

0 Aquaponic Data Collection System

Aquaponic Data Collection System

Final Report for

Ed Casas (ELEX 4560), Bob Gill (ELEX 4560), Susan Woo (Comm 2443)

Prepared by

 Jeffrey Batac, Mateusz Nieścierowicz, James Solibio

 December 3, 2018

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

1

1 Aquaponic Data Collection System

Table of Contents

Contents
Summary .. 3

Introduction .. 4

Project Overview ... 4

Design ... 4

Operation ... 6

Raspberry Pi Side .. 6

Google API Side... 7

Schematic .. 8

Results .. 9

Complications ... 11

Google API ... 11

Other Complications .. 12

Cost .. 13

Schedule ... 15

Conclusions .. 17

Recommendations ... 17

Citations ... 18

Appendix A: Bell Siphon .. 19

Appendix B: Code Essentials .. 21

Appendix B.1: Auto-start script ... 21

Appendix B.2: JSON File Authentication ... 21

Appendix B.3: Main Script Code .. 23

Appendix B.4: Google Spreadsheet Notifications.. 31

Appendix C: Schematic Diagram .. 33

Appendix D: Bill of Materials ... 34

Appendix E: Raspberry Pi Data Sheet .. 35

Appendix F: DS18B20 Temperature Sensor .. 35

Appendix G: DHT11 Temperature sensor .. 35

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

2

2 Aquaponic Data Collection System

List of Illustrations

Figures
Figure 1: Block Diagram of proposed Data Collection System .. 5

Figure 2: Flow Chart of the Data Collection System .. 6

Figure 3: Flowchart for actions based on data readings .. 7

Figure 4: Solderable Breadboard .. 8

Figure 5: Graph showing trend of temperature over time... 10

Figure 6: Gantt Chart for our Project .. 15

Figure 7: Revised Schedule .. 16

Figure 8: Bell Siphon example... 19

Figure 9: Schematic Diagram for sensors to Raspberry Pi .. 33

Figure 10: Pin-out for the Raspberry Pi .. 35

Tables
Table 1: Sample of the spreadsheet data ... 9

Table 2: Actual BOM for Capstone Project ... 13

Table 3: Initial BOM for capstone project ... 34

Table 4: BOM after design modifications .. 34

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

3

3 Aquaponic Data Collection System

Summary

An SFU mechatronics student is developing a fully automated aquaponic system. He

gave the idea to our team to prototype a data collection system that would send the data

over Wi-Fi to a web server where it could be accessed by any device. The system would

monitor the data, and any value deemed out of range would have an action associated with

it. The entire system would have to be secured to prevent random users from connecting to

the website and using it for other purposes.

 Our system can execute the desired system of the SFU student with some minor

changes. In our original proposal, we said we would have the web server displaying the

data pulled from the data collection system and having it graph it simultaneously. It proved

to be too ambitious, and we had to cut that and instead make use of Google’s free developer

services. With the use of Google API, we created a secure way of storing the collected data

by protecting it behind a Google account. We used Google spreadsheets to store the data
and to send notifications to the user about out of range values.

Working with the SFU student also helped with our primary goal of keeping the

system costs as inexpensive as possible. The overall budget of the project was $200. Our

initial build was a total of $136.88, but we were able to cut much of cost due to borrowing

or receiving free parts for the project. The SFU student was also able to reduce our costs

down with solutions that did not require parts for. Our overall cost for this project was

$23.80, which were the two sensors.

The schedule was proven to be very tight, and there were many times where the

team had to double down on the work in order to meet the quota’s set out at the beginning

of development. In the end, we were still able to finish a week early thanks to the

development of an alternative solution from the SFU student.

In conclusion, the data collection system works the way the prototype was designed

to work. Although we had to change how the data was being stored, the Google developer

solution still proved to be enough for the prototypes needs. Finally, the primary focus of
keeping the system cost as economical as possible was met.

The team highly recommends that in the future a bigger emphasis on the script that

is running the collection of data. Currently, there are many flaws that either stop the

process of collecting data or hinders one of the objectives of the data collection system.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

4

4 Aquaponic Data Collection System

Introduction

 The purpose of this project was to demonstrate the team’s knowledge and skills,

acquired from BCIT’s Electrical and Computer Engineering Technology:

Telecommunications and Networking Diploma program. The project also serves as a

prerequisite for graduation from BCIT.

 The data collection system is a part of a much larger project for an SFU mechatronic
systems capstone project. The SFU project is a fully automated aquaponic system. A
colleague of Jeffrey Batac granted him permission to develop a preliminary system that will
be further developed later. Jeffrey acted as proxy the for the SFU student, relaying
information from the student to the team about design changes and project direction.

 An aquaponic system is a type of garden that utilizes the inhabitants of a natural
ecosystem to grow and harvest crops and fish. Fish are present in the system to produce
waste. The waste they excrete is then converted into fertilizer by micro-organisms in the
water. The byproduct they produce will provide the plants with the nutrient that they are
missing from the soil. The plants filter the water that return to the fish [1].

 This final report is prepared for Susan Woo – the instructor for COMM 2443, Bob

Gill – the project mentor, and Ed Casas – Program head and instructor for Telecom &

Networks Projects (ELEX 4560). Our final report will show our findings over the last few
weeks.

 The final report contains the project overview, the cost of supplies, the original and

revised schedule, the team’s conclusions, recommendations, and an appendix containing

extra information about the project.

Project Overview

 The main idea behind the fully aquaponic garden was to reduce the amount of time

that the owner, of the garden, would have to maintain the system. Ideally, the only time the

owner would have to check in on the garden was to collect produce or if a sensor had

stopped working. However, the occurrence of a sensor going down would be very low, but

the design was to consider that aspect as well.

Design

 The SFU student gave us free rein to design the system to the best of our abilities;

however, he specified that the system must send the data over Wi-Fi to a web server and

the actions associated with the system must control the environment. Our initial design

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

5

5 Aquaponic Data Collection System

looked much like Figure 1, we had intended to use three sensors and have two actions

associated with the sensors. One was going to be a fan or LED, and the other was the water
pump which would regulate the amount of water in the growth bed or fish tank.

