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ABSTRACT

The ability to predict student performance in a course or program
creates opportunities to improve educational outcomes. With effec-
tive performance prediction approaches, instructors can allocate
resources and instruction more accurately. Research in this area
seeks to identify features that can be used to make predictions, to
identify algorithms that can improve predictions, and to quantify
aspects of student performance. Moreover, research in predicting
student performance seeks to determine interrelated features and
to identify the underlying reasons why certain features work better
than others. This working group report presents a systematic liter-
ature review of work in the area of predicting student performance.
Our analysis shows a clearly increasing amount of research in this
area, as well as an increasing variety of techniques used. At the
same time, the review uncovered a number of issues with research
quality that drives a need for the community to provide more de-
tailed reporting of methods and results and to increase efforts to
validate and replicate work.
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1 INTRODUCTION

In the psychology and education-related scholarly literature, work on deter-
mining factors that contribute to academic performance has existed at least
for a century. For example, in the late 1910s, a wide range of tests such as
verbal memory tests were conducted with freshmen in an attempt to tease
out factors that correlate with academic performance [45, 246, 397]. While
the early work was conducted within psychology, interest in identifying
individuals with particular performance characteristics such as the ability
to program emerged soon thereafter [236].

While the earlier studies on identifying programming ability were mostly
focused on attempting to find individuals who could perform as program-
mers [236], subsequent work spanned to trying to identify factors that
predict students’ computer aptitude [112] and performance in program-
ming courses [340]. The reasons for predicting aptitude are numerous of
which Evans and Simkin outline several [112]: identifying potential majors,
discriminating among applicants, advising students, identifying productive
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individuals, identifying those who may best profit from additional guidance,
improving classes, determining importance of existing predictors, and ex-
ploring the relationship between programming abilities and other cognitive
reasoning processes.

Parallel to this, there has been a stream of research that studies why
students struggle with learning to program. A rather famous example of
this work is the research on the rainfall problem, where students are ex-
pected to write a program that reads in numbers and then calculates their
average [347]. While the problem has been studied rather extensively [333],
one of the interesting approaches taken to study the problem was the instru-
mentation of working environments. For example, when studying students
working on the rainfall problem, Davies employed a system that recorded
key presses for further analysis [88].

Since then, systems that record students’ working process have been
further adopted into computing education research [168]. This adoption of
instrumented tools, combined with modern hardware, has created an oppor-
tunity to directly observe and react to student data, which has invigorated
the research in models that can be used to predict academic performance.

This report is the outcome of an ITiCSE working group that is seeking
to connect various communities — including those outside of computing ed-
ucation — that are supporting the work of predicting academic performance
in computing courses. The working group is composed of internationally-
diverse members with a variety of academic interests, and it worked for a
period of three months, including an intensive five-day meeting at ITICSE
in July 2018.

We outline the results of a systematic literature review containing 357
articles that describes the breadth of work being done on the prediction
of student performance in computing courses. In addition to the review
itself, which summarizes the types of performance being predicted and the
factors and methods used to perform the predictions, we identify trends in
feature and method use over time, and offer insights obtained as we read.
We believe this work is a mapping that will help to connect researchers in
this area by identifying clusters of related work being published in different
venues and highlighting opportunities for collaboration, integration, and
broader dissemination.

1.1 Research Questions and Scope

The group initially sought to find literature related to identifying students
who are “academically at-risk” [148], but initial forays into the literature
highlighted that the term at-risk is often used to identify youth in disadvan-
taged circumstances. Several other terms, including performance, were used
to focus the work on students at academic risk. As a result, the prediction
of student performance became the focus of the group. We explored the
following research questions:

(1) What is the current state of the art in predicting student perfor-
mance?
(a) How is performance defined? What types of metrics are used for
describing student performance?
(b) What are the features used for predicting performance?
(c) What methods are used for predicting performance?
(d) Which feature and method combinations are used to predict
which types of student performance?
(2) What is the quality of the work on predicting student performance?

Both the metrics describing students performance and features used to
predict them can be considered as variables. In the following, we will call
input variables as features and output variables (i.e., performance metrics)
as predicted (or output) variables. The term method refers to how output
variables have been derived (possibly from the inputs).

The search terms used to identify the articles for this study are described
in Section 3, but we include a discussion of the term performance here to
define the scope of this work. For the purposes of this literature review, we
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defined the term broadly, including performance on a single assessment,
performance in a course, retention in or continued progress through a
program, and successful matriculation from a program. However, we only
considered prediction of quantifiable metrics that are directly related to the
course or the program such as grades, pass/fail probability, or retention in a
program. We do not include articles that predict proxies, such as depression
or team cohesion, that are not quantifiable or directly related to academic
performance, even if they are likely to affect it. Similarly, we exclude articles
that deal with predictions that may be a product of academic performance,
such as employability, or articles that do not directly predict performance,
such as those that primarily evaluate pedagogical interventions.

As a result of this broad focus on performance, our review covers a wide
range of factors and contexts. As shown in Figure 1, students face challenges
at many points in their academic career, and the factors contributing to
those challenges vary widely, from family and economic stress to issues
with academic preparation and a lack of study skills. We did not exclude any
factors or methods that were identified in the articles that were included,
though we attempted to cluster them into higher-level tags, such as “wealth”
or “social factors” due to the diversity of individual factors examined.

1.2 Report Outline

This report is organized as follows. In the subsequent section, Section 2, we
provide an overview of the existing review and survey articles on predicting
student performance. The section discusses the exclusion and inclusion
criterion, time spans, and suggested terminology and taxonomies in the
existing literature. We draw upon this work when formulating our search
and inclusion criteria, which are described in Section 3. Sections 4 and 5
present the results of the review, with Section 4 focusing on descriptive
statistics and the results of a textual analysis and Section 5 presenting issues
that emerged as reviewers completed the process. We provide several calls to
the community and highlight possible directions for future work in Section 6.
The list the articles reviewed is provided in Table 13, and we provide the
form used to extract data from each reviewed article in an appendix. The
form is provided so that readers can review our method, identify sources of
bias, and if they wish, modify or extend our form for their use in similar
projects.

2 SYNTHESIZING PREVIOUS REVIEWS ON

PREDICTING STUDENT PERFORMANCE

This section provides a synthesis of previous reviews and surveys on pre-
dicting student performance. Our goal was to identify categories and trends
already identified in existing reviews, so that our review uses common
terminology, where possible, while also contributing a new understand-
ing of the literature in the field. The synthesis described in this section
informed the instrument we used in our study. A description of the data
extraction instrument is provided in Section 3.1.3, and details are provided
in Appendix A.

The corpus for the synthesis was created through metadata searches on
the article indexes Scopus, IEEE Xplore, and the ACM Digital Library. For the
search, the search string “student AND predict* AND performance AND
(review OR survey)” - or the equivalent variant expected by each article
engine — was used. The search was conducted in June 2018, and resulted in
a total of 147 hits, including duplicates that were indexed in multiple sites.
Manual inspection of article titles and abstracts and exclusion of one-page
extended abstracts reduced the count to 13 reviews and surveys of the area.
Because of the focus on performance prediction, broad reviews of educational
data mining and learning analytics, such as [39, 102, 168, 269, 318], were
omitted.

The quality of the reviews varied. In particular, the bounds of the search
performed in the review or survey were not always well defined. Of the 13
articles, eight [160, 185, 198, 204, 252, 253, 269, 335] listed at least some of
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Academic Loss Points: Why Do Students Drop?
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Figure 1: Points in a student’s academic life, using CS as an example, where data for performance prediction can be gathered
and performance prediction can be done. Both the first and second year loss factors can continue, to a lesser extent, through

to graduation.

the sources, venues or fields that they had searched. Only six [198, 204, 252,
253, 269, 335] listed the keywords or search terms used. Eight [99, 160, 185,
198, 252, 253, 269, 335] described a year range or the absence thereof. All
surveyed a limited number or range of articles.

In this review of surveys, we collected and synthesized what these ex-
isting reviews and surveys reported about factors for predicting student
performance, methods used for predicting student performance, and how
the articles described performance. Of the reviewed articles, five [160, 198,
204, 253, 335] summarized factors, two [252, 335] summarized method-
ologies, and four [160, 198, 204, 252] offered insights into the meaning of
performance or what was being predicted. None of the surveys discussed all
three of these issues, but five [160, 198, 204, 252, 335] discuss two of them.

