentation of the

system.

Figure 2.2 - Electrical instrumentation of the device.

The following steps were taken in brief to achieve the above:

Step-1: The Pi was connected to the breadboard via the ribbon cable and the GPIO to breadboard

interface board as presented here (Figure 4.3).

Figure 4.3 - Pi to breadboard connection

14

Step-2: The multiple temperature sensors were connected in parallel in the “normal power mode”

(using a 4.7k resistor) from here-on known as “sensor-assembly”.

Step-3: The sensor-assembly was then connected to the Pi (in this case the GPIO to breadboard

interface board).
Step-4: The pressure transducers were connected through the ADC-MCP3008 to the Pi.
Step-5: Python was used to program/code the system and collect data (Appendix-A)

Step-6: The temperature sensors are/were distributed according to the following:

Sensor Location Sensor Location
#03159779f45a fin #03159779328b Tank wall 2
#0315977917a8 water #031197791b8b insulation
#03149779373a suction line #031197792d0b return air
#031597790418 supply line #03149779a32a supply air
#03159779876 Tank wall 1

Table 4.1 - Location/distribution of the temperature sensors

Step-7: The pressure sensors are/were distributed according to the following:

Sensor Location
pO Low Pressure Side
pl High Pressure Side

Table 4.2 - Location of the pressure sensors

Step-8: Heat belt and ground heat source simulation: The 400W heat belt was wrapped around
the tank at the height of 12” from the bottom of the tank as shown in Figure 4.4.

15

Figure 4.4 - Ground heat simulation using a 400W heat belt.

Step-9: 1.5” thick insulation panels (Table 4.3) were placed around the tank in order to separate

the tank physically from the laboratory environment at the 4-sides and the bottom (Figure 4.5).

Table 2.3 - Material properties of the insulation boards.

16

Figure 4.5 - Insulated tank

Step-10: The system was started and allowed to operate till the temperature of the water in the
tank was at about 4°C at which time the data collection and analysis were started either with the
heat belt “off” or the heat belt “on” to simulate the ground thermal energy until the complete

system lockout.

Step-11: The collected data was analyzed using the developed MATLAB code (Appendix-B)

17

Chapter 5. Discussion of results

5.1 Heat Pump COP vs. Time (Heat Belt Off & Heat Belt On)
The installation of the heat belt and the insulation of the tank had no effect on the COP of
the heat pump as evidence by the instrumentation. This COP value is an acceptable value

compared to what the heat pump was rated prior to incorporation into the system.

Heat Pump COP, vs Time - Heat Belt Off

18 T T

, |

. |
g
- 7
£
H
g |
i
%
3
g -
H

B
Time, t [hr]
Figure 5.1 - Heat Pump COP vs. Time (Heat Belt Off)
Heat Pump COP ,, vs Time - Heat Belt On
18
T T T T —

Heat Pump Cosfficient of Performance, COP

Time, t [hr]

Figure 5.2 - Heat Pump COP vs. Time (Heat Belt On)

5.2 Heat Transfer Rate vs. Time (Heat Belt Off & Heat Belt On)

The installation of the heat belt and the insulation of the tank had no effect on the heat
transfer rate as evidence by the instrumentation. Moreover, the results indicate that the
compressor efficiency is quite low. There is a much higher amount of electrical power put

into the system compared to the mechanical power.

Heat Transfer Rate vs Time - Heat Belt Off

. N

Heat Transfer Rate/Power Input. Q... Q.. WDot. , WDot..

Tirme, t [hr]

Figure 5.3 - Heat Transfer Rate vs. Time (Heat Belt Off)

Heat Transfer Rate vs Time - Heat Belt On
8
T T

Heat Transfer Rate/Power Input, Q,,, Q, , WDot, , WDot,,__, [kW]

Tirme, [hr]

Figure 5.4 - Heat Transfer Rate vs. Time (Heat Belt On)

20

5.3 Temperature vs. Time (Heat Belt Off & Heat Belt On)

The installation of the heat belt and the insulation of the tank for the purpose of ground
heat simulation increased the lockout time from ~22.5 hours to ~36.5 (14-hours increase)
indicating that the sensors that were installed are functioning correctly with acceptable

degree of accuracy.

Temperature vs Time - Heat Belt Off
&0
‘ T T

Temperature, T ['C]

Time, t [hr]

Figure 5.5 - Temperature vs. Time (Heat Belt off)

Temperature vs Time - Heat Belt On

Temperature, T [*C]

1 1 1 1 1 1 1 1 1
L] 5 10 15 20 25 30 35 40 45 50
Time, ¢ [hr]

20

Figure 5.6 - Temperature vs. Time (Heat Belt On)

21

Chapter 6. Conclusion
The successful instrumentation of the device was achieved allowing for sensitively analysis
and additional data collection. This in turn allows for investigation and the optimization of

system parameters in the next phase of this project.

Additionally, the installation and insulation of a heat belt around the tank was completed.
The instrumentation and data analysis established that once the heat belt is on, the amount
of time required for the system to reach the lockout was extended. The governing
mathematical equation [8] for the simulation of the ground heat was established through
the literature search. It is now possible to proceed and simulate the ground heat for e.g. in

Vancouver B.C. and the system response.

For these reasons mentioned above, the project was a success. The project has room for
improvement and investigation specifically in the areas of optimization by using the

established instrumentation (phase-III) and CFD simulations (phase-IV to be conducted).