Figure 1: Block Diagram of proposed Data Collection System

 However, the SFU student came up with a solution which eliminated the need for

the water level sensor and water pump. He came up with a bell siphon (See Appendix A:

Bell Siphon) which would automatically regulate the water that was present in the system.

The water in the growth bed would constantly be flushed out if it became too full. The

water level in the fish tank would be constant since the bell siphon would continuously

drain the water from the growth bed into the tank. With the bell siphon now regulating
water level the new block diagram was much simpler, and now the only action was an LED.

Another design change that was made was how we were going to store data. This

change was not influenced by the SFU student but was a time sensitive change. The original

design had us creating a website where it would display the current data values of the

system and have a trend graph of the past several hours. The idea was too ambitious for the
time we had so we opted to use Google developer API.

The solution at first seemed perfect, the Google developer API was free, Google

Drive was secure, and Google would be backing up all the files. In hindsight, the solution

was very limited and there wasn’t much we could do about how the data was being

handled. It also became a very complex way of storing data which would hinder the user-

friendly setup. However in retrospect, it is a proof of concept that the raspberry pi can take
the data and store it somewhere online.

The Google API solution also created a secure way of storing the data since the

spreadsheet where the data was being stored in was in a Google account. The Google

account cannot be accessed unless the person entering the account has their phone number

connected to the account.

The connection to the Google spreadsheet was to be done by Wi-Fi. For this, we

decided to use a raspberry pi 3 model B which had built-in Wi-Fi. However, we knew that

raspberry pi’s did not like the security of BCIT’s network, so we had to use a hotspot from

one of our phones to provide Wi-Fi access.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

6

6 Aquaponic Data Collection System

Operation

Raspberry Pi Side

 We designed the system to start autonomously as soon as the raspberry pi was

given power. We accomplished this process by implementing, an ‘autostart’ script into the

startup configuration of the pi. The ‘autostart’ script would open on start up of the

raspberry pi and then open the command terminal. Once the command terminal was

opened, the script would then navigate the files to find another script called ‘start’ which
would just navigate the files again to start the main script.

After the main script was opened, the program would then check to see if the JSON

file was correct. If the correct credentials were given to the main script, the raspberry pi

would be given access to the google account. If the JSON file was invalid, the raspberry pi

would not start collecting data. Figure 2 shows the operation of the raspberry pi once the

script has been started. As mentioned, if the pi does not gain access to the Google account, it

will prompt the user that it could not reach the account, and the JSON file must be changed
(See Appendix B: .

Figure 2: Flow Chart of the Data Collection System

 Once the script is granted access to the spreadsheet, it will check to see if the

spreadsheet it wants to enter data into is there. Once again if the script cannot find the

spreadsheet, the code gets must be modified for the program to work. If the spreadsheet is

there, the script will start collecting data from the sensors. The script appends rows to the

Google spreadsheet, and it will infinitely continue to do so until the spreadsheet becomes

too big or if the power to the raspberry pi is cut (see Appendix B.3: Main Script Code.

 The script will also check the readings of the data being collected; Figure 3 shows

the operation of the actions which are associated with the data that is being sent to the

spreadsheet.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

7

7 Aquaponic Data Collection System

Figure 3: Flowchart for actions based on data readings

 The operation is simple; the script will continuously compare the last reading to a

value which can be set by the owner. Once the script detects that the last value it read was
out of range, an action would begin depending on which sensor was out of range.

In our case, for proof of concept, we used an LED which was tied to the water

temperature being too high. We set the water temperature range to 30°C and the LED to

flash for ten seconds simulating that the action was being done. Once the ten seconds were

up, the system would check again to see if the temperature had gone down. If the

temperature went down, the script would not do anything and continue collecting data and

storing it on the spreadsheet. If the temperature was still too high, the system would

continue to collect data, but the LED would run for another ten seconds.

As you can see in Figure 2 above, we run into our first complications and one of the

limitations of the Google API solution. In the case the JSON file isn’t properly configured

correctly, the raspberry pi becomes stuck and cannot proceed with the collection of data. A

problem with the main script is that if a sensor is not working properly, the script will
infinitely wait for the sensor to respond before it sends any data.

Google API Side

 As the script continues to run, Google API will periodically monitor the last

appended line that was added to the spreadsheet. If the last appended value was out of a

certain range, the spreadsheet has a script that will automatically send a notification to the

user.

 The script (See Appendix B: Code Essentials is enabled by starting the function. The

function periodically checks the last line of the spreadsheet to see if the last value entered

was above a certain range. For our use, the raspberry pi was collecting data at a rate of 1

data entry/second. Since temperature does not change drastically in a matter of seconds,

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

8

8 Aquaponic Data Collection System

we opted to have the Google spreadsheet function check every minute. This value can be

changed depending on the user’s preference.

 In the case that the function detects a value which is deemed ‘out of range’ it would

take the time, the date, and the temperature of the value which was out of range. The

notification would be sent to the email of the owner.

A flaw that comes with this function is that if, the temperature does not lower within

the time of the next check, the function will continuously send the owner notifications

about the value being out of range.

 As we mentioned in the previous section, the Google API solution is very limited.

Although we were able to store the data, there is no clear way to fix the endless stream of

notifications if the problem is not solved by the automatic actions done by the system.

There is also the problem of the spreadsheet becoming too large to check daily since it
would have a thousand plus rows being appended every day.

Schematic

 A full analysis of the schematic design can be found in Appendix C: Schematic

Diagram but the design of the schematic was based on a couple of guides (which are also

mentioned in the appendix). We made use of a solderable breadboard (Figure 4) which

allowed us to take the components off a regular breadboard and place them onto a
permeant breadboard for casing purposes.

Figure 4: Solderable Breadboard

 We used jumper female/male jumper cables to connect the breadboard to the

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

9

9 Aquaponic Data Collection System

raspberry pi, and we used short shielded copper wires to make connections on the

breadboard.