2.1 Factors

Table 1 contains a listing of the high-level factors used for predicting stu-
dent performance. The category sizes range widely, from 3 to 10, indicating
that the review authors saw value in various levels of abstraction when
categorizing factors. We drew inspiration from this list when constructing
the form we used to extract data. Our aim was to create a broad catego-
rization that enables identification of the source of the data being used, so
we synthesized the categories used in the reviews into Family Background,
Demographic Data, Working Conditions, Educational Background, Course
Data (current or parallel), Student Motivation, and Psychological / Affective
/ Learning Scales. We split motivation and other scales into two categories
because motivation is a complex construct that has been extensively used
and studied for predicting performance, so we expected to see a variety of
types of motivation (and corresponding instruments) used in the articles
we reviewed.

2.2 Methods

Muthukrishnan et al. [252] categorized methods used for predicting perfor-
mance into four high level categories: Decision trees, Regression, Clustering,
Dimensionality reduction / other. Overall, other articles - if they included
methods for predicting performance - did not explicitly attempt to provide
a categorization, but provided lists of methods that have been used for
prediction. In our form, we used the high-level categories Classification
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Table 1: High-level categorization of factors that can be used
for predicting performance from the articles included in the
synthesis.

Study Factors

[160]  Activity and course features, Demographic features, Learn-
ing behavior features, Self-reported features, Student history
record and performance, Student record and performance in
current course, Others / unclear features

[198] Academic, Family, Institutional, Personal, Social

[204]  Academic performance, Socio-economic, Personal information

[253] Learning behaviour data, Learning network data, Learning
level data, Learning emotional data, Other

[335] Cumulative Grade Point Average, Engage time, External assess-

ments, Extra-curricular activities, Family support, High-school
background, Internal Assessment, Social interaction network,
Study behavior, Student demographic, Student interest

(supervised learning), Clustering (unsupervised learning), Mining (finding
frequent patterns and/or feature extraction), and Statistical (correlation,
regression, t-testing, etc), and we encouraged reviewers to provide details
on the specific techniques used underneath these high-level categories.

A few of the articles compared the performance of methods through
metrics such as accuracy that were extracted from the surveyed literature.
While this approach has appeal, and we did extract such performance metrics
from the articles we reviewed, we found that the contexts of the studies
varied so significantly and the quality of reporting varied so widely that a
meta-review would not be meaningful. A comparison of reported accuracy
ratings would, in our opinion, lead the reader to misconceptions about the
performance of various methods.

2.3 Definitions of Performance

Most of the articles included in the synthesis did not explicitly define per-
formance. This may be a consequence of the articles being reviews of other
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articles, effectively creating a situation where other articles are included as
long as they predict performance — no matter if they defined what it means.
The closest to a definition of performance was provided in [160], where
the authors suggest that, “studies tended to predict course performance
(successful/unsuccessful), course grades and student retention/dropout in
online/blended learning contexts.”

We found the lack of definition problematic, as it led some surveys to
include articles with significantly different goals. Therefore, we reviewed
the articles for trends to see what was most included. Many agreed that
assessments, defined broadly, are the key metric. For example, one review
notes that:

... students performance can be obtained by measuring the
learning assessment and co-curriculum. However, most of
the studies mentioned about graduation being the measure
of students success. Generally, most of higher learning insti-
tutions in Malaysia used the final grades to evaluate students
performance. Final grades are based on course structure, as-
sessment mark, final exam score and also extracurricular
activities. [335]

Another article, from 2017, agrees that student performance can be
observed using internal assessment metrics:

Most of the Indian institution and universities using [sic] fi-
nal examination grade of the student as the student academic
performance criteria. The final grades of any student depend
on different attributes like internal assessment, external as-
sessment, laboratory file work and viva-voce, sessional test.
The performance of the student depends upon how many
grades a student score in the final examination. [198]

However, some articles define performance more broadly. For exam-
ple, [204] defines performance as, “... a measure of a student’s competence
for future courses.” They note that:

In addition to passing or failing a course, the grade obtained
is also of interest to course instructors. Furthermore, aca-
demic advisors would be interested in the time required for a
student to complete a degree and his/her ability of enrolling
in multiple programs. [204]

We agree with the inclusion of these wider factors. As a result, our data
extraction form initially included a range of academic performance factors,
including various forms of internal course assessment, but also including
program retention and likelihood of graduation as possible values to be
predicted.

Another survey, which provided an overview of the values being pre-
dicted in the articles they reviewed, agrees that the literature defines perfor-
mance broadly. They noted that the majority of articles they saw predicted
final grades in courses, but they saw other predictions being made when the
context is outside of the traditional classroom [252]. This led us to include
several questions about the population being studied in our data extraction
form, including the topic of the course in which the prediction is being
employed, the format of the course (e.g., traditional, online, hybrid, MOOC,
etc.), and the type of students in the study (e.g., K-12, non-majors, graduate
students, etc.). All of these questions were to be left blank if they were not
germane to the article being reviewed.

2.4 Summary

Overall, we saw a broad range of surveys in terms of quality, area and
amount of the literature covered, and focus. We see an opportunity to
provide a higher-level view of the methods being used and to survey the
literature over a longer period of time than the existing reviews. We also
believe there is an unfilled need for analysis that relates the methods and
features used to the context in which they were applied.
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3 SYSTEMATIC LITERATURE REVIEW

In this section, we will first describe the how the literature review was
conducted (Section 3.1) and then relate statistics to describe the included
articles (Section 3.2). We consider our wok to be a Systematic Literature
Review (SLR). However, the methodological distinction between systematic
mapping studies and SLR studies is often blurred [190, 283]. Our work can
be argued to be somewhere between these two approaches. In particular, we
aim to create a high level synthesis but we will not describe each identified
work separately as some SLR studies do.

3.1 Methodology

3.1.1 Identification of Relevant Literature. We began by collecting articles
about predicting student performance that were already known to the
experts in the working group. Based on this set of known articles, we
tested multiple search terms by looking at the following three indexes: (1)
Scopus, (2) IEEE, and (3) ACM. We started with the search terms used in
the previous surveys (see Section 2). After multiple iterations, we decided
to use the following search string:

(at-risk OR retention OR persistence OR attrition OR performance)
AND

(prediction OR modelling OR modeling OR detection OR predict OR
"machine learning") AND

("computer science" OR informatics OR engineering OR program-
ming OR cs)

The searches were conducted in June 2018. The syntax of the search
strings was adjusted for each index. After combining the results, filtering out
articles not written in English, and using an automated process to remove
duplicates based on article title, publication year, and DOI, a corpus of 4,200
articles was created. The working group manually reviewed the article
titles and abstracts to flag potentially relevant articles (see Section 3.1.2
for details). A total of 743 articles were flagged. We removed all articles
published prior to 2010 from this list, resulting in a set of 565 articles for
close analysis. (2010 was selected as a starting point because we detected a
marked increase in articles published at this point; it also provides a focus
on recent work.) At this point, only the articles clearly out of our scope or
published prior to our cutoff had been removed.

Review of the included articles identified that several known to the group
were not found in the set to be reviewed. In most cases, it was determined
that the articles were not included because they did not focus on prediction
of performance — as defined in the previous section. Instead, they focused
on modeling learners’ skills or on the discussion of factors that might be
related to performance, but without clear predictive goal. After consultation,
we decided to omit those articles. In other cases, we found that the article’s
publication venue was not indexed in any of our sources. In particular,
articles from the International Conference of Educational Data Mining were
not included. We manually added the relevant articles from this source to
our list, leading to a final total of 589 articles for analysis.