23

Chapter 7. Lessons Learned

The main take home message from this project is that this is an interesting
multidisciplinary project where one can learn and expand on the basic knowledge of
electronics, instrumentation, programming, and thermodynamics among others. This is a
perfect opportunity for a group of students who would like to expand on their basic
knowledge of mechanical engineering and establish collaborative work possibly with

students and faculty at other institutions with strong research funding and capabilities.

During the phase-III of this project, I focused on the instrumentation and data analysis of
the system including the design, selection, programming, data collection, and finally the
analysis. While some time was dedicated to learning the ANSYS program (Discovery Live),
the recommendation would be to learn and use the ANSYS Fluent (student version) where
the software can be successfully installed without the need for a dedicated graphics card or

PC tower; therefore, allowing for more flexibility of resources and time.

25

Bibliography

[1]

[10]

[11]

A. Buzaianu, I. Csaki, P. Motoiu, G. Popescu, I. Thorbjornsson, K. R. Ragnarsodottir, S.
Guolaugsson, D. Goubmunson, "Recent Advances of the Basic Concepts in
Geothermal Turbines of Low and High Enthalpy," Advanced Materials Research, vol.
1114, pp. 233-238, 2015.

J. M. A. Marquez, M. A. M. Bohérquez, and S. G. Melgar, "Ground Thermal Diffusivity
Calculation by Direct Soil Temperature Measurement. Application to very Low
Enthalpy Geothermal Energy Systems," Sensors (Basel), vol. 16, no. 3, p. 306, 2016.

S. Graf, F. Lanzerath, A. Sapienza, A. Frazzica, A. Freni, A. Bardow, "Prediction of SCP
and COP for adsorption heat pumps and chillers by combining the large-
temperature-jump method and dynamic modeling," Applied Thermal Engineering,
vol. 98, pp. 900-909, 2016.

G. A. SA Taylor, Physical edaphology. The physics of irrigated and nonirrigated soils.,
San Francisco: W.H. Freeman and Company, 1972.

H. Fujii, H. Okubo, K. Nishi, R. toi, K. Ohyama, K. Shibata, "An improved thermal
response test for U-tube ground heat exchanger based on optical fiber
thermometers," Geothermics, vol. 38, no. 4, pp. 399-406, 2009.

S. Gehlin, "Thermal response test: method development and evaluation,” Lulea
University of Technology, Lulea, 2002.

B. Sanner, G. Hellstrom, J. Spitler, S.E.A. Ghelin, "Thermal Response Test - Current
Status and World-Wide Application," in Proceedings World Geothermal Congress ,
Antalya, 2005.

T. Kasuda, P.R. Achenbach, "Earth Temperature and Thermal Diffusivity at Selected
Stations in the United States," ASHRAE Transactions, vol. 71, no. Part 1, 1965.

G. F. A. Flroides, S. A. Kalogirou, "Annual ground temperature at various depths," in
Proceedings of CLIMA 2005, Lausanne, 2005.

"Circuit Basics," [Online]. Available: http://www.circuitbasics.com/raspberry-pi-
ds18b20temperaturesensortutorial /?fbclid=IwAR2LP4C69HaMr3zioF]JIb9Cty5NIq
PSXrV2iQnTECHgBjP013z3eh5Bj68s. [Accessed 28 April 2019].

N.Y, Engineering analysis with ANSYS software., Oxford Burlington: Butterworth-
Heinemann, 2006.

26

Appendix A - Programming Python Code

Get the readings from the
- temperature sensors via one-wire protocol
- pressure sensors via spi protocol and ADC
- save that data into a CSV file with a timestamp

import time;
from wlthermsensor import W1ThermSensor;

Import SPI library (for hardware SPI) and MCP3008 library.
import Adafruit_GPIO.SPI as SPI
import Adafruit MCP3008

ERROR_CODE =-999;

Hardware SPI configuration:

SPI_PORT =0;

SPI_DEVICE = 0;

adc = Adafruit_ MCP3008.MCP3008(spi=SPL.SpiDev(SPI_PORT, SPI_DEVICE));

List of all temperature sensors' ids

temp_ids =
('031197791b8b','0315977917a8','03149779373a','03159779f876','031597790418','031
59779f45a','031197792d0b','03159779328b','03149779a32a");
#03159779f45a fin

#0315977917a8 water

#03149779373a suction line

#031597790418 supply line

#03159779f876 Tank wall 1

#03159779328b Tank wall 2

#031197791b8b insulation

#031197792d0b return air

#03149779a32a supply air

Init the temperature sensors objects
def GetTempSensors(sensor_ids):
tempSensors = [];

1-Wire Temperature Sensor Config

for sensor_id_ in sensor_ids:
tempSensor = W1ThermSensor(sensor_id=sensor_id_);
tempSensors.append(tempSensor);

return tempSensors;

27

Get the ADC values from the converter (from 0 to 1023)
def GetADC(adc):
Read all 8 ADC channels and put values in a list.
values = [0]*8;
foriin range(8):
Make sure the SPI connection is established
try:
The read_adc function will get the value of the specified channel (0-7).
values(i] = adc.read_adc(i);

if values[i] == 0: raise; # If reading zero, that is also a problem in our application
except:
values[i] = ERROR_CODE;
pass;
return values;

Get the pressure in PSI readings from the adc sensors
def GetPressure(adc_v0, adc_v1):
Scaling linearly the ADC values to Pressure values
p0 = round((adc_v0 - 102) * (500/819) + 0);
pl =round((adc_vl - 102) * (500/819) + 0);

Check for errors
ifadc_v0 == ERROR_CODE: p0 = ERROR_CODE;
ifadc_vl == ERROR_CODE: p1 = ERROR_CODE;

return p0, p1;