Results

 Our project was a huge success, we were able to complete the project on time with

all the design specifications we had set at the beginning of development. A sample of how

the data collected would look like can be seen in Table 1. For reference, all testing was done

with the raspberry pi collecting data once every second, and the notifications script
checking every minute.

Table 1: Sample of the spreadsheet data

Time and Date Room Temperature C Water Temperature C Room Humidity %
14:13 11/14/18 23 23.187 45
14:13 11/14/18 22 23.187 46
14:13 11/14/18 23 23.187 46
14:14 11/14/18 23 23.187 46
14:14 11/14/18 23 23.187 46
14:14 11/14/18 23 23.25 46
14:14 11/14/18 23 23.187 46
14:14 11/14/18 23 23.187 46
14:14 11/14/18 23 23.187 46
14:14 11/14/18 23 23.25 45

 As you can see, the data being collected was taken at a collection rate of 1 data entry

per second. We were not able to do a functional test over a longer period since we were

running off a hotspot. The testing period over several hours also required us to stay with

the device and for the hotspot to be on constantly. We also could not work on the device if

we had tested it over a longer period. The idea, however, is there and it shows that data can
be collected and pasted onto a spreadsheet on Google Drive.

 Figure 5 shows the graph that could be made from the data that was collected from
the sample table above.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

10

10 Aquaponic Data Collection System

Figure 5: Graph showing trend of temperature over time

 As you can see from the graph, the temperature over time can be shown on the

spreadsheet; however, there is a problem creating this figure. Google spreadsheets did not

cooperate with how the raspberry pi was appending new rows to the spreadsheet. This

graph above was created after a testing period which isn’t how we wanted to display the

data. We were able to find a way to graph the data while simultaneously appending data to

rows, but it wasn’t a solid solution since it slowed down the spreadsheet operation.

 Ultimately after many complications with the spreadsheet operation, we decided to

not graph the data synchronously with the collection of data for the sake of keeping the

CPU usage for the spreadsheet low.

 Notifications and actions worked the way we had designed them to work, but there

were some flaws with the operation. The actions worked, but there was a delay between

the temperature being too high and the action starting. We couldn’t time the delay, but

from we could see there was a very slight delay between the LED lighting up for 10 seconds

and the temperature reaching a level above 30°C. We concluded that the delay was due to

the processing speed of the raspberry pi. The raspberry pi was doing multiple things at

once which might have slowed down the speed at which the script would compare the
recently pulled data to the set point.

 The notifications also worked similarly to the actions in the sense that there would

be a delay between the comparing of the data and the set point. Since the script was

programmed to check every minute, there would be a delay. Due to the periodic checks, the

reported temperatures may not be exact. In theory, the actions would have already started

attempting to reduce the temperature of the system. If both are not in sync, the actual

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

11

11 Aquaponic Data Collection System

temperature and the reported temperature may not be correct.

Complications

 We ran into many problems with the use of Google API there were also some other

minor problems with the sensors. However, the main source of problems was the use of

Google API to which we have very little solutions to. Since we had a tight schedule at the

time, we didn’t have many choices to choose from, and in hindsight it might have been

better to take that extra time to create our own site. But once again, due to the tight

schedule and a consensus amongst the team to see how it will operate we continued with

the Google API.

Google API

 Our main problems with the API were:

- User-friendly interface

- Correct credentials for the JSON file

- Script appending rows to the spreadsheet

- Ability to switch spreadsheets
- Notification

The need of creating a JSON file with the credentials of the Google account with the

spreadsheet isn’t very ‘user-friendly.’ In the case that someone decides to use what we

have; the individual would have to know how to code to adjust any of the files. This isn’t

how we wanted to direct our project initially, but we decided to base this project not on

how the product would do on the market, but rather for an individual who is a hobbyist.

With the script continuously appending rows to the spreadsheet, it would begin to

slow down. The speed was slowed down enough that the raspberry pi would be appending

rows on the console screen but wouldn’t be appearing on the spreadsheet until a second or

two after. But by then there would have already been two more data points that the

raspberry pi would have already collected. A single Google spreadsheet would be able to

store enough data for about eleven months to a year’s worth of data if the data was

sampled every second.

We had wanted to switch the spreadsheets out after a week or a month of use. But

we could not do anything of that sort with Google Docs. With the desire to also graph all the

data in one spreadsheet, a year’s worth of data would take a significant amount of time to

process assuming the sample rate is once every second. This problem is easily avoided by
changing the sample time.

 Notifications had several problems when we were testing. After a certain point, the

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

12

12 Aquaponic Data Collection System

notifications would not work after the initial start-up of the function. We knew that the

function would check every minute, but there were times where the function would be

running, and the temperature would be high for longer than a minute without notification.

This is a minor flaw since the autonomous action would be running, but there wouldn’t be

any notification that would notify the owner of the temperature rise which could be a

problem on the actual system.

Another problem which occurred with the notifications was the number of

notifications being sent if there was a problem. During testing, if there was a problem for a

long period of time, it would constantly send notifications to one email account if the script

was running. In the case that the collection of data stopped, and the last row was above

30°C, the notifications would continue to send even if the data was not being collected. This

problem occurs since both scripts are running independently, and since the Google

spreadsheet script is based off the last appended row. The script will continue to check

every minute and send a notification unless you turn on the system again and have it

appended a value lower than 30°C.

Other Complications

 At the beginning of development, we ran into a problem with parts. Originally, we

had planned to order parts from eBay and Amazon. Both options would cut down on costs

of the project the only problem with cutting the cost down was the time of arrival for the

parts. The estimated delivery time from eBay was either mid-October or the end of

November. Both were not valid options since the project was to be completed before the

end of November and we could not count on the eBay delivering on-time. BCIT did not have
Amazon Prime, and we could not guarantee the shipment date.

 We encountered problems with the sensors. While using a guide for both sensors,

we noticed that both guides used the same GPIO port on the raspberry pi. This was easily

resolved when we looked up the raspberry pi data sheet (See Appendix E: Raspberry Pi

Data Sheet and found there were multiple GPIO ports.