3.1.2  Inclusion Criteria. The inclusion criteria was the article must dis-
cuss predicting student academic performance. This necessitated a working
definition of academic performance, which we developed in the previous
section. In particular, as we flagged articles for review, we looked for a
value to be predicted that was related to a single assessment, a course, or
progress through a program. We only considered quantifiable metrics that
are directly related to a course or program that students are enrolled in,
such as course activities, exercise points, etc. We did not include articles
that predict proxies not directly related to academic performance of an
individual. More explicitly, work was not included if its focus was:

Predicting team performance and dynamics
Work placement
Affective states (e.g., happiness, anxiety, depression)

e
°
L)
o Intent (e.g., intent to enter a university)
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o Automatic assessment tools (e.g., automatically assessing program-
ming problems, automatically assessing essays, detecting plagiarism,
teaching interventions, and recommender algorithms), if the article
did not clearly and separately discuss performance prediction in an
included context

In rare cases, authors stated that a journal publication was constructed
from a conference publication and included all the relevant information
from the previous version of the article. In these cases, only the journal
version was included. Similarly, theses and dissertations were removed, as
related journal articles were included. This resulted in 497 articles remaining
for a more detailed review.

3.1.3 Data Extraction. Based on the research questions and the meta-
survey presented in Section 2, a preliminary version of the data extraction
form was constructed. The working group members were divided into pairs,
and each pair evaluated five articles using the form. Afterwards, the form
was adjusted based on their responses to allow reviewers to provide more
precise details about factors and methods. The high-level taxonomy of the
resulting instrument is as follows:

e Prediction
— What is being predicted
— Details on what is being predicted

o Context

— Number of subjects

- Population

— Course topic

— Training mode

— Education type

Data features used to predict performance

- Data set information

— Family background (parental information, socioeconomic status,
etc.)

- Demographic data

- Working Conditions

- Education (background)

— Course data (current or parallel)

- Student motivation

- Psychological / affective / learning scales

— Used surveys / standardized questionnaires

o Methods and techniques

- Method type

- Classification (supervised learning)

- Clustering (unsupervised learning)

— Mining (finding frequent patterns / feature extraction)

— Statistical techniques

— Results details

Quality factors of the article

— Is there a clearly defined research question?

— Is the research process clearly described?

— Are the results presented with sufficient detail?

— Does the article discuss threats to validity?

— Are there separate training and prediction data sets (where rele-
vant)?

— Has the work been verified in a second population?

- Are the data collection instruments linked or included?

— Were all the features described in sufficient detail to identify
them?

- Additional notes on quality

To avoid ambiguity in the data extraction, all categories were imple-
mented as check-boxes with an additional open-text field at the end for
listing features not in the predefined list of options. Details of the form
are provided in Appendix A, where all of the options provided are listed.
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We provide these details partially to allow review of our data collection
instrument but also in the hope that others may find the instrument useful.

Despite our attempts to list all of the common answers, the open text
boxes were frequently used. In some cases, it even had to be used to docu-
ment multiple items, so we established a protocol of separating items with a
semicolon. Our parsing scripts extracted all of the items identified, resulting
in lists of items for each high-level item (context, data features, methods,
and quality factors). Pairs of reviewers reviewed each list to partition re-
lated items. For example, all statistical tests of variance were collected into
a single category, and this category was used in the reports in Section 4.
3.2 Descriptive Results

During data extraction, reviewers continued to apply the inclusion cri-
teria and excluded articles that did not explicitly discuss prediction of
academic performance. In total, data was obtained from 357 articles. Table 2
presents the number of publications per year. Data from 2018 should be
omitted from an analysis of long-term trends, since the work was completed
in July, leaving half a year for additional work to be published. Focusing on
2010 through 2017, then, we see an unmistakable increase in work published
each year.

Table 2: Number of papers reviewed per year of publication.

Years Count
2010 7
2011 20
2012 22
2013 36
2014 43
2015 53
2016 70
2017 75
2018 31
Total 357

Table 3 lists the disciplines in which prediction was performed. Recall
that our search terms focused on computer science, engineering, and infor-
matics, so it’s unsurprising that most of the work we reviewed performed
prediction in a CS or, more generally, STEM context. Mathematics consists
of one third of STEM. The “Multi disciplinary” category refers to work
that explicitly predicted performance in two or more contexts in different
disciplines. Most of these were within CS or STEM as well. The rationale of
this preliminary analysis is to illustrate the scope of this survey: the focus
truly is in engineering and mostly in computing.

Table 3: The discipline in which the prediction was being
performed, if a specific discipline is named.

CS 126  34.9%
STEM 98 27.1%
Other 39  10.8%
Multi disciplinary 30 8.3%
Unclear 14 3.9%

Table 4 presents the venues in which work has been published. We only
list venues with three or more reviewed articles due to the large number
of specialized venues which contributed one or two articles. In the venues
with multiple articles, we saw computing education (SIGCSE, ITiCSE, ICER,
etc.), engineering education (FIE, ICEED, EDUCON, etc.), STEM education
(ISEC), and learning analytics and data mining (LAK, EDM, L@S, etc.).
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About half of the articles we reviewed (171) were the only work from a
particular venue, suggesting that there is broad interest in the topic. The
single list of single-article venues includes conferences focusing on software
engineering, machine learning, general education, and psychology. The
topic is of interest to researchers and practitioners in a wide variety of fields,
so we find work tuned to specific disciplines and regions in venues catering
to those communities. Unfortunately, this result also suggests that the
community is highly dispersed, which makes dissemination, collaboration,
and validation challenging.

3.2.1  Topic modeling and discovered themes . As a part of our exploratory
mapping, we sorted the documents into topics using the Latent Dirichlet
Allocation (LDA) algorithm [51]. We used LDA as a statistical text mining
method for assigning documents into topics, which are detected using
word association and distributions [50]. The underlying mechanism in
LDA is a probabilistic Bayesian network model, in which each document is
characterized by certain topics, and each topic is defined by a specific set of
words, which co-occur with a certain probability. To summarize, the topics
of each document are defined by a set of words that often appear together,
and the topics often characterize themes found in the literature.

For the analysis, we used a modified version of the NAILS script [191],
which utilizes the topicmodels R package [155] and visualized with the
LDAuwis library [338]. Semantic coherence, a quality value for deciding the
number of topic models [243], was calculated using the R stm library [313].
Additionally, the LDAvis library was also used to calculate the distance
between topics on a scatter-plot, which approximates the semantic rela-
tionships between the topics with multidimensional scaling. It is a method
similar to factor analysis and allows the level of similarity between objects to
be visualized. The inter-topic distance was calculated using Jensen-Shannon
divergence [338]. LDA-based topic modeling is a commonly used method
for text analysis and equivalent methods have been used to statistically
analyze scientific texts in previous studies [84, 180, 282, 387].

After examining the local maximums in the semantic coherence results,
we proceeded with a topic model with 11 topics. The topic modeling results
and the themes we discovered are summarized in Table 5. Topics whose
relative size was less than two percent were excluded from analysis to avoid
unjustified generalizations. The sum of the sizes adds up to just over 100%
due to rounding issues.

All of the themes identified are connected due to their focus on students,
prediction, and performance. In order to avoid repetition, these focuses are
not explicitly mentioned in each row of the table. Furthermore, it should be
noted that this initial exploratory categorization is based on probabilistic
modeling and document corpora. The inter-topic distances and the preva-
lence of each topic are presented in Figure 2. The results are presented
on two axes via multidimensional scaling, with prevalence of each topic
denoted by size of the circle and distances by distances between the circles.

4 THEMATIC ANALYSIS
4.1 Predicted Values (Outputs)

To answer research question (1a), about the types of metrics are used for
describing student performance, we categorized the types of performance
that the studies aim to predict. Table 6 describes these values in the articles
that were reviewed. Some articles predicted more than one category of
value, so the percentages reflect the relative number of articles that showed
interest in that method for describing student performance. The most popu-
lar indicator for performance is course grade, which is used as a predictor
in a quarter of the studies examined, as well as an additional 13.6% that
predicted a grade range. Overall, we can see that summative performance
metrics, such as GPA, are the preferred prediction target. Other approaches,
such as post-course outcomes or assessment of learning outcomes, are rep-
resented but are in the minority. Unfortunately, in 12.2% of the studies,
it was not clear what the actual metric to predict student performance
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Figure 2: Distance and relative size of modeled topics

was, and therefore these metrics were classified as “Unspecified or Vague
Performance”

Table 7 lists the frequency at which various indicators of performance
have been predicted over the years. As earlier, data from 2018 should not
be considered when evaluating long-term trends. Most factors have experi-
enced comparable growth over the entire period we observed, but prediction
of “knowledge gain” has only appeared recently.

