

ii

2018 MATE ROV
COMPETITION
Deep Blue Marine Engineering

British Columbia Institute of Technology
Vancouver, Canada

 Jonathan Murphy – Project Manager
 Andrew Miltimore – Lead Designer
 Oliver Law – Task Lead

Ethan Quisias – Electronics Lead
 Taco Niet – Faculty Advisor

INNOVATION
FOR A

COMPLEX
WORLD

iii

Table of Contents
ACKNOWLEDGEMENTS ... vi

ABSTRACT .. 7

PROJECT MANAGEMENT .. 8

Team Member Roles ... 8

Design phases and process .. 9

Component implementation and organization .. 9

Time management ... 10

ROV Mechanical Design Rationale .. 11

Frame .. 11

Electronics Housing .. 11

Mission Specific Tooling Design Rationale ... 12

Task 1- Tool Integration ... 12

Task 1 – Lift Bag .. 12

Task 1 – Release Mechanism .. 13

Task 1 - Grabber ... 13

Task 2 - Ocean Bottom Seismometer Inductive Coupling ... 13

Task 2 - Ocean Bottom Seismometer Tee Manipulator .. 13

Task 2 – Ocean Bottom Seismometer Wi-fi Receiver .. 14

Task 3 - Pneumatic Gripper .. 14

Task 3 - Acoustic Doppler Velocimeter ... 15

Task 3 - Measuring Tape .. 15

Electrical System Design rationale ... 15

Control System.. 15

Communication Subsystem .. 16

Motion Control and Feedback Subsystem .. 16

Peripheral Control Subsystem... 17

Camera System ... 18

Power System.. 18

SYSTEM INTERGRATION DIAGRAMS .. 19

Electrical SID .. 19

Pneumatic SID .. 20

iv

SAFTEY ... 20

CHALLENGES .. 21

Technical Challenges .. 21

Teamwork Challenges .. 22

LESSONS LEARNED.. 22

TEAM REFLECTIONS.. 23

Jonathan Murphy, Project Manager .. 23

Andrew Miltimore, Lead Designer ... 23

Oliver Law, Task Lead ... 23

Ethan Quisias, Electronics Lead ... 24

FUTURE IMPROVEMENTS .. 24

COST ACCOUNTING ... 25

APPENDIX ... 26

Arduino Code for Surface control box (Master) ... 26

Arduino Code for ROV electronics housing (Slave) .. 31

Buoyancy Design Calculations ... 39

Drag Center Location Calculations/Estimations ... 42

v

We hereby declare that we are the sole authors of this report.

Signature

Signature

Signature

Signature

We further authorize the British Columbia Institute of Technology to distribute digitally, or
printed paper, copies of this report, in total or in part, at the request of other institutions or
individuals for the purpose of scholarly activity.

Signature

Signature

Signature

Signature

vi

ACKNOWLEDGEMENTS

We would like to acknowledge the companies who sponsored us:

 Pacific Fasteners Ltd.: provided us with stainless steel fasteners
 FiberTek: provided us with the foam used for the electrical housing
 Rocky Mountain Motion Control: provided us with aluminum extrusion used in the frame

The materials given to us by these companies were vital in completing our ROV.

We are especially grateful for the assistance, guidance, and support given to us from the
following faculty. Our faculty sponsor, Taco Niet, for guiding us in all aspects of the project.
Johan Fourie, for project management guidance and approving component purchases. Jason Brett
of the Technology Teacher Education program for providing us with expert knowledge in
electrical design and robotics. Greg King, Eugene, Dave Lewis, and Ernie Jazen from the CARI
building for expert knowledge and advice in mechanical design and manufacturing.

Lastly, we would like to acknowledge the BCIT Mechanical Engineering department for
providing us funding for the electrical and mechanical parts needed to complete our capstone
project.

7

ABSTRACT

Deep Blue Marine Engineering (DBME) has developed an ROV that satisifies the design
requirements outlined in the RFP submitted by the Applied Physics Laboratory (APL) at the
University of Washington. DBME’s Marauder was designed and built by a team of 4 mechanical
engineering students from the British Columbia Institute of Technology (BCIT). Marauder was
prototyped to perform tasks required for locating and recovering the engine of a vintage airplane,
installing a seismometer, and installing a tidal turbine and instrumentation to monitor its marine
environment. Marauder was intially prototyped at BCIT’s Burnaby campus before it underwent
thorough and rigirous testing at the BCIT Marine Campus to ensure functionality and reliability
when performing the required tasks.

To complete the scope of work provided by the APL at the University of Washington, DBME
was organized into mechanical and electrical design teams. A collaborative design approach
between mechanical and electrical design teams was used to insure functionality and control of
mission specific tooling during prototyping and testing.

Marauder’s frame and tooling was precision manufactured using in-house equipment that
includes a 3-axis CNC mill, a water jet cutter, and multiple 3D printers to insure component
fitment and potential development of multiple prototypes. Furthermore, with the aid of precision
manufacturing equipment, Marauder’s frame and tooling was also designed to meet the minimal
size and weight requirements for ease of portability.

The following technical document outlines the design process and results produced by BCIT
Deep Blue Marine Engineering during the development and prototyping of Marauder.

Figure 1: Deep Blue Marine Engineering Design Team. Left to right - Oliver, Jonathan, Andrew,
and Ethan

8

PROJECT MANAGEMENT
Team Member Roles