Another sensor problem we witnessed was with the humidity/temperature sensor.

Occasionally it would suddenly take in a reading which was way out of range. It would

suddenly jump from 23°C and 46% humidity (for example) to 11°C and 150% humidity but

then suddenly return to normal temperatures in the next second. We concluded that it was

a glitch, and it was a problem with the sensor itself and not our system. The other sensor

did not experience the same glitch and so we concluded that it was a problem with the
sensor itself.

 A very large problem, which we found out at the end of testing, was the auto-start.

Our entire system is reliant on the Wi-Fi connection to the raspberry pi. This means that in

the case that the raspberry pi was to auto-start with no Wi-Fi connection, the system would

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

13

13 Aquaponic Data Collection System

not auto-start and would sit there idle. The only way to resolve this problem was to ensure

our testing hotspot was on and to restart the system manually.

Cost

 All Parts in Table 3 of Appendix D: Bill of Materials was what the team original was

going to use to develop the aquaponic data collection system. The budget for the project

was $200, but one of our primary goals was to create a system at the least possible cost. So,

we picked parts that would be enough to demonstrate the system without going overboard.

We went with a raspberry pi since an Arduino wouldn’t be enough to handle all the

processes that we wanted our main module for the system. We also wanted to send the

data over Wi-Fi, for those reasons we decided to go with the raspberry pi 3. The raspberry

pi is basically a smaller computer compared to an Arduino which is more of a
microcontroller, and the raspberry pi 3 model B comes with a built-in Wi-Fi adapter.

 We also had planned to make use of three sensors that would monitor the system.

Altogether the system would come to a cost of $136.88, at the time this was considered the

lowest cost we could get the project to be. However, after receiving the bell siphon solution

(Appendix A: Bell Siphon, we cut most of the cost and the actual parts list for the project
can be seen in Appendix D: Bill of Materials

With the changes, we save a total of $22.11. Although we were almost under $100 to

push the envelope further to fulfill the “as low as possible” focus, we decided to see if we

could source as many items as possible for free. So, we were able to source the raspberry pi

from a colleague who already graduated, an SD card from a stakeholder, and a chassis from

an old storage room from the school.

Error! Not a valid bookmark self-reference. shows the efforts of our ‘extreme’

saving. The overall cost of the project was reduced by a total of 80% due to sourcing many

of the materials for free. We could have pushed the price further down if we had supplied

the parts of our project from eBay or Amazon. If the parts were bought from either eBay or

Amazon, the total cost of both sensors would have been $5-$10.

Table 2: Actual BOM for Capstone Project

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

14

14 Aquaponic Data Collection System

 However, we wouldn’t be able to order from Amazon through the school since BCIT

did not have Amazon Prime. The parts from eBay had an estimated time of arriving from

either the middle of October to the end of November. Both times were not possible because

the development of the project would have been delayed waiting for the sensor to arrive. If

we had gone with eBay, there was without a doubt in the team’s mind that we wouldn’t

finish in the given time.

15 Aquaponic Data Collection System

Schedule
Figure 6: Gantt Chart for our Project displays our initial Gantt chart for our project. We had planned to finish one week before the

presentation date. We also planned to create a website that would be displaying all our data. But since that was cut from the project and a

different solution was used instead the schedule changed.

Figure 6: Gantt Chart for our Project

 Figure 7 roughly shows the updated schedule we followed. The differences between the one above and the revised one are that the

amount of time to set up the Google account didn’t take as long as we had planned the website to take. We were always testing the sensors

every work session, and the time it took to graph and do actions only took one day.

 The reason for such a large time was to account for the courses we were taking at the same time. The team met every Friday to

complete the project, and closer to the due date we started attending Wednesday morning and afternoon to the work sessions.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

16

16 Aquaponic Data Collection System

Figure 7: Revised Schedule

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

17

17 Aquaponic Data Collection System

Conclusions

 The automated data collection system we were able to prototype for the SFU

student can execute what he wants out of it with flaws. The system can collect data from

two sensors and append the collected data to a web server (Google Drive). The system can

autonomously active actions based on readings from the sensors (LED). The spreadsheet

monitors incoming data and sends a notification to the owner of a possible problem with
the system (Email notification).

 Google Drive can be accessed from any device at any time. However, it becomes a

problem when the spreadsheet, the system is appending data to, reaches a certain size. The

file may become too large and unopenable if it reaches a certain size, but this is a theory

and it was not tested since we could not test it for that long. The flaws of the system may

hinder its ability to be expandable for the SFU student. However, the SFU student is well

versed in programming and can probably pick up the slack and find better solutions to the

flaws.

Recommendations

1. Improve the script functionality

a. As of right now, the script will run if all conditions are met, but it will become

‘stuck’ if one condition is not met.

b. The script will also become ‘stuck’ if one of the sensors does not work. It will

wait till the sensor gets a reading before sending the data.

c. If a sensor does stop working the script will append a “Sensor Broken” line

instead of data to the spreadsheet

d. The script has no way of creating a new spreadsheet to enter data in, if the

name of the script spreadsheet is not on the Google Drive it won’t start

2. Create a way for the data to be collected even if there is no network connection

3. Find another solution for storing the data in a more reliable and secure way.

4. Create a way to auto-restart the raspberry pi in the case of it not collecting data.

5. Source as many parts for free to keep the cost of the system low.

6. Add more sensors to the system

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

18

18 Aquaponic Data Collection System

Citations

[1] “What is Aquaponics,” The Aquaponic Source. [Online]. Available:

https://www.theaquaponicsource.com/what-is-aquaponics/. [Accessed: 27-Sep-2018].

[2] “Turning on an LED with your Raspberry Pi's GPIO Pins,” The Pi Hut. [Online]. Available:

https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-

your-raspberry-pis-gpio-

pins?fbclid=IwAR3dOaGQPdjA3zsCdL524iK9IRESBE_H3k8_KwZL66AaR7MsmG_f7ab7_oo.
[Accessed: 02-Dec-2018].