4.2 Features Used (Inputs)

Table 8 lists the frequency at which various features have been used to
predict student performance. 29 input features were identified, with perfor-
mance in the course of interest, engagement in the course of interest, and
performance in previous courses standing out as the most common data
being used in predictions.

General demographic data has been less frequently used recently, but
some aspects of demographic data, like gender and health, have become
increasingly important. There also appears to have been a surge in interest
in some psychometric factors, like self-regulation and self-efficacy, and in
data extracted from logs, such as time on task.

We also examined how many factors were used to perform a prediction,
on average, and were disappointed to find that most articles used a small
number of factors. While studies may appear to use multiple factors, in many
cases, these factors are measuring similar things. There are few studies that
combine different data sources, such as performance in previous courses,
demographic data, and psychometric data. The variance was actually larger
in earlier years of the study, suggesting that there may have been more
exploratory articles in the early 2010’s, with current efforts focusing on the
impact of a small number of factors.

4.3 Methods Used

Table 9 lists the frequency at which various statistical and machine learning
methods have been used to predict student performance.
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Table 4: Publication venues with at least three included papers.

Venue Count
International Conference on Learning Analytics and Knowledge (LAK) 21
International Conference on Educational Data Mining 17
Frontiers in Education Conference (FIE) 13
ACM Technical Symposium on Computer Science Education (SIGCSE) 10
ASEE Annual Conference and Exposition 8
International Journal of Engineering Education 8
International Conference on Advanced Learning Technologies (ICALT) 7
ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE) 6
International Computing Education Research Conference (ICER) 5
International Conference on User Modeling, Adaptation, and Personalization 5
International Conference on Inventive Computation Technologies (ICICT) 4
IEEE International Conference on Engineering Education (ICEED) 4
IEEE Global Engineering Education Conference (EDUCON) 4
Integrated STEM Education Conference (ISEC) 4
Computers & Education 4
IEEE Transactions on Learning Technologies 3
Annual Conference on Information Technology Education (SIGITE) 3
IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT) 3
Journal of College Student Retention: Research, Theory & Practice 3
ACM Conference on Learning @ Scale 3
Table 5: Summary of discovered topic modeling-based themes

Topic Theme Relative size Papers in the theme

Topic 1 (excluded because of small size) 0.29%

Topic2  (excluded because of small size) 0.58%

Topic 3 STEM education, self-efficacy, per- 9.9%  [44, 47, 79, 107, 119, 149, 153, 154, 158, 166, 173, 196, 206, 218, 219, 262, 265, 266, 279,
sistence factors, motivation and 281, 306, 307, 332, 356, 382, 384, 386, 405, 407, 413, 415, 416, 423, 424]
gender.

Topic 4 Behavior modeling and grade pre- 20.8% [8-10, 21, 33-35, 54, 60, 61, 67, 75, 77, 85, 96, 105, 106, 108, 109, 115, 139, 143, 146,
diction. Scores, exams, and assign- 150, 156, 159, 174, 182, 187, 188, 192, 193, 203, 205, 207, 209, 212-214, 223, 237, 238,
ments. 250, 257, 287, 293, 294, 302, 303, 309, 311, 312, 349-354, 360, 368, 378, 380, 381, 388—

390, 393, 398, 399, 409, 420]

Topic 5 (excluded because of small size) 0.9%

Topic 6 Data modeling, computation ap- 13.7%  [2, 3, 13, 19, 20, 24, 26, 52, 57, 65, 66, 78, 86, 90, 97, 98, 135, 151, 164, 165, 179, 184, 197,
proaches, algorithms, and training. 210, 211, 229, 248, 256, 260, 261, 264, 271, 280, 308, 314, 319, 344, 345, 365, 372, 395, 408,

414, 417, 418, 421, 422]

Topic7  (excluded because of small size) 0.58%

Topic 8 Prediction, classification, and edu- 21.6% [1, 11, 14, 15, 17, 18, 23, 25, 27, 36-38, 42, 46, 48, 55, 70, 73, 87, 91, 93, 103, 116, 120,
cational data mining. Classification 130, 133, 136, 140, 142, 145, 147, 176, 181, 186, 189, 194, 199, 215, 221, 222, 224, 226—
and accuracy. 228, 234, 241, 242, 245, 258, 268, 278, 288, 291, 295, 298, 304, 317, 320-322, 324, 328, 336,

339, 342, 343, 358, 359, 363, 371, 379, 391, 400]

Topic9  (excluded because of small size) 3.2%

Topic 10  Online activity, time, and perfor- 12.3%  [5, 12, 40, 41, 43, 49, 53, 58, 59, 69, 80, 81, 101, 110, 111, 123, 126, 127, 129, 132, 134, 138,
mance. Social factors and motiva- 141, 144, 175, 195, 201, 247, 251, 259, 270, 272-274, 286, 305, 310, 357, 383, 410, 412, 419]
tion.

Topic 11  Predicting grades, scores, and suc- 16.7%  [7, 16, 22, 28-32, 63, 64, 71, 72, 76, 83, 89, 94, 95, 100, 104, 114, 118, 137, 152, 157, 161,
cess. Retention and at-risk students. 163, 169, 170, 172, 177, 178, 232, 240, 249, 267, 285, 296, 297, 299, 315, 325-327, 330, 341,

346, 348, 355, 361, 366, 373, 377, 385, 396, 402, 404, 411]
Statistical methods such as linear modeling (31.3%) including linear re- 4.4 Cross-tabulation of Features (Inputs) to
gression and ANOVA are the most common methods we observed, with Performance Values (Outputs)

various graph models and decision trees close behind. In general, classifica-
tion techniques are used more frequently than clustering techniques (and
our reviewers note that clustering is occasionally used as a preparatory step
before applying a model). The variety of unique methods used has increased
in the period we observed.

Finally, we explored the relationship between the value being predicted
and the inputs used in the prediction. Figure 3 is an association map that
illustrates the most frequently observed combinations of inputs and out-
puts. For example, course grades are often predicted by other grades and
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Table 6: Values being predicted in the reviewed papers. Some
papers predicted more than one value.

Tag Count %
Course Grade or Score 88 24.4%
Exam / Post-test Grade or Score 53  14.7%
Course Grade Range (e.g., A-B/C-F, Pass/Fail) 49  13.6%
Program or Module Graduation / Retention 48 13.4%
Unspecified or Vague Performance 44 12.2%
GPA or GPA Range (including CGPA, SGPA) 44 12.2%
Assignment Performance 41  11.4%
(e.g., grade, time to completion)

Course Retention / Dropout 20 5.5%
Knowledge Gain 8 2.2%
Number of Courses Passed or Failed 4 11%

Course
Retention /
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Pre-Course Exam Grade
P

Course

Performance e =
[ |
—
— | Course
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School e ] e s |
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‘ Course
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Figure 3: Most frequently researched features as predictors
(left side) for predicted values (right side). The graph only
includes links that were explored by at least 10 articles. The
thickness of the links denotes the number of articles that
explored such a predictor.

engagement in the course. Program retention uses multiple demographic
factors, as well as performance in earlier academic settings.

Table 10 provides more detail on these relationships by relating particular
input features with predicted values. Performance in prior courses or in
secondary education is one of the most widely used inputs. Gender is also
widely used as an input, though as noted in Section 5.7, gender data is
generally not collected in an inclusive manner.

A. Hellas et al.

5 DISCUSSION

In the previous section, we presented a description of the data we obtained
from reviewing the articles identified by our review. In this section, we offer
insights into the data that may not be explicitly reflected in the data but
which we experienced as we completed the review.

5.1 Publication Trends

Tables 8 and 9 contain the number of times that factors and methods, re-
spectively, were used in articles in various years. While the unique number
of methods and factors grew in the first years we observed, it has not obvi-
ously increased over the past four years. However, we did see many recent
articles experimenting with variants of previously used methods. We also
saw increasing numbers of articles using machine learning techniques, such
as support vector machines (SVMs) and probabilistic graph models (such
as Hidden Markov Models). Similarly, while the number of unique high-
level factor categories has not increased in recent years, we saw a shift in
the particular factors being used, with submissions, log data, and similar
artifacts being much more heavily utilized in recent years.