Get the temperature readings in deg C from all the sensors
def GetTemperature(tempSensors):
temperatures = [];
for tempSensor in tempSensors:
Get the readings and make sure the sensor is working properly
try:
t = tempSensor.get_temperature();
t =round(t,3);
pass;

Otherwise the reading is -999

except:
t = ERROR_CODE;
pass;

temperatures.append(t);

28

pass;
return temperatures

Init the temperature sensors
tempSensors = GetTempSensors(temp_ids);

while 1:
Get adc Values from adc from the ADC Pressure sensor
adc_values = GetADC(adc);

Get the Pressure values from the adcCode
p0, p1 = GetPressure(adc_values[0],adc_values[1]);

Get the Temperature values in deg C
t0, t1, t2, t3, t4, t5, t6, t7, t8 = GetTemperature(tempSensors);

Get the time stamp
time_stamp = time.strftime("%x") +', + time.strftime("%X")

combine the readings into single line of CSV

line = time_stamp +"," + str(p0) +"," + str(p1) +"," + str(t0) + "," + str(t1) +"," +
str(t2) +"," +str(t3) +"," + str(t4) +"," + str(t5) + "," + str(t6) + "," + str(t7) +"," + str(t8) +
l\nl;

Output the readings to the CSV file in append mode
with open('/home/pi/Desktop/Readings.csv’, 'a') as filel:
filel.write(line);

print(line, end=");
pass;

29

Appendix B - Programming MATLAB Code

%% % %% % %% % %% %% Capstone Project - Heat Transfer Calculations

%% % % % % % % % % % % %% %

%% Background
%% %

% Using data collected from sensors connected to a retrofitted heat pump,

% Climate Master model number TCHO12AGD40CLSS,the heat transfer rates of
% the indoor and outdoor coils will be calculated as well as the COP of the

% the heat pump.

%

%% %% Variable Definitions

%% %

% A := Total area of flat panel heat exchanger [m”"2]

% COP_HP := Coefficient of performance of the heat pump in heating mode

% Cp := Average specific heat of dry air between -10C to 50C [J/kg*K]

% dt := Timestep [s]

% E := Voltage potential accross compressor windings [V]

% H := Height of flat panel heat exchanger [m]

% h_H20 := Heat transfer coefficient for flat panel heat exchanger [W/(m"2*K]
% I := Current draw from compressor [A]

% mDotAir := Mass flow rate of air [kg/s]

% pLow := Recorded absolute pressure on the low side of the heat pump [kPa]
% pHigh := Recorded absolute pressure on the high side of the heat pump [kPa]
% rhoAir := Density of air at Standard Air Condiditions [kg/m" 3]

% S := Entropy of refrigerant at a given point [k]/(kg*K)]

% T_HZ20 := Recorded temperature of the water in the tank [K]

% T_HX := Recorded temperature of the heat exchanger [K]

% T_Liquid := Recorded temperature of refrigerant on the liquid line [K]

% T_Suction := Recorded temperature of refrigerant on the suction line [K]

% T_Tank1 := Recorded temperature of tank wall at location 1 [K]

% T_Tank2 := Recorded temperature of tank wall at location 2 [K]

% T_Ins := Recorded temperature at midpoint of insulation [K]

% T_ReturnAir := Recorded temperature of return air [K]

% T_SupplyAir := Recorded temperature of supply air [K]

% VDot := SCFM of measurement from balometer converted to metric [m”"3/s]
% W := Width of flat panel heat exchanger [m]

% WDotIn:= Power draw from the compressor [kW]

% X := Quality of the refrigerant at a given point

%

%% %% Variable Declarations
%% %

clear; % Clears workspace

clc; % Clears command window

format long

30

CpAvg = 1005;
dt=8;

E = 240;
[=6.04;

H =26*0.0254;
rhoAir = 1.225;
S=0;

W =25*%0.0254;
X=0;

A = 2*H*W;
VDot = 590*0.0283168/60;
WDotIn = E*I/1000;

%% Code

%% % % % % % % % % % % % % % % % %0 % % % % % % % % % % % % % % % % % %

% Retrieve collected data from CSV file and assign to variables
[m,pLow,pHigh,T_H20,T_HX,T_Ins,T_Liquid,T_Discharge,T_Suction,T_c,T_Tank1,T_Tank2] =
getData('HeatBeltOff.csv');

% Retrieve data from spreadsheet containing saturated thermodynamic

% properties of Suva R410A refrigerant throughout its working pressure
[mTDPSat,nTDPSat,TDPSat]| = getTable('Thermodynamic Table for Saturated
R410AxlIsx',1);

% Retrieve data from spreadsheet containing superheated thermodynamic

% properties of Suva R410A refrigerant throughout its working pressure
[MTDPSup,nTDPSup, TDPSup] = getTable('Thermodynamic Table for Superheated
R410AxlIsx',2);

tMax = m*dt-1;
t=(0:dt/3600:tMax/3600)";

% Calculate the enthalpy of the refrigerant at four points of interest
[h1,h2,h3,h4,mDot,WDot] =
calculateParameters(m,mTDPSat,mTDPSup,nTDPSup,pLow,pHigh,TDPSat,TDPSup,T_Liqui
d,T_Discharge,T_Suction,T_c);

% Calculate the COP, mass flow rate, and heat transfer rate across both

% heat exchangers of the heat pump

[COP_HP,h_H20,QDotL,QDotH,WDotM] =
calculatePerformance(A,h1,h2,h3,h4,m,mDot,pLow,pHigh,T_HX,T_H20,WDot);