[4] “Ibc Aquaponics Chop System,” Home Security RSS. [Online]. Available:

https://homesecurity.press/quotes/ibc-aquaponics-chop-system.html. [Accessed: 03-Dec-
2018].

[5] “Setting Up Authentication for Server to Server Production

Applications | Authentication | Google Cloud,” Google. [Online]. Available:

https://cloud.google.com/docs/authentication/production?fbclid=IwAR03wpJmTKxhf1GV
CVKfAW77hC1AQpdXnxer_5nxPBBgFUv3yezIuC_5juU. [Accessed: 03-Dec-2018].

[6] “Setup a Raspberry Pi Temperature Sensor,” Pi My Life Up, 25-Oct-2018. [Online].

Available: https://pimylifeup.com/raspberry-pi-temperature-sensor/. [Accessed: 03-Dec-
2018].

[7] “Raspberry Pi: Measure Humidity and Temperature with DHT11/DHT22,” Raspberry Pi

Tutorials. [Online]. Available: https://tutorials-raspberrypi.com/raspberry-pi-measure-
humidity-temperature-dht11-dht22/. [Accessed: 03-Dec-2018].

[8] “Particle,” Particle Datasheets Documentation | Photon datasheet. [Online]. Available:

https://docs.particle.io/datasheets/discontinued/raspberrypi-datasheet/. [Accessed: 03-

Dec-2018].

[9] “TEMPERATURE SENSOR - WATERPROOF (DS18B20),” Lee's Electronic Components.

[Online]. Available: https://leeselectronic.com/en/product/1255.html. [Accessed: 03-Dec-

2018].

[10] “HUMIDITY AND TEMPERATURE SENSOR DHT11,” Lee's Electronic Components.

[Online]. Available: https://leeselectronic.com/en/product/7374.html. [Accessed: 03-Dec-
2018].

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

19

19 Aquaponic Data Collection System

Appendix A: Bell Siphon

 A bell siphon is a way of draining excess water from the growth bed of an aquaponic

garden. It utilized the physics behind fluid dynamics which was a course taken by the SFU

student. He found the design on the Internet and told us that we wouldn’t need a level

sensor in our prototype. Figure 8 shows an example of how a bell siphon is set up in an
aquaponic system.

Source: valschep, “Best bell siphon ever explained,” YouTube, 17-May-2013. [Online].
Available: https://www.youtube.com/watch?v=lyrvcCqv5V0. [Accessed: 03-Dec-2018].

Figure 8: Bell Siphon example

 The process is split up into four phases; each phase refers to the level of the siphon.

The first phase is a filling phase, the level of the siphon begins at the bottom where there is

a hole under the ‘bell.’ Here, water enters from the growth bed and will fill up to the top of

the bell. Once the water level reaches the top of the bell, it reaches phase two.

 Phase two is a water lock, once the water reached the top, the water will begin to

drain into the middle pipe. This creates an air pocket in the middle pipe which will slowly

become smaller as more water pours in.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

20

20 Aquaponic Data Collection System

 Phase three is when the water reaches full capacity in the bell and the air pocket is

gone due to the excess water flowing in, creates a vortex which sucks out all the water in

the growth bed and pulling it to the middle pipe. This phase is called the draining phase

since all the excess water is being pumped out of the growth bed and into the sump tank

 Once the water level reaches the bottom of the open portion of the bell again, the

siphon will begin to break which will allow air back into the siphon. This phase is called

‘Breaking Siphon.’ Once air has filled the siphon and all the water has drained out of the
main pipe the cycle begins again.

 This cycle eliminates the need for a water level sensor since the bell siphon will

continuously drain out water if the level in the growth bed becomes too high. The water in

the fish tank may need to be refilled, but it uses the overfilling of the tank to send water
into the system which also eliminates the need for a water level sensor.

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

21

21 Aquaponic Data Collection System

Appendix B: Code Essentials

Appendix B.1: Auto-start script

 The code below are two separate scripts which was first used to open the console

(after the raspberry pi has powered up), then enter the right folder to run the second

script. The second script opens the actual script which will open the main script that runs

the operation of the sensors.

Script “Start” was created in: /home/pi/start

The “Start” script contains and executes the following commands:

cd /home/pi/Adafruit_Python_DHT/examples

./Aqua.py

 To auto-start the ‘Start’ script, we would need to add a line to the ‘autostart’ file

located here: home/pi/ .config/lxsession/lxde-pi/autostart.

The following line was added (This command points to the “start” script created in the

previous step):

@lxterminal -e bash /home/pi/start

 This enable the raspberry pi to run the ‘Aqua.py,’ script from its location. (This is due

to the dependencies of the other file)

Appendix B.2: JSON File Authentication

 The JSON file was created using the Google API interface. This JSON file will give

permission to the raspberry pi to append rows and input the data from the sensors onto

the spreadsheet.

The guide we used can be found here:

https://cloud.google.com/docs/authentication/production?fbclid=IwAR03wpJmTKxhf1GV

CVKfAW77hC1AQpdXnxer_5nxPBBgFUv3yezIuC_5juU

The “private key” and ID for each section is for testing purposes. If the guide is followed

properly, the JSON file with other credentials will output a similar code.

https://cloud.google.com/docs/authentication/production?fbclid=IwAR03wpJmTKxhf1GVCVKfAW77hC1AQpdXnxer_5nxPBBgFUv3yezIuC_5juU
https://cloud.google.com/docs/authentication/production?fbclid=IwAR03wpJmTKxhf1GVCVKfAW77hC1AQpdXnxer_5nxPBBgFUv3yezIuC_5juU

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

22

22 Aquaponic Data Collection System

Code:

"type": "service_account",

 "project_id": "aquaponic-system-data",

 "private_key_id": "a4787b4eae8d1b528ad487868da3a13e79313544",

 "private_key": "-----BEGIN PRIVATE KEY-----

\nMIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQDSD811DbCdKX/S\nc/H

Ksji8b1YMIaxga9xRnPKh1g8R4crUvQUdMkau7gVjSFkOilvM88PDcVjXT07A\nEAdhzN3+tSED

qVQWHSXH1/jhAdh1NVsE8LXgDb++sfFslU4TK3k0iu6V+W/RRpCT\nED2Tm8dU6WMlWUziV

kkx6WKEg0xfWVgD3ysmvLPmicJcF3PbOKJuvrsRfXaBKE98\nXEBcvOdVX8TcJtp3Utz8nJeixS0

q68Eql3ovU9j6uKgeXaTVruhyROD9PER/VIOp\nM/GCcDDERmHyccGxrQq1olzi9pq9TN2c03L

UFrgkIzVTR6fmGxDTBGQ0fA+sLiLd\n/ERrqm9PAgMBAAECggEAQ3tDIBbhRWPHBdcsdlbRpi

tII8aPhzwvP2KhiX7oQXDd\nRYFhirMThO+++FmODn9BJXKr0XXwud5m6IldrbvwFvqeG/yCIE

aF1BDcCYCbxm95\nCXnAm7UfA4ZLjfva5IqjOc9l/PTwSHUYTb46Ydh57Ru6t41cBxv8EJYuiW5

akwhd\n3vikvdO8IG5XCDUfdtgZazRb2xxVGSMuukEJ6goObJNlMXcPT2TXdJkHx/9d+xOQ\nbb

S1uelP3J7QV2JrCDJSBQEz6lqwZs2XHP44Q/g/znRe2zyQl8ugwzUAf5dVo5Ed\nsP8uiK8Gr+6L

wO7gcp/w7aUaKeNHcsP5tZpyEouT0QKBgQD19qaPfbx/AYp/g7pB\nsCDtG1udxH4vH/gGrCT

cVlV6s6Hn1LY2WvZ9zB0VAYb+UYv+fNiV2ul9kTUV7k/U\n26DDISTpVNV2cJEczWDmtarRGn

ehS2pNfL4O/vI+2p3CI0mn8G5VK1kK8aQHd5pJ\neyNQa9iwUXHzfXQL68sTNayskQKBgQDao

h6+AUj+csb7OBTshOVUC8nl4M5GBKU0\nqnOpzrOiavDkvvdgin/tk/HY9kKjxPtm6F1sFT8T/o

IbNe+dhQDujXnQnnpos8eq\nKqTvsa3wYInVth65JALKVf4OpMTU8VtxIcpX4vQrwPqdMNQfYgt

HcgKydVAYmE18\nxMyCaxDN3wKBgQC83k0/2fkoPXKwP+KCFlDyQRO0rfGHFjFKTl1vpAu3U

MB+WGQi\nkO694kJiou2Z09x/6jYVvCeW+C2fTYOXm55yt7y0PyQ68m07hKln/w/PyVcbT+Gs\

n5qC6uyIhCZYiQR6KCqFuXP7e3HZsFXcv/ZI8atPVcHTj1+2ISeOCOLEDQQKBgQDO\nTMvVXkE

SWBuKUZDs3TnH5JfOYiJBz4BUAcLCKFk4mNBWCBxE7GtqMn+yyix3fBf9\nMqV0p1et9imuo2

ZGrIoEj1qyj9fRlFKDL1oTEwWeHHnzPrYe3OwFIL9p8fAJPvWZ\n+tiDtZPQ9XeFe92s/0bFU79X

xXqeupfjc4/GQGDK4QKBgQDhuOUOQeOy1XsM7bIY\npGop5ItUjcXcrq+Q2TlcnaYZUx3TOrn9Y

TPl/kx0cB2gxrerJH/h+sFz+uq6Dgcn\nH3MUT8rRHWc3QlNjjc58xwwFi/OjRtZNhwG3xjFJSoS

bS8Gx6eXdM9/QuqvvrqGL\nJjcS35Wr/8LZY0GWtPSk5Q5Qeg==\n-----END PRIVATE KEY-----
\n",

 "client_email": "test9000@aquaponic-system-data.iam.gserviceaccount.com",

 "client_id": "100055336935501261729",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/test9000%40aquaponic-system-

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

23

23 Aquaponic Data Collection System

data.iam.gserviceaccount.com"

Appendix B.3: Main Script Code

 The main script of our code is responsible for the operation of the sensor collection
of the data. Most of the code is open source which can be found on the separate sites below.

DS18B20 Water Temperature Sensor: https://pimylifeup.com/raspberry-pi-temperature-
sensor/

DHT11 Room Temperature and Humidity Sensor: https://tutorials-

raspberrypi.com/raspberry-pi-measure-humidity-temperature-dht11-dht22/

“Actions”: https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-

led-with-your-raspberry-pis-gpio-

pins?fbclid=IwAR3dOaGQPdjA3zsCdL524iK9IRESBE_H3k8_KwZL66AaR7MsmG_f7ab7_oo

 The code below is a combination of both guides using mainly the open source given

by the publisher of the DHT11 sensor. The script below is responsible for the operation of

both sensors, the appending of data collected to the spreadsheet, and the actions associated

with the temperature readings.

Code:

#!/usr/bin/python

Google Spreadsheet DHT Sensor Data-logging Example

Depends on the 'gspread' and 'oauth2client' package being installed. If you

have pip installed execute:

sudo pip install gspread oauth2client

Also it's _very important_ on the Raspberry Pi to install the python-openssl

package because the version of Python is a bit old and can fail with Google's

new OAuth2 based authentication. Run the following command to install the

the package:

https://tutorials-raspberrypi.com/raspberry-pi-measure-humidity-temperature-dht11-dht22/
https://tutorials-raspberrypi.com/raspberry-pi-measure-humidity-temperature-dht11-dht22/

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

24

24 Aquaponic Data Collection System

sudo apt-get update

sudo apt-get install python-openssl

Copyright (c) 2014 Adafruit Industries

Author: Tony DiCola

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE

SOFTWARE.

import json

import sys

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

25

25 Aquaponic Data Collection System

import os

import glob

import time

import datetime

import Adafruit_DHT

import gspread

from oauth2client.service_account import ServiceAccountCredentials

#code added for actions

import RPi.GPIO as GPIO

Type of sensor, can be Adafruit_DHT.DHT11, Adafruit_DHT.DHT22, or

Adafruit_DHT.AM2302.