As we noted earlier, we did not see as many demographic factors being
used to predict course grades, and that may be an area for future investiga-
tion. We also saw a general absence of work that used motivation, which we
had expected to see. Instead, many articles seemed to be using engagement,
perhaps as a proxy. More generally, psychometric data is less frequently
utilized, and the increase in usage of self-efficacy and self-regulation data
might be signalling growth in that area.

5.2 Contexts

Most of the work we reviewed was performed in a post-secondary context,
and the figures in the previous section should generally be interpreted as
applying to that educational level. However, we did observe some work in
the K-12 and secondary environments. GPA, single course, and program
retention predictions are not (or are less) relevant in these environments, and
much of the work we observed was predicting interest (which we excluded
from this study) or performance in modules or individual exercises.

We also briefly considered the relationship between the discipline being
studied and the value being predicted. This analysis is presented in Table 11.
It appears that the disciplines are being investigated in a fairly uniform
manner. However, as discussed earlier, most of the work identified here is in
the context of engineering. Findings in other disciplines might be different.

5.3 Quality

During our review, we evaluated articles on several aspects of quality. Ta-
ble 12 displays the results of this effort. Several of the results are dishearten-
ing. For example, in almost one out of ten articles, we had trouble identifying
what was being predicted (e.g., “student performance” or “student success”
without qualification).

5.3.1 Reporting Results. Other attributes are also directly related to our
ability to interpret the results. Only a third (33%) of the articles we examined
included a directly stated research question. Another 40% stated their goals
without presenting them as research questions. In some cases, we also had
trouble identifying how the prediction was being made and whether the
data was reliable. In several articles, it was difficult to determine which data
was being used to perform the prediction. For example, data presented in
the methodology section might have been used for prediction or simply
presented as demographic data to help describe the population. More seri-
ously, in about a third of the articles we reviewed, the features being used in
prediction were not described in sufficient detail for us to identify them with
confidence. For example, some articles indicated that “interest,” “personality
traits,” “motivation,” or “stress” were features, but these terms can reflect
different quantities. Standard scales for measuring some of these features
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Table 7: The aspects of student performance predicted over the years

Course Grade or Score 2 3 3 4 14 12 15 - 7 84 22.28%

B Exam / Post-test Grade 1 3 2 4 6 10 8 10 7 51 13.53%
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Table 8: Use of factors to predict student performance by year

Course Performance 4 3] 6 10 23 23 12 141 13.09%
Pre-Course Performance 2 8 8 13 16 23 21 15 139 12.91%
Engagement 3 3 7 9 11 17 5 113 10.49%
Gender 1 5 2 7 19 14 12 16 10 86 7.99%
Personality 1 2 3 9 7 0 14 14 6 65 6.04%
Demographic 1 7 3 4 14 13 6 8 9 65 6.04%
Secondary School Performance 1 6 2 5 11 12 5 11 5 58 5.39%
Age 1 4 2 5 5 8 10 11 7 53 4.92%
Family 6 2 3 9 8 8 9 7 52 4.83%
count
Task Time 1 2 4 3 6 11 9 5 41 3.81%
- Motivation 4 5 3 5 8 5 3 33 3.06% 30
g Self-Regulation 1 1 5 6 9 6 28 2.60%
] Log Data 5 2 3 1 2 7 6 2 28 2.60% 20
?} Location 1 1 1 6 7 5 4 25 2.32%
= Discipline 2 3 3 2 2 6 2 20 1.86% 10
Wealth 1 3 2 1 1 2 2 4 3 19 1.76%
Social 1 3 4 1 1 5 4 19 1.76%
Organization 1 1 4 7 4 2 19 1.76%
High School Quality 2 1 5 5 5 1 19 1.76%
Self-Efficacy 1 1 1 4 4 2 13 1.21%
Post-Course Performance 2 2 2 3 4 13 1.21%
Language 2 2 1 4 2 11 1.02%
Health 2 2 3 1 8 0.74%
Concept Assessment 1 2 1 1 1 6 0.56%
Browsing History 1 1 1 3 0.28%
2010 2011 2012 2013 2014 2015 2016 2017 2018 Total Percentage
Year
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Table 9: Use of methods to predict student performance by year. Only methods identified at least five times are included.

Statistical: Linear Modeling 3 6 4 9 9 14 a2 110 17.71%
Classification: Probabilistic Graphical Model 1 4 7 7 12 11 13 18 7 80 12.88%
Classification: Decision Trees 1 2 4 5 12 11 16 16 7 74 11.92%
Statistical: Correlation 2 5 2 8 4 9 10 13 4 57 9.18%
Classification: Neural Network 1 1 5 6 7 7 11 10 3 51 8.21%
Classification: SVM 1 2 5 4 5 5 7 11 5 45 7.25%
Classification: Classification 3 5 12 10 9 3 42 6.76% count
Statistical: Latent Variable Models 1 2 2 2 10 5 5 27 4.35% 25
b Classification: Random Forest 3 2 1 2 3 8 3 3 25 4.03%
3 Clustering: Partitioning-Based 3 1 3 1 3 4 4 19 3.06% | 20
'§ Classification: Nearest Neighbor 2 1 2 1 2 4 8 2 17 2.74% 15
ﬁo Statistical: Variance Analysis 1 7 3 2 13 2.09%
= Classification: Smote 1 3 2 4 10 1.61% 10
Mining: Text 2 3 2 2 9 1.45% 5
Classification: Logistic Regression 1 2 3 Z 1 9 1.45%
Statistical: PCA 2 2 1 1 1 7 1.13%
Mining: Time 2 2 2 6 0.97%
Mining: Mining 1 2 1 1 5 0.81%
Mining: Association Rule 3 1 1 5 0.81%
Clustering: Hierarchical Clustering 1 1 1 1 1 5 0.81%
Clustering: Density-Based 1 1 1 1 1 5 0.81%
2010 2011 2012 2013 2014 2015 2016 2017 2018 Total Percentage
Year
Table 10: Cross-tabulation of features (inputs) and performance values (outputs).
Course Grade or Score - 19 10 12 18 8 10 11 10 8 4 3 5 3 3 5 4 4 4 3 2 2 1 261 21%
Program or Module
Graduation / Retention / Dropout 11 28 5 25 24 20 14 15 13 4 3 2 9 8 8 7 6 1 3 1 1 1 209 17%
Course Grade Range
(e.g. A-B/C-F, Pass/Fa%l) 20 22 19 15 11 6 7 7 11 4 2 10 5 4 4 2 1 4 2 1 4 1 2 1 165 13%
@ Exam / Post-test Grade
.g or Score ! 17 B23n 7 8 9 9 5 5 4 4 8 7 2 3 3 1 2 1 1 1 1 153 12%
3
= Unspecified or Vague
) Performance 15 18 11 13 10 7 7 8 5 4 3 4 2 4 1 3 3 2 4 1 4 1 1 131 10%
]
E GPA or GPA Range (incl.
g CGPA, SGPA) 9 18 3 13 8 15 13 7 7 3 3 1 1 5 3 2 2 3 4 1 3 1 1 126 10%
P
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Table 11: Comparison of disciplinary context and predicted values

CS STEM Other Unclear Multi disciplinary

Course Grade or Score 42 22 7 2 6

Exam / Post-test Grade or Score 29 12 3 0 1

Course Grade Range (e.g. A-B/C-F, Pass/Fail) 18 17 4 1 6
Assignment Performance (e.g. grade, time to completion) 17 12 1 2 0
Unspecified or Vague Performance 14 6 3 7 5

GPA or GPA Range (incl. CGPA, SGPA) 6 11 12 1 5

Program or Module Graduation / Retention / Dropout 8 13 5 1 5

Table 12: Indicators of quality collected during the literature review

Question Yes No Vague/Unclear N/A
Is there a clearly defined research question? 118 97 143 3
Was the value being predicted clearly defined? 326 34 1 0
Were all the features described in sufficient detail to identify them? 197 110 52 2
Are the data collection instruments linked or included? 91 148 38 84
Is the research process clearly described? 235 66 60 0
Does the article discuss threats to validity? 64 262 30 5
Are the results presented with sufficient detail? 223 87 47 4
Has the work been verified in a second population? 28 316 11 6

(such as “interest” [235, 394] or “motivation” [131, 230, 375]) exist, but with-
out a definition and without naming or providing the instruments used to
collect the data, it’s uncertain how the data was collected and whether the
instruments used have been properly evaluated.