% Plot graphs of heat pump heat transfer rate, compressor power input,
% coefficient of performance, and heat transfer coefficient for flat panel
% heat exchanger

31

pl

fu

otResults(COP_HP,h_H20,QDotL,QDotH,t, WDot,WDotM);

nction [h1,h2,h3,h4,mDot,WDot] =

calculateParameters(m,mTDPSat,mTDPSup,nTDPSup,pLow,pHigh, TDPSat, TDPSup,T_Liqui
d,T_Discharge,T_Suction,T_c)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

calculateParameters finds and returns the parameters of interest for
analyzing the performance of a heat pump
Uses the saturated and superheated thermodynamic properties tables for
R410 refrigerant to find the enthalpies of the refrigerant at four
different locations on the heat pump

%% Variable Definitions

%% %
h1 := Enthalpy of refrigerant at the suction line
h2 := Enthalpy of refrigerant at the discharge line
h3 := Enthalpy of refrigerant at indoor HX coil outlet
h4 := Enthalpy of refrigerant at the liquid line
m := Number of rows in the data collection file for the heat pump
mTDPSat := Number of rows in the saturated thermodynamic properties table
mTDPSup := Number of rows in the superheated thermodynamic properties table
nTDPSup := Number of columns in the superheated thermodynamic properties table
TDP := Array of saturated thermodynamic properties for R410A
pLow := Recorded absolute pressure on the low side of the heat pump [kPa]
pHigh := Recorded absolute pressure on the high side of the heat pump [kPa]
S := Entropy of refrigerant at a given point [k]/(kg*K)]
T_Liquid := Recorded temperature of refrigerant on the liquid line [K]
T_Suction := Recorded temperature of refrigerant on the suction line [K]
T_ReturnAir := Recorded temperature of return air [K]
T_SupplyAir := Recorded temperature of supply air [K]
WDot:= Vector of size m of power draw from compressor [KW]
WDotIn:= Power draw from compressor [KW]
X := Quality of refrigerant at a given point

%% Code

%% %

h1 = zeros(m,1);
h2 = zeros(m,1);
h3 = zeros(m,1);
h4 = zeros(m,1);
mDot = zeros(m,1);
WDot = zeros(m,1);

fori=1:m
if(isSystemRunning(pLow(i),pHigh(i))) % Determine if compressor is ON
% Determine if refrigerant is saturated or superheated
if(isSaturatedVapour(pHigh(i),T_Discharge(i), TDPSat,mTDPSat))

32

h2(i) = getSaturatedVapourEnthalpy(T_Discharge(i),TDPSat,mTDPSat);
S = getSaturatedVapourEntropy(T_Discharge(i),TDPSat,mTDPSat);
X = getQuality(S,T_Suction(i),TDPSat,mTDPSat);
h1(i) = getSaturatedEnthalpy(T_Suction(i), TDPSat,mTDPSat,X);
else % Refrigerant is superheated
h2(i) = getVapourEnthalpy(pHigh(i),T_Discharge(i), TDPSup,mTDPSup,nTDPSup);
S = getVapourEntropy(pHigh(i),T_Discharge(i), TDPSup,mTDPSup,nTDPSup);
% Determine if refrigerant on low pressure side is saturated or superheated
if(isSaturatedVapour(pHigh(i),T_Discharge(i),TDPSat,mTDPSat))
X = getQuality(S,T_Suction(i),TDPSat,mTDPSat);
h1(i) = getSaturatedEnthalpy(T_Suction(i), TDPSat,mTDPSat,X);
else % Refrigerant on low pressure side is superheated
h1(i) = getVapourEnthalpy(pLow(i),T_Suction(i),TDPSup,mTDPSup,nTDPSup);
end
end
h3(i) = getSaturatedLiquidEnthalpy(T_c(i), TDPSat,mTDPSat);
S = getSaturatedLiquidEntropy(T_c(i), TDPSat,mTDPSat);
X = getQuality(S,T_Liquid(i),TDPSat,mTDPSat);
h4(i) = getSaturatedEnthalpy(T_Liquid(i), TDPSat,mTDPSat,X);
% Finds the mass flow rate of the refrigerant
mDot(i) = getMassFlowRate(T_Discharge(i)-273.15,T_Suction(i)-273.15);
WDot(i) = getCompressorPower(T_Discharge(i)-273.15,T_Suction(i)-273.15);
end
end
end

function [COP_HP,h_H20,QDotL,QDotH,WDotM] =
calculatePerformance(A,h1,h2,h3,h4,m,mDot,pLow,pHigh,T_HX,T_H20,WDot)
%calculatePerformance finds and returns the parameters of the performance
%of a heat pump

% Uses the the calculated enthalpies of the refrigerant at four

% different locations on the heat pump to calculate the COP,the mass flow

% rate,and heat transfer rate across both heat exchangers of the heat

% pump

%

%% %% Variable Definitions
%% %

% A :=Total area of flat panel heat exchanger [m"2]

% COP_HP := Coefficient of Performance of the heat pump in heating mode
% h1 :=Enthalpy of refrigerant at the suction line

% h2 := Enthalpy of refrigerant at the discharge line

% h3 := Enthalpy of refrigerant at indoor HX coil outlet

% h4 := Enthalpy of refrigerant at the liquid line

% h_H20 := Heat transfer coefficient for flat panel heat exchanger [W/(m”"2*K]
% QDotL := Heat transfer rate across outdoor coil [kW]