DHT_TYPE = Adafruit_DHT.DHT11

Example of sensor connected to Raspberry Pi pin 23

DHT_PIN = 5

Example of sensor connected to Beaglebone Black pin P8_11

#DHT_PIN = 'P8_11'

Google Docs OAuth credential JSON file. Note that the process for authenticating

with Google docs has changed as of ~April 2015. You _must_ use OAuth2 to log

in and authenticate with the gspread library. Unfortunately this process is much

more complicated than the old process. You _must_ carefully follow the steps on

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

26

26 Aquaponic Data Collection System

this page to create a new OAuth service in your Google developer console:

http://gspread.readthedocs.org/en/latest/oauth2.html

Once you've followed the steps above you should have downloaded a .json file with

your OAuth2 credentials. This file has a name like SpreadsheetData-<gibberish>.json.

Place that file in the same directory as this python script.

Now one last _very important_ step before updating the spreadsheet will work.

Go to your spreadsheet in Google Spreadsheet and share it to the email address

inside the 'client_email' setting in the SpreadsheetData-*.json file. For example

if the client_email setting inside the .json file has an email address like:

149345334675-md0qff5f0kib41meu20f7d1habos3qcu@developer.gserviceaccount.com

Then use the File -> Share... command in the spreadsheet to share it with read

and write acess to the email address above. If you don't do this step then the

updates to the sheet will fail!

GDOCS_OAUTH_JSON = 'Aqua.json'

Google Docs spreadsheet name.

#code for diffrent sheets:

#sheet = raw_input("What's the name of the spreadsheet? ")

#type(sheet)

sheet = 'test'

GDOCS_SPREADSHEET_NAME = sheet

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

27

27 Aquaponic Data Collection System

How long to wait (in seconds) between measurements.

FREQUENCY_SECONDS = 1

def login_open_sheet(oauth_key_file, spreadsheet):

 """Connect to Google Docs spreadsheet and return the first worksheet."""

 try:

 scope =
['https://spreadsheets.google.com/feeds','https://www.googleapis.com/auth/drive']

 credentials = ServiceAccountCredentials.from_json_keyfile_name(oauth_key_file, scope)

 gc = gspread.authorize(credentials)

 worksheet = gc.open(spreadsheet).sheet1

 return worksheet

 except Exception as ex:

 #print('Unable to login and get spreadsheet. Check OAuth credentials, spreadsheet name,

and make sure spreadsheet is shared to the client_email address in the OAuth .json file!')

 print('Google sheet login failed with error:', ex)

 sys.exit(1)

print('Logging sensor measurements to {0} every {1}
seconds.'.format(GDOCS_SPREADSHEET_NAME, FREQUENCY_SECONDS))

print('Press Ctrl-C to quit.')

worksheet = None

while True:

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

28

28 Aquaponic Data Collection System

 # Login if necessary.

 if worksheet is None:

 worksheet = login_open_sheet(GDOCS_OAUTH_JSON, GDOCS_SPREADSHEET_NAME)

 # Attempt to get sensor reading.

 humidity, temp = Adafruit_DHT.read(DHT_TYPE, DHT_PIN)

 #water temperature sensor

 os.system('modprobe w1-gpio')

 os.system('modprobe w1-therm')

 base_dir = '/sys/bus/w1/devices/'

 device_folder = glob.glob(base_dir + '28*')[0]

 device_file = device_folder + '/w1_slave'

 def read_temp_raw():

 f = open(device_file, 'r')

 lines = f.readlines()

 f.close()

 return lines

 def read_temp():

 lines = read_temp_raw()

 while lines[0].strip()[-3:] != 'YES':

 time.sleep(0.2)

 lines = read_temp_raw()

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

29

29 Aquaponic Data Collection System

 equals_pos = lines[1].find('t=')

 if equals_pos != -1:

 temp_string = lines[1][equals_pos+2:]

 temp_c = float(temp_string) / 1000.0

 return temp_c

 # Average out data over 5 min period of time

 #temp_avg =

 #humidity_avg =

 #room_temp_avg =

 #Time and Date

 timenow = datetime.datetime.now()

 time_string = timenow.strftime("%H:%M %x")

 time.sleep(2)

 #code for actions

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 GPIO.setup(18,GPIO.OUT)

 if(read_temp() > 30):

 GPIO.output(18,GPIO.HIGH)

 time.sleep(10)

 GPIO.output(18,GPIO.LOW)

 else:

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

30

30 Aquaponic Data Collection System

 GPIO.output(18,GPIO.LOW)

 # Skip to the next reading if a valid measurement couldn't be taken.

 # This might happen if the CPU is under a lot of load and the sensor

 # can't be reliably read (timing is critical to read the sensor).

 if humidity is None or temp is None:

 time.sleep(2)

 continue

 print('**')

 print('Current Time and Date: '+ time_string)

 print('Room Temperature: {0:0.1f} C'.format(temp))

 print('Water Temperature: {0:0.1f} C'.format(read_temp()))

 print('Room Humidity: {0:0.1f} %'.format(humidity))

 print('**')

 # Append the data in the spreadsheet, including a timestamp

 try:

 worksheet.append_row((time_string, temp, read_temp(), humidity))

 except:

 # Error appending data, most likely because credentials are stale.

 # Null out the worksheet so a login is performed at the top of the loop.

 print('Append error, logging in again')

 worksheet = None

 time.sleep(FREQUENCY_SECONDS)

 continue

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

31

31 Aquaponic Data Collection System

 # Wait 30 seconds before continuing

 print('Wrote a row to {0}'.format(GDOCS_SPREADSHEET_NAME))

 time.sleep(FREQUENCY_SECONDS)

Appendix B.4: Google Spreadsheet Notifications

 The script for enabling Google spreadsheets to send notifications to an email

address was created using the help of another guide. This script is responsible for detecting

if the last line of the spreadsheet is over a certain value. The timing for the notification is

done in another window. There was no source code for this script. However, we followed
the syntax given by the guide down below.