These omissions have a significant, detrimental effect on the ability of
scholars to evaluate and replicate published work. We believe it is criti-
cally important that, as a community, we push for rigour and additional
detail in how work is introduced and evaluated. We respectfully call on the
community of authors and reviewers to normalize the explicit presentation
of research questions; the use of a threats to validity section; a detailed
description of what is predicted and of the features used for prediction
including a justification of why these features have been selected; and the
inclusion of the scales used, either as citations or appendices.

5.3.2  Quality of Results. Other aspects of quality we tracked speak to our
ability to trust the results. Unfortunately, 24% of the articles we reviewed
did not provide the minimum necessary statistical details to evaluate the
results. Less than one in five explicitly discussed threats to validity using
those terms, and only a quarter mentioned potential bias at all. Both of
these issues make it difficult for us to trust that the authors have carefully
considered their analyses.

We also saw a number of methodological flaws. For example, it’s standard
practice to separate the training sets (data used for fitting the model) and
the test data set used for empirical validation. However, we found that many
of the articles we evaluated where a model was constructed did not have a
separate training set or, at least, did not mention having such a set.

Finally, we saw few efforts to generalize results. Very few (7.8%) of the
studies we examined evaluated the predictions in more than one context
(with a second population). A previous ITiCSE working group on education
data mining [168] has already identified that much of data mining and
learning analytics work in computing education is based on data from a
single institution and even from a single course. They called for replication
of work in multiple contexts, and we reiterate this call.

5.4 State of the Art

The field of predicting student performance is large and so far the work has
not converged sufficiently for us to be able to determine the state of the
art. Instead, based on observations from the survey process, we highlight a
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set of dimensions in which research is being conducted; methodology, data,
usability, and application.

The methodological dimension is a time-wise (and consequently partially
hype-wise) continuum of methods used for data analysis. It ranges from
basic statistical analysis and correlations to the use of state of the art machine
learning methods. For example, as deep learning has recently received
increased attention in the machine learning research community, it has also
been applied in predicting student performance.

The data dimension consists of three parts: data collection, quantity and
granularity, each of which form their own dimensions. First, there is a shift
from using data collection methods that need to be manually extracted, such
as surveys filled using pen and paper, to using data collection methods that
are automatic, such as working environment instrumentation and online
surveys. Second, there is a movement from using single-semester single-
course data, typically with post-hoc analysis, towards data from multiple
semesters or multiple courses. Third, there is a movement from using coarse-
grained data such as course grades towards more fine-grained data such as
instrumented working environment data and physiological measurements.
These dimensions are also related to starting to take a more holistic view of
a student; recently, for example, student health, self-regulation, and study
skills have gained attention.

The usability dimension is related to the data quantity dimension: given
the movement from single-course single-semester data towards data from
multiple courses or semesters, we are seeing predictive models that are
evaluated on separate data sets. This increase of variability in the data can
lead to models that generalize better. This usability dimension is related to
the final dimension, which is the application dimension. Here, we are moving
from research that shows that something can be done to doing something
with the data, for example within the context of intelligent tutoring systems.

These dimensions highlight the wide range of approaches in this area,
and research in even one of the dimensions may lead to improved perfor-
mance prediction models. At the same time, while researchers typically push
for novel contributions, we must highlight the importance of replication
studies — even seemingly simple change of context may lead to different
results — and reattempting existing work where one of the dimensions is
adjusted. For example, work that may have looked like a dead end some
time ago could currently lead to new findings as research in the dimensions
is evolving.
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5.5 Comparing Approaches

Drawing on the above observations and multiple dimensions, we briefly dis-
cuss the meaningfulness of comparing approaches for predicting students’
performance. Researchers who work on predicting performance typically
consider at least the methodological and data dimensions. Here, the data
comes from the context that is observed and in which future academic
performance is predicted.

In our survey, we found almost no datasets that have been published for
wider use, and furthermore, only approximately 25% of the reviewed articles
linked or included the used data collection instruments. This reflects on
the findings of the ITiCSE 2015 working group on educational data mining,
who point out the scarceness of open data sources [168].

Researchers can compare methodological approaches on the data at
their disposal. Similarly, if they have access to multiple datasets, they can
compare methodological approaches on all of those data sets. At the same
time, as long as the data that is used to make predictions is not made open or
publicly available, or even shared to a smaller group of researchers, making
justified comparisons across studies is not straightforward.

5.6 The Risk of Models

While everyone is enthusiastic about the opportunities to help students that
prediction can create, we should also consider the potential risk of misuse
of the prediction mechanisms that are being created. Here, we first propose
a deliberately extreme view on the factors that have been used to predict
student performance by describing an “ideal” student:

The blood type of an ideal computer science student is O. He is a male of
Asian descent and comes from a wealthy, well-respected family. His parents
are well-educated, and he has no spouse or children. The student works on
campus for eight hours each week. He reviews his work for at least three hours
and no more than four hours each day after classes and does not visit [website]
or play [popular game]. He has high self-efficacy, is highly motivated, and
has a good self-regulation score. He has done well in all previous classes at our
institution and was admitted with high marks from top quality primary and
secondary schools.

We can, of course, see that this model is faulty. It is likely biased by
the students currently in our program (not those who could be in our
program) and is based on a number of immutable characteristics that reflect
a background of privilege. Using this model to predict success has a high
risk of causing harm. For example, if such a model were to be used for
deciding who should enter a program, then the population would become
increasingly privileged.

We have not, in this study, explicitly explored issues with bias or ex-
amined if the articles we reviewed considered the risk of using certain
factors or publishing particular models. However, we saw little evidence
that these issues are described in the literature we examined. We call on
the community to be cautious in proposing and using models and ask that
they consider the role that researchers and educators can play in public
discourse.

5.7 Ethical Considerations

Finally, we raise several ethical issues resulting from our review: lack of
consent, lack of inclusion, potentially unethical practices when collecting
data, and issues of anonymity.

While we did not collect data on consent during the review, we recall
seeing very few explicit indications that the data used in the articles we
reviewed had been gathered (a) from public sources, (b) with consent from
members of the population being studied, or (c) with the explicit approval
of administrators responsible for institutional data. Textual analysis of the
results confirms this impression. We searched the articles for indicators such

authorized,”“permission,” “IRB,” “review board,” or “ethics,”

» «

«
as consent,
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and found little evidence that approval for data collection is explicitly dis-
cussed. While not all institutions and societies require consent, we argue
that it should at least be normal practice to acknowledge that ethical issues
like the use of personal data, have been considered. We call for the commu-
nity to normalize the reporting of the source of data and any consent or
authorization processes (or the lack of a requirement for such processes)
used in the collection of the data.

Very few of the articles we evaluated were explicitly inclusive with re-
spect to gender. As far as we can tell, gender data was frequently presented
with only two binary choices and without options like “another,” “transgen-
der,” or “prefer not to disclose” It is also possible that a third option may
have been present but was unused or unreported, but we could not, in many
cases, evaluate this possibility since, in another example of reporting issues,
the data collection instruments were not provided.

Data used in prediction studies is often secondary data as it is often
gathered as normal practice during a course or program of study. Very few
prediction studies recruit participants outside of an existing educational
context or run formal experiments. Using secondary data can be problematic,
as it may not have been anonymized appropriately and consent may not have
been sought for use in a different context. For example, in one article, web
traffic data from dormitories was monitored for normal network purposes,
but the data was then stored and used in a study without notification.

Finally, we saw a few cases where participants were not adequately
anonymized. This was, fortunately, rare, but in one notable example, ac-
tual student names appeared in a table alongside criteria used in student
counselling.

We call on the reviewer community to screen for issues with anonymity
and data collection and to request at the least the acknowledgement that
ethical issues like consent have been considered and, where required, have
been reviewed by an appropriate institutional review board.

5.8 Threats to Validity

As we were aware that systematic reviews have a number of limitations,
we worked diligently to identify potential risks and to mitigate them.