% QDotH := Heat transfer rate across indoor coil [kW]

33

% T_H20 := Recorded temperature of the water in the tank [K]

% T_HX:= Recorded temperature of the heat exchanger [K]

% WDot :=Vector of size m of power draw from compressor [kKW]

% WDotln := Power draw from compressor [kW]

% Code
%% %

COP_HP =zeros(m,1);
h_H20 = zeros(m,1);
QDotL = zeros(m,1);
QDotH = zeros(m,1);
WDotM = zeros(m,1);

fori=1:m
if(isSystemRunning(pLow(i),pHigh(i))) % Determine if compressor is ON
QDotL(i) = mDot(i).*(h1(i)-h4(i)); % Find heat transfer rate for outdoor coil
QDotH (i) = mDot(i).*(h2(i)-h3(i)); % Find heat transfer rate for indoor coil
WDotM(i) = QDotH(i)-QDotL(i);
if (WDotM(i) < 0)
WDotM(i) = 0;
end
h_H20(i) = QDotL(i)./(A*(T_HX(i)-T_H20(i)));
COP_HP(i) = QDotH(i)/WDot(i); % Find COP of heat pump
end
end
end

function [WDot] = getCompressorPower(Tc,Te)

%getCompressorPower returns the compressor power draw for the heat pump
% Uses manufacturer's specification sheet to calculate the compressor

% power draw for a Tecumseh OEM model No. HG143AR-502-A4

%

%% %% % %% Variable Definitions
%% %

% C1-C10 := Compressor constants for calculations

% m := Number of rows in the data collection file for the heat pump

% Tc:=Recorded temperature of refrigerant at the condensing coil [K]

% Te := Recorded temperature of refrigerant at the evaporator coil [K]

% WDot :=Power draw from the compressor [kW]

%

%% Code
%% %

C1=1.706937E+02;
C2=-1.120174E+01;
C3 =2.713094E+01;

34

C4 =-1.577200E+00;
C5=4.790266E-01;
C6 =-3.773444E-01;
C7 = 5.309486E-02;
C8 =5.289560E-03;
C9=-1.120708E-03;
C10 = 3.439925E-03;

WDot =

C1+C2*Te+C4*Te"2+C7*Te 3+(C3+C5*Te+C8*Te2)*Tc+(C6+C9*Te)*Tc 2+C10*Tc"3;
WDot = WDot/1000; % Converts to kW

End

function
[m,pLow,pHigh,T_H20,T_HX,T_Ins,T_Liquid,T_Discharge,T_Suction,T_c,T_Tank1,T_Tank2] =
getData(FileName)

%getData returns data from a CSV file

% Uses the given file name to retrieve and format a CSV file and return

% it with the specific columns of interest as variables

%

%% %% Variable Definitions
%% %

% FileName := The name under which the file of interest is saved under
% m := Number of rows of the given m x n matrix

% pLow := Pressure of refrigerant on low side [kPaA]

% pHigh := Pressure of refrigerant on high side [kPaA];

% T_HZ20 := Recorded temperature of water in tank [K]

% T_HX:= Recorded temperature of heat exchanger [K]

% T_Ins := Recorded temperature at midpoint of insulation [K]

% T_Liquid := Recorded temperature of refrigerant on liquid line [K]

% T_ReturnAir := Recorded temperature of return air [K]

% T_Suction := Recorded temperature of refrigerant on suction line [K]

% T_SupplyAir := Recorded temperature of supply air [K]

% T_Tankl := Recorded temperature of tank wall at location 1 [K]

% T_Tank2 := Recorded temperature of tank wall at location 2 [K]

%

%% Code
%% %

Table = readtable(FileName);

[m,~] = size(tableZarray(Table(:,1)));

pLow = tableZarray(Table(:,3))*6.89476+101.325;
pHigh = table2array(Table(:,4))*6.89476+101.325;
T_Ins = tableZarray(Table(:,5))+273.15;

T_H20 = table2array(Table(:,6))+273.15;
T_Suction = table2array(Table(:,7))+273.15;

35

T_Tank1 = table2array(Table(:,8))+273.15;
T_Liquid = table2array(Table(:,9))+273.15;
T_HX = table2array(Table(:,10))+273.15;
T_Discharge = table2array(Table(:,11))+273.15;
T_Tank?2 = table2array(Table(:,12))+273.15;
T_c = table2array(Table(:,13))+273.15;

End

function [mDot] = getMassFlowRate(Tc,Te)

%getMassFlowRate returns the refrigerant mass flow rate of the heat pump
% Uses manufacturer's specification sheet to calculate the refrigerant

% mass flow rate for a Tecumseh OEM model No. HG143AR-502-A4

%

%% %% Variable Definitions
%% %

% m := Number of rows in the data collection file for the heat pump

% mDot := Mass flow rate of refrigerant [kg/s]

% Tc:=Recorded temperature of refrigerant at the condensing coil [K]

% Te := Recorded temperature of refrigerant at the evaporator coil [K]

% C1-C10 := Compressor constants for calculations

%

%% Code
%% %

C1=1.734147E+02;
C2 =-8.440538E-01;
C3=-1.018925E+00;
C4 =-7.335037E-02;
C5=2.260299E-01;

C6 =-1.363841E-02;
C7 = 5.538000E-04;

C8 =4.559198E-03;