Guide: https://mailparser.io/blog/send-emails-from-google-spreadsheet/?fbclid=IwAR20-
g-28Cs2jj03Pq96youxvRWIdblAwjdhU3un-S9sSjzQu1RU_Oer1wE

Code:

function myfunction()

{

 var sheet = SpreadsheetApp.getActiveSheet();

 var last_Row = SpreadsheetApp.getActiveSheet().getMaxRows(); // First row of data to

process

 var numRows = 1; // Number of rows to process

 // Fetch the range of cells A2:B3

 var dataRange = sheet.getRange(last_Row, 1, numRows, 5);

 // Fetch values for each row in the Range.

 var data = dataRange.getValues();

 for (i in data)

 {

 var row = data[i];

https://mailparser.io/blog/send-emails-from-google-spreadsheet/?fbclid=IwAR20-g-28Cs2jj03Pq96youxvRWIdblAwjdhU3un-S9sSjzQu1RU_Oer1wE
https://mailparser.io/blog/send-emails-from-google-spreadsheet/?fbclid=IwAR20-g-28Cs2jj03Pq96youxvRWIdblAwjdhU3un-S9sSjzQu1RU_Oer1wE

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

32

32 Aquaponic Data Collection System

 var date = row[0]; // First column

 var room_temp = row[1]; // Second column

 var water_temp = row[2]; //third column

 var humidity = row[3]; //fourth column

 }

 if (water_temp > 30)

 {

 var subject = 'Aquaponic System WARNING - Water Temp High!';

 var message = date + "\n" + ' water temperature is ' + water_temp;

 MailApp.sendEmail('sampleemail@gmail.com', subject, message);

 }

 }

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

33

33 Aquaponic Data Collection System

Appendix C: Schematic Diagram

 Figure 9 below shows the schematic diagram that we used to connect the sensors to

the raspberry pi. The guides previously mentioned in Appendix B.3: Main Script Code gave
us insight for setup the sensors.

 The DS18B20 (water temperature) sensor needed to have wires soldered onto the

pins since we could not directly connect the leads onto a breadboard. The leads of the

DS18B20 were twisted pair and if we directly connected them onto a breadboard the wires
could become frayed which would damage the lead.

For the DHT11, the leads were very short and to prevent damaging the actual sensor itself,

we mounted the sensor onto a 16-pin mounting base and cut-off the other 4 pins.

Figure 9: Schematic Diagram for sensors to Raspberry Pi

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

34

34 Aquaponic Data Collection System

Appendix D: Bill of Materials

 The original bill of materials (BOM) for our project can be seen below in Table 4:

BOM after design modifications The first table shows the initial BOM with all the parts that

we thought we were going to implement into our system. After some design changes, we

decided to eliminate the water level sensor and water pump. These two would be replaced

with a bell siphon (Appendix A: Bell Siphon which uses a much more natural solution to
maintain the water level.

Table 3: Initial BOM for capstone project

Part Name Purpose Quantity
Cost (tax and shipping

not included)

Raspberry Pi 3 Model B
Main processing module
for our system 1 $55.99

Dc 3.5v -9v 3w Usb Submersible
Water Pump

Water tank Level
Adjustment 1 $17.99

DS18B20 Thermometer Temperature
Sensor Probe Module

Water Temperature
Sensor 3 $14.68

 DHT11 Temperature And Relative
Humidity Sensor

Room Temperature and
Humidity Sensor 5 $22.99

SanDisk Extreme 32GB microSDHC Data storage and backup 1 $25.23

Total Cost $ 136.88

The table below shows what we used, not including the chassis since we could not

put a price on how much a chassis would cost. In the end, a chassis can be made from any

box.

Table 4: BOM after design modifications

Part Name Purpose Quantity
Cost (tax and shipping

not included)

Raspberry Pi 3 Model B
Main processing module for
our system

1 $55.99

San Disk Extreme 32GB micro SDHC Data storage and backup 1 $25.23

DS18B20 Thermometer
Temperature Sensor Probe Module

Water Temperature Sensor 1 $13.25

 DHT11 Temperature And Relative
Humidity Sensor

Room Temperature and
Humidity Sensor

1 $8.00

Adafruit Perma-proto 1/2 sized
breadboard

breadboard to be put into
the chassis

1 $6.50

Total Cost (with taxes) $121.92

Batac | Nieścierowicz | Solibio
BCIT|ECET: Telecommunication and Networking

35

35 Aquaponic Data Collection System

Appendix E: Raspberry Pi Data Sheet

The datasheet was found at:
https://docs.particle.io/datasheets/discontinued/raspberrypi-datasheet/

 We used this datasheet to find the GPIO of the raspberry pi in order to relocate the

pins for our sensors since their guides use the same GPIO port. (Figure 10)

Figure 10: Pin-out for the Raspberry Pi

Appendix F: DS18B20 Temperature Sensor

 The data sheet we used to find out pinout of the water temperature sensor can be

found here:

https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/DS18B20.pdf . The PDF

was found on the product page of Lee’s Electronics which can be found here:

https://leeselectronic.com/en/product/1255.html

Appendix G: DHT11 Temperature sensor

 The datasheet we used to find the pinout of the humidity and room temperature

sensor can be found here: http://www.circuitbasics.com/wp-

content/uploads/2015/11/DHT11-Datasheet.pdf . . The PDF was found on the product

page of Lee’s Electronics which can be found here:

https://leeselectronic.com/en/product/1255.html

https://docs.particle.io/datasheets/discontinued/raspberrypi-datasheet/
https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/DS18B20.pdf
https://leeselectronic.com/en/product/1255.html
http://www.circuitbasics.com/wp-content/uploads/2015/11/DHT11-Datasheet.pdf
http://www.circuitbasics.com/wp-content/uploads/2015/11/DHT11-Datasheet.pdf
https://leeselectronic.com/en/product/1255.html