A known risk of external validity is not having reviewed enough (or
the appropriate) articles and including irrelevant material. The corpus for
synthesis was created through metadata searches on the article indexes
Scopus, IEEE Xplore, and ACM Digital Library. However, we found that
some relevant articles are not indexed in these libraries. For example we
discovered that articles published in the Journal of Educational Data Mining
(JEDM) and LearnTechLib were not included in our corpus. We manually
added articles from the Educational Data Mining community to our list, but
it’s likely that other un-indexed venues were missed. Similarly, it’s possible
that other search terms, such as the keyword “forecast,” would uncover more
material. However, the literature we are aware of is included, and we believe
we have included a large enough sample to be representative. With respect
to the inclusion of irrelevant material, we were careful to define explicit
inclusion criteria and practiced the application of these criteria in pairs
before beginning data collection. We are also confident that we eliminated
inappropriate entries, such as poster abstracts, during the manual inspection
of article titles and abstracts.

The study design and consistent application of the review template are
both potential internal validity issues. The risk related to study design is
around the question: Did we miss anything? It is important to mention
here that we extracted the data based on our research question. Looking
to our data with a different research focus would result in other data be-
ing extracted. We have provided our extraction form in Section 3.1.3 for
transparency and review. Another risk when using several reviewers to
extract data is the lack of consistency. To mitigate this risk, we began by
reviewing articles in pairs; only after this initial session we proceeded to
individual extractions. Furthermore, the first two-thirds of the data col-
lected was collected when we were working in the same physical location,
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where questions were raised as they arose. The last third was collected asyn-
chronously, but we feel that the reviewers were, by this point, comfortable
with the extraction process.

6 CONCLUSION AND FUTURE WORK

The goal of this ITiCSE working group was to determine the current state
of the research on predicting student academic performance. The work
was conducted as a systematic literature review, reviewing relevant articles
indexed by Scopus, IEEE Xplore and ACM indexes by June 2018. Works
from the International Conference on Educational Data Mining were also
examined, as the reviewers were aware of their existence and found that
that the venue was not indexed in the databases searched. The final dataset
that was analyzed contained 357 articles. These articles are listed in Table 13,
categorized by the values they predicted.

6.1 Summarizing Research Question Results

Our main research questions of this work were: (1) What is the current
state-of-the-art in predicting student performance? and (2) What is the
quality of that work?

To summarize, during the recent years, there has been a clear increase in
the amount of published research in the area, which can also be seen in the
emergence of venues relevant for the topic. The majority of the work is look-
ing at predicting easily attainable metrics such as individual course grade
(38%), individual exam grade (14.7%), program retention or dropout (13.4%),
GPA or cumulative GPA (12.2%), and assignment performance (11.4%). A
small number of recent articles also examine measures that seek to better
quantify learning performance, such as knowledge gain or speed in which
the student will complete an assignment.

The features that have been used to predict student performance can
be broadly split into five categories: demographic (e.g., age, gender), per-
sonality (e.g., self-efficacy, self-regulation), academic (e.g., high-school per-
formance, course performance), behavioral (e.g., log data) and institutional
(e.g., high-school quality, teaching approach). The majority of the articles
used academic data for prediction (e.g., predicting course performance based
on high-school performance). The use of data describing student behavior
in a course (log data), while becoming more popular within the computing
education research domain, is still relatively rare.

The methodologies that are used can be split into Classification (super-
vised learning, e.g., Naive Bayes, Decision Trees), Clustering (unsupervised
learning, e.g., partitioning data), Statistical (e.g., correlation, regression),
Data mining (identifying features and trends) and other methods. We found
that (linear) regression models and classification methods are among the
most frequently used tools, where the former is typically a method for
the prediction, while for the latter the classification algorithms are often
compared, leading to multiple prediction results.

When considering the quality of the existing work, there is room for
improvement. The best articles that we read utilized data from multiple
contexts and compared multiple methods to investigate a feature or variable
of interest using multiple methods. However, we saw little re-use and sharing
of data, which would allow us to compare methods or features, and we saw
weaknesses in research methods and reporting. From the included articles,
33% included a clear research question, 18% discussed validity issues, and
8% verified the work in a second population. The last result echoes the
finding of an ITiCSE working group on Educational Data mining [168],
where the majority of the studies focused on a single course or a single
institution, having no separate population with which the work would
have been replicated with. On a positive note, 90% of the articles clearly
defined what the target variable - or the predicted value — was, but this
may partially be due to our inclusion criteria.

While there are no strong observable trends in emerging techniques,
we highlighted a set of dimensions in which research is being conducted:
methodology, data, usability, and application. Contributions to the body of
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predicting student performance can come in all of these dimensions - a
researcher can, for example, study whether novel machine learning meth-
ods improve prediction when compared to other methods. There are areas
with increasing interest such as the use of fine-grained log data, biomet-
ric data, and data describing students’ tendencies such as self-regulation
questionnaires. So far, no silver bullet has emerged.

6.2 Calls to the Community

Based on our literature review (see Table 2), interest in this area is growing.
However, to make future studies more meaningful and to enable researchers
to build upon published results, our first call to the community is to improve
reporting standards. As an example, we provide a checklist for a minimum
viable article/paper (MVP) that is reporting on work predicting student
performance. Table 14, provides a checklist that each article focusing on
predicting student performance should include. The list is a minimum
requirements list, which essentially outlines the need for explicit and clear
methodology and results.

Our second call to the community echoes that of the ITiCSE 2015 Educa-
tional Data Mining working group. We call for open data sets for developing
approaches for predicting student performance. Having open data sets or a
baseline standard would help researchers compare their data and methods
with the results of others, helping them direct their efforts to more accurate
models.

Our third call to the community, as revealed by the number of venues
discovered during the literature survey, is related to the highly distributed
community. We call for explicitly seeking collaborators in other communi-
ties, perhaps as part of a replication or comparison effort — such an effort
would also help disseminate advancements. Submitting to and attending
venues where work from a particular project has not yet been published
would also be welcome and effective for creating connections.

Our fourth call to the community is related to the lack of comparing and
replicating existing work. So far, relatively little work replicates previous
efforts and more, but still relatively few, articles explicitly compare published
methods for predicting performance. Doing this work would help identify
more effective methods and would also provide an opportunity for broader
collaboration. Changes to the previous algorithms can be iterative by nature.
For example, work that measures the impact of adding an additional data
source to an existing approach or that uses underutilized data sources, such
as psychometrics, would be interesting.

Our final call to the community is related to reporting outcomes. While
there is a push towards developing new methods, data, and so on, publishing
information on approaches that did not work is important. Some of this
work is published implicitly, for example in research where feature selection
methods rule out a set of variables. We hope, however, that researchers
would highlight methods and features that did not work with a similar zeal
that is used to report what worked. Only through understanding both what
works and what does not can we form a holistic understanding of the topic.

A REVIEW EXTRACTION INSTRUMENT

e Initial Vocabulary/Taxonomy for Performance
- Assignment grade
- Course retention / dropout
- Course grade
- Course grade range (e.g. A-C, D-F)
— Course pass / fail
- Exam grade
- GPA
- Graduation
- Program retention / dropout
- Unspecified performance
- Not applicable
- Other
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Table 13: The 357 reviewed papers organized by the value they predict

Predicted Value

Papers

Program or Module Graduation / Reten-
tion
Exam / Post-test Grade or Score

Course Grade or Score

Number of Courses Passed or Failed
Assignment Performance (e.g., grade, time
to completion)

Unspecified or Vague Performance

Course Retention / Dropout

GPA or GPA Range (including CGPA,
SGPA)

Course Grade Range (e.g., A-B/C-F,
Pass/Fail)

Knowledge Gain

[7, 22, 46, 47, 62, 63, 71-73, 83, 87, 89, 94, 104, 107, 147, 149, 166, 172, 173, 177, 184, 186, 206, 208, 215, 218, 220
231, 232, 244, 279, 296, 299, 315, 319, 327, 329, 337, 341, 358, 359, 373, 374, 407, 411, 424]