C9 =-2.795898E-03;
C10 = 2.005282E-04;

mDot =
C1+C2*Te+C4*Te”2+C7*Te”3+(C3+C5*Te+C8*Te”2)*Tc+(C6+C9*Te)*Tc 2+C10*Tc"3;
mDot = mDot/(2.20462*3600); % Convert to kg/s from Ib/hr
end

function [X] = getQuality(S,T,TDP,m)

%getQuality returns the quality of the refrigerant in the saturated region

% Uses thermodynamic tabular data for Saturated R410A to find the quality
% of the saturated refrigerant for a given temperature and entropy equal

% to that of the high pressure side of the regfrigeration cycle

%

36

%% %% % %% Variable Definitions
%% %

% m := Number of rows in TDP

% T :=Temperature of refrigerant [K]

% TDP := Array of saturated thermodynamic properties for R410A

% S := Entropy of higher pressure refrigerant [Kk]/(kg*K)]

% X :=The quality of the refrigerant

%

%% Code

%% %

i=1;
T =T-273.15; % Convert to degrees Celsius

while(T >=TDP(j,1) && i <=m)
i=i+1;

end

i=i-1;

% Single linear interpolations

Sf=((TDP(i+1,11)-TDP(i,11))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,11);

Sg = ((TDP(i+1,12)-TDP(i,12))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,12);
. ﬁ = (S-Sf)/(Sg-5f);

n

function [Hf] = getSaturatedLiquidEnthalpy(T,TDP,m)
%getSaturatedLiquidEnthalpy returns the enthalpy of the refrigerant at the
%saturated liquid state

% Uses thermodynamic tabular data for Saturated R410A to find the value
% of the liquid saturation enthalpy for a given temperature

%

% %% Variable Definitions
%% %

% Hf := Enthalpy of saturated liquid refrigerant [k]/kg]

% m := Number of rows in TDP

% T := Temperature of refrigerant [K]

% TDP := Array of saturated thermodynamic properties for R410A

%

%% Code
%% %

i=1;
T =T-273.15; % Convert to degrees Celsius

while(T >= TDP(i,1) && i <= m)
i=i+1;

37

end
i=i-1;

% Single linear interpolation
Hf = ((TDP(i+1,8)-TDP(i,8))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,8);
end

function [Sf] = getSaturatedLiquidEntropy(T,TDP,m)
%getSaturatedLiquidEntropy returns the entropy of the refrigerant at the
%saturated liquid state

% Uses thermodynamic tabular data for Saturated R410A to find the value
% of the liquid saturation entropy for a given temperature

%

% %% Variable Definitions
%% %

% m := Number of rows in TDP

% T :=Temperature of refrigerant [K]

% TDP := Array of saturated thermodynamic properties for R410A

% Sf:= Entropy of saturated liquid refrigerant [k]/(kg*K)]

%

%% Code
%% %

i=1;
T =T-273.15; % Convert to degrees Celsius

while(T >=TDP(j,1) && i <=m)
i=i+1;

end

i=i-1;

% Single linear interpolation
Sf=((TDP(i+1,11)-TDP(i,11))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,11);
end

function [Hg] = getSaturatedVapourEnthalpy(T,TDP,m)
%getSaturatedVapourEnthalpy returns the enthalpy of the refrigerant at the
%saturated vapour state

% Uses thermodynamic tabular data for Saturated R410A to find the value
% of the vapour saturation enthalpy for a given temperature

%

%% %% Variable Definitions
% %

% Hg := Enthalpy of saturated vapour refrigerant [k]/kg]

% m := Number of rows in TDP

% T :=Temperature of refrigerant [K]

% TDP := Array of saturated thermodynamic properties for R410A

%

%% Code
%% %

i=1;
T =T-273.15; % Convert to degrees Celsius

while(T >=TDP(j,1) && i <=m)
i=i+1;

end

i=i-1;

% Single linear interpolation
Hg = ((TDP(i+1,10)-TDP(i,10))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,10);
end

function [Sg] = getSaturatedVapourEntropy(T,TDP,m)
%getSaturatedVapourEntropy returns the entropy of the refrigerant at the
%saturated vapour state

% Uses thermodynamic tabular data for Saturated R410A to find the value
% of the vapour saturation entropy for a given temperature

%

% %% Variable Definitions
%% %

% m := Number of rows in TDP

% T :=Temperature of refrigerant [K]

% TDP := Array of saturated thermodynamic properties for R410A

% Sg:= Entropy of saturated vapour refrigerant [k]/(kg*K)]

%

%% Code
%% %

i=1;
T =T-273.15; % Convert to degrees Celsius

while(T >=TDP(j,1) && i <=m)
i=i+1;
end
i=i-1;
% Single linear interpolation
Sg = ((TDP(i+1,12)-TDP(i,12))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,12);
End

function [m,n,Table] = getTable(FileName,num)

39

%getTable returns data from a excel spreadsheet

% Uses the given file name to retrieve and format an excel spreadsheet

% file and returns it as an array of size m x n

%

%% %% Variable Definitions
%% %

% Data := A MatLab table file from the retrieved data

% FileName := The name under which the file of interest is saved under
% m := Number of rows of the given m x n matrix

% n := Number of columns of the given m x n matrix

% num := An integer used to determine what section of the file is of

% interest and should be retrieved

% Table := An m x n array containing the tabular data of interest

%

%% Code
%% %

if(num == 1)
Data = readtable(FileName, Range','A3:1.173",'ReadVariableNames' false);
[m,n] = size(tableZarray(Data(:,1))); % Number of rows of m x n matrix
Table = tableZarray(Data(:,:));

else
Data = readtable(FileName,'ReadVariableNames' false);
[m,n] = size(table2array(Data)); % Number of rows of m x n matrix
Table = table2array(Data(:,:));

end

end

function [Hv] = getVapourEnthalpy(P,T,TDP,m,n)