[9, 10, 21, 24, 33, 35, 52, 59, 67, 68, 77, 80, 81, 85, 90, 96, 109, 114, 116, 127, 136, 152, 162, 163, 169, 193, 195, 199, 202
205, 214, 217, 224, 233, 238, 241, 270, 274, 275, 277, 284, 287, 301, 302, 309, 314, 334, 346, 360, 368, 383, 420, 423]
[1, 13, 14, 19, 21, 26, 27, 33, 34, 52, 57, 60, 64, 67-69, 74, 75, 78, 86, 93, 103, 105, 115, 118, 119, 122, 126—
128, 133, 138, 141, 142, 144, 146, 158, 159, 171, 173175, 183, 187, 197, 200, 203, 210, 237, 238, 240, 248, 250, 268,
272, 273, 285, 286, 292, 303, 304, 311, 312, 319, 321, 324, 326, 336, 348-351, 353-355, 357, 362, 369, 382, 391, 393,
396, 400, 409, 410, 412, 414, 417]

[120, 140, 176, 377]

[52, 54, 59, 60, 65, 82, 92, 105, 106, 123, 124, 127, 143, 151, 165, 179, 187, 188, 195, 209, 216, 223, 228, 239, 242,
251, 256, 264, 286, 309, 310, 352, 364, 365, 376, 383, 389, 395, 399, 408, 415]

[3,6,8, 11, 15, 18, 48, 49, 53, 55, 56, 73, 97, 100, 101, 117, 125, 132, 134, 187, 199, 229, 234, 245, 247, 271, 276, 280
281, 288, 290, 294, 295, 298, 300, 328, 334, 342, 343, 367, 371, 392, 410]

[42, 74, 91, 153, 172, 178, 192, 196, 212, 213, 218, 220, 225, 257, 261, 262, 388, 398, 403, 422]

[4, 12, 28-32, 36, 37, 64, 66, 73, 113, 129, 135, 137, 140, 149, 167, 181, 189, 206, 211, 218, 240, 249, 255, 263, 265,
266, 268, 291, 297, 322, 325, 339, 344, 345, 366, 385, 390, 402, 405, 413]

[17, 20, 38, 52, 58, 61, 77, 95, 108, 110, 111, 121, 126, 130, 139, 172, 174, 182, 194, 207, 222, 226, 227, 238, 254, 257
258, 260, 267, 278, 289, 293, 316, 317, 323, 331, 332, 361, 363, 370, 379-381, 386, 402, 403, 406, 418, 421]

[23, 156, 164, 192, 201, 270, 401, 419]

Table 14: Checklist for a minimum viable article on predicting student performance

Objective

[ Define what is being predicted. If the value describing performance (e.g., course grade) consists of multiple items (e.g., course exam, course assignments),
describe the contribution (weight) of each item when the performance value is calculated.

[ Define the factors used for prediction. Describe them in such detail that a reader that is not familiar with your particular context understands them. If
factors are intertwined (e.g., course assignments) with the predicted value (e.g., course exam), be explicit about the connection. Provide links to, or if
not possible, include the scales and surveys that have been used when collecting data.

[ Define the methodologies used for prediction and link the methods used by referencing appropriate articles. Unless you propose a novel method,
formal proofs, etc. are not required. If you use feature selection, include details on them.

[ Define the data. Explain where the data comes from, if it is self-reported or automatically collected and if students are compensated for participating.
Moreover, if the data contains students from a course, discuss the number of students in the course, describe how many were excluded from the
analysis and why, and provide descriptive statistics that outlines the data. Be specific on whether the data is from a single course, or single institution,
and also discuss if a separate data set is used for validating the prediction results.

]  Provide the results. Perform and report on the tests necessary to test required attributes of the data. Name the analyses being performed and report all
the relevant statistics to allow for interpretation of the results.

[J  Discuss the reasons why specific factors, performance metrics and methods were chosen (or omitted).

[ Reflect upon the results and consider why the methods and factors used did work or did not work. What are the particular context-specific issues that
may influence the outcomes?

[J  Describe threats to validity and limitations. Note situations in which a model or approach might be applied as well as where it is not valid.

e Initial Vocabulary/Taxonomy for Population - Online
— K-12 (from kindergarten to high-school) — Unclear / vague
- Minors - Not applicable
— Majors — Other
- Non-majors o Initial Vocabulary/Taxonomy for Education Type
— Professional — Formal education (e.g. university education, high-school)
- Unknown / Unclear / Vague - Informal education (e.g. MOOC, work-related training, ...)
- Graduate (e.g. MSc students) - Not applicable
- Undergraduate (e.g. BSc students) o Initial Vocabulary/Taxonomy for Data set information
- Not applicable — Data coming from a single institution
- Other - Data coming from multiple institutions
e Initial Vocabulary/Taxonomy for Training mode - Data coming from a single course
- Blended - Data coming from multiple courses
— Local - Data is a publicly available dataset
- MOOC - Other
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Initial Vocabulary/Taxonomy for Family background
- Family background in General

- Income

- Status

- Support

— Parent Educational Level

- Parent Occupation

— Number of Siblings

- Caretaker Role

- Not applicable

- Other

Initial Vocabulary/Taxonomy for Demographic data

- Demographic data in General

— Accessibility (disability)

- Gender

- Age

— Ethnicity

- International

— Minority

— Not applicable

- Other

Initial Vocabulary/Taxonomy for Working Conditions
Working Conditions in General

- Distance to school

- Daily commute time

- Access to internet

- Basic needs (water and toilet)

— Not applicable

- Other

Initial Vocabulary/Taxonomy for Education background
— Education background in General

- Accommodations (modified programs, disability)

- Extra-curricular activities

- Background in CS

- Background in Math

- Background in Physics

— GPA (high school)

- GPA (post-secondary)

— GPA (unknown source)

- High School Quality

— Previous (hobby) experience on topic

- Previous (work) experience on topic

- Standardized graduate admission test (e.g. GRE)

- Standardized undergraduate admissions test (e.g. SAT, ACT)
- Background in other disciplines

- Grades from previous courses (at the post-secondary institution)
— Grades from previous courses (before post-secondary institution)
- Education background Not applicable

- Education background: Other

Initial Vocabulary/Taxonomy for Course (current or parallel)
— Course in General

- Attendance

— Activity (with learning resources or materials)
- Activity (with discussion forums or chats)

— End of term assessment (exams)

- Time on task

— Marks

— Marks (tests and quizzes)

- Marks (assignments)

- Marks (lab work)

— Midterm assessment (tests, quizzes, midterm exams)
— Pre-test score / mark
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- Organizational: Pedagogical methods

- Organizational: Teaching mode

- Organizational: Materials Available (what types?)
— Social: Related social data (e.g. number of friends in class)
- Social: Unrelated social data (e.g. facebook, twitter)
- Not applicable

- Other

Initial Vocabulary/Taxonomy for Student motivation
- Motivation in General

— Desired grades

— Extrinsic

- Intrinsic / interest / passion

- Importance of Grades

- Utility

- Not applicable

- Other

Initial Vocabulary/Taxonomy for Psychological/affective/learning
- Scales in General

— Achievement goals

- Emotional (self-worth, anxiety, etc)

- Goal-orientation (performance, mastery, etc)

- Grit

- Self-efficacy

- Learning Strategies (deep, surface)

- Learning Styles (!)

- MSLQ

- Personality

- Self-regulation

- Not applicable

- Other

Initial Vocabulary/Taxonomy for Research Method type
- Mixed-methods

- Qualitative

- Quantitative

- Not applicable

- Other

Initial Vocabulary/Taxonomy for classification (supervised learning)
- Classification in General

- Neural network

- Adaptive boosting

- SMOTE

- Radial Basis

— Naive Bayes

- Nearest Neighbor

- Decision Trees

- Random Forest

- SVM

- Knowledge modeling

— Bayesian network

- Other

Initial Vocabulary/Taxonomy for Clustering (unsupervised learning)
- Clustering in General

- Neural network

- K-means

- K-star

- Other

Initial Vocabulary/Taxonomy for Mining (finding frequent patterns/
feature extraction)

- Mining in General

- Distributed

- Text

- Web
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- Temporal

- Sequential

- Association Rule

- GUHA Method

- Other

Initial Vocabulary/Taxonomy for Statistical methods used
- Statistical methods in General

- ANOVA

- Correlation

— Factor Analysis

— Regression

— T-Test or other test of var. between populations
- Logistic regression

- Structural Equation Modeling

- Other
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