%getVapourEnthalpy - Returns vapour enthalpy of the refrigerant for a given
%temperature, and pressure

% Uses thermodynamic tabular data for superheated R410A to find the value
% of the vapour enthalpy for a given temperature and pressure

%

%% %% Variable Definitions
%% %

% Hv := Enthalpy of superheated vapour refrigerant [k]/kg]

% m := Number of rows in TDP

% p :=Pressure of refrigerant [kPaA]

% T := Temperature of refrigerant [K]

% TDP := Array of superheated thermodynamic properties for R410A

%

%% Code
%% %

40

Href =141.1;
i=1;
j=2;

P =P*0.14504; % Convert to PSIA
T =T*1.8+32-459.67; % Convert to degrees Fahrenheit

while(T >=TDP(j,1) && i <=m)
i=i+1;

end

i=i-1;

function [Sv] = getVapourEntropy(p,T,TDP,m,n)

%getVapourEntropy - Returns vapour entropy of the refrigerant for a given
%temperature, and pressure

% Uses thermodynamic tabular data for superheated R410A to find the value
% of the vapour entropy for a given temperature and pressure

%

%% %% Variable Definitions
%% %

% m := Number of rows in TDP

% p :=Pressure of refrigerant [kPaA]

% T := Temperature of refrigerant [K]

% TDP := Array of superheated thermodynamic properties for R410A

% Sv := Entropy of superheated vapour refrigerant [Kk]/(kg*K)]

%

%% Code
%% %

i=1;
j=2
Sref = 0.7666;

p =p*0.14504; % Convert to PSIA
T =T*1.8+32-459.67; % Convert to degrees Fahrenheit

while(T >=TDP(j,1) && i <=m)
i=i+1;

end

i=i-1;

while(p >= TDP(1,j) &&j <=n)
j=j+3;

end

j=j-3;

41

% Double linear interpolation

SvLow = ((TDP(i+1,j+2)-TDP(i,j+2))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,j+2);
SvHigh = ((TDP(i+1,j+5)-TDP(i,j+5))/(TDP(i+1,1)-TDP(i,1)))*(T-TDP(i,1))+TDP(i,j+5);
Sv = ((SvHigh-SvLow)/(TDP(1,j+5)-TDP(1,j+5))*(p-TDP(1,j+1))+SvLow)/0.23901+Sref;

End

function [bool] = isSaturatedVapour(p,T,TDP,m)

%isSaturatedVapour returns true if refrigerant is saturated and false
%otherwise

% Uses thermodynamic tabular data for Saturated R410A to find out whether
% the refrigerant is saturated or superheated fo a given temperature and
% pressure

%

%% %% Variable Definitions
%% %

% Hg := Enthalpy of saturated vapour refrigerant [k]/kg]

% m := Number of rows in TDP

% p :=Pressure of refrigerant [kPaA]

% T := Temperature of refrigerant [K]

% TDP := Array of saturated thermodynamic properties for R410A

%

%% Code
%% %

TOL =50;
bool = false;
i=1;

T =T-273.15; % Convert to degrees Celsius

while(T >=TDP(j,1) && i <=m)
i=i+1;

end

i=i-1;

function [bool] = isSystemRunning(pLow,pHigh)

%isSystemRunning returns true if the heat pump is ON or false if OFF

% Compares the refrigerant pressures on the low and high side of heat

% pump and if they are within a certain tolerance, returns false

% (compressor is OFF), otherwise returns true

%

%% %% Variable Definitions
% %

% pLow := Pressure of refrigerant on low side [kPaA]

42

% pHigh := Pressure of refrigerant on high side [kPaA]

%

%% Code
%% %

TOL =100;

if(abs(pHigh - pLow) <=TOL)
bool = false;
else
bool = true;
end
end
load('COPHPBeltOff.mat")
load('COPHPBeltOn.mat")
load('mDotBeltOff.mat")
load('mDotBeltOn.mat")
load('QDotHBeltOff.mat")
load('QDotHBeltOn.mat")
load('QDotLBeltOff.mat")
load('QDotLBeltOn.mat")
load('T_H20BeltOff.mat")
load("T_H20BeltOn.mat")
load('T_Tank1BeltOff.mat")
load('T_Tank1BeltOn.mat")
load('T_Tank1BeltOn.mat")

C=273.15;
% beta=@(T) ((-32.74-(-68.5))/(275-273.15))*(T-273.15)-68.5;
dt=8;
% g=9.81;
% TOL = le-4;
% k2=14.9;
% L2=3/16;
% kf=@(T) ((574e-3-569e-3)/(275-273.15))*(T-273.15)+569e-3;
% nu=@(T) (((1652e-6-1750e-6)/(275-273.15))*(T-273.15)+1750e-6)/1000;
% Pr=@(T) ((12.22-12.99)/(275-273.15))*(T-273.15)+12.99;
[m1,~] = size(COP_HP);
[m2,~] = size(COP_HPOn);
tMax1 = m1*dt-1;
tMax2 = m2*dt-1;
t1 = (0:dt/3600:tMax1/3600)’;
t2 = (0:dt/3600:tMax2/3600)";
i1 =2806;
i2=530;
tl =t1(i1:m1)-t1(i1);

43

%
%
%
%

%
%
%

t2 =t2(i2:m2)-t2(i2);

COP_HP = COP_HP(i1:m1);
COP_HPOn = COP_HPOn(i2:m2);
mDot = mDot(il:m1);

mDotOn = mDotOn(i2:m2);

QDotH = QDotH(i1:m1);

QDotHOn = QDotHOn(i2:m2);

QDotL = QDotL(i1:m1);

QDotLOn = QDotLOn(i2:m2);
T_H20=T_H20(i1:m1)-273.15;
T_H200n = T_H200n(i2:m2)-273.15;
T_Tankl = T_Tank1(i1:m1)-273.15;
T_Tank1On = T_Tank10On(i2:m2)-273.15;

Gr_L =@(beta,nu,T_s,T_inf) g*beta*(T_s-T_inf)/(nu”2);

gPr=@(Pr) 0.75*Pr”*(1/2)/((0.609+1.221*Pr"(1/2)+1.238*Pr)*(1/4));
T_s=T_Tank1(1)+1;

T S=0;

fori=2:m
while(abs(T_S-T_s) > TOL)
T_S =T_Tank1-(4/3)*(L2/k2)*(T_s-

T_H20(i))*(Gr_L(beta(T_H20(i)),nu(T_H20(i)),T_s, T_H20(i))/4) (1/4)*gPr(Pr(T_H20(i)));

%
%

end
end

figure

plot(t1,T_H20,t1,T_Tank1,t2,T_H200n,t2,T_Tank10n);

title('Temperature vs Time");

xlabel('Time, t [hr]','fontweight’,'bold");

ylabel("Temperature, T [°C]','fontweight’,'bold");

legend('T_H_2_O - Heat Belt Off','T_T_a_n_k - Heat Belt Off','T_H_2_O - Heat Belt

On','T_T_a_n_k - Heat Belt On");

grid on;

figure

plot(t1,QDotL,t2,QDotLOn);

title('Heat Transfer Rate vs Time - Heat Belt On');
xlabel('Time, t [hr]','fontweight’,'bold");

ylabel('Heat Transfer Rate, Q_L [kW]','fontweight’,'bold");

legend('Evap Coil Heat Transfer Rate - Heat Belt Off','Evap Coil Heat Transfer Rate - Heat
Belt On');

grid on;

figure
plot(t1,COP_HP,t2,COP_HPOn);

44

title('Heat Pump COP_H_P vs Time - Heat Belt On');

xlabel('Time, t [hr]','fontweight’,'bold");

ylabel('Heat Pump Coefficient of Performance, COP_H_P','fontweight’,'bold");
legend('COP_H_P - Heat Belt Off',"COP_H_P - Heat Belt On');

grid on;

function [] =

plotResults(COP_HP,h_H20,m,QDotL,QDotH,t, T_H20,T_HX,T_Liquid, T_Suction,T_Discharge,
T_c,WDot,WDotM)

%plotResults plots various parameters of interest

% Plots heat pump performance parameters and formats plots

%

%% %% Variable Definitions

%% %

% COP_HP := Coefficient of Performance of the heat pump in heating mode

% h_H20 := Heat transfer coefficient for flat panel heat exchanger [W/(m”"2*K]
% QDotL := Heat transfer rate across outdoor coil [kW]

% QDotH := Heat transfer rate across indoor coil [kW]

% t:=Vector of timesteps [s]

% WDot :=Vector of size m of power draw from compressor [kW]

%

%% Code

%% %

C=273.15;
i=1;
tCF = t(i);

figure

plot(t(i:m)-tCF,T_H20(i:m)-C,t(i:m)-tCF,T_HX(i:m)-C,t(i:m)-tCF,T_Liquid(i:m)-C,t(i:m)-
tCF,T_Suction(i:m)-C,t(i:m)-tCF,T_Discharge(i:m)-C,t(i:m)-tCF,T_c(i:m)-C);

title('Temperature vs Time - Heat Belt On');

xlabel('Time, t [hr]','fontweight’,'bold");

ylabel("Temperature, T [°C]','fontweight’,'bold");

ns.e.r');
grid on;

figure

plot(t(i:m)-tCF,QDotH(i:m),t(i:m)-tCF,QDotL(i:m),t(i:m)-tCF,WDot(i:m),t(i:m)-
tCF,WDotM(i:m));

title('Heat Transfer Rate vs Time - Heat Belt On');

xlabel('Time, t [hr]','fontweight’,'bold");

ylabel('Heat Transfer Rate/Power Input, Q_H, Q_L, WDot_i_n, WDot_M_e_c_h
[KW]','fontweight’,'bold');

45

legend('Condensing Coil Heat Transfer Rate','Evap Coil Heat Transfer Rate','Compressor
Electrical Load','Compressor Mechanical Load');
grid on;

figure

plot(t(i:m)-tCF,COP_HP(i:m));

title('Heat Pump COP_H_P vs Time - Heat Belt On');

xlabel('Time, t [hr]','fontweight’,'bold");

ylabel('Heat Pump Coefficient of Performance, COP_H_P','fontweight’,'bold");
legend('COP_H_P');

grid on;

figure
plot(t(i:m)-tCF,h_H20(i:m));
title('Heat Exchanger Convective Heat Transfer Coefficient vs Time - Heat Belt On');
xlabel('Time, t [hr]','fontweight’,'bold");
ylabel('Convective Heat Transfer Coefficient, h_H_2_0 [kW/m”"2K]','fontweight’,'bold");
legend('h_H_2_0");
grid on;
end

46

Appendix C - Data Sheet for Tranquility Compact (TC) Series

47

48

Appendix D - R410A Thermodynamic Properties

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

08

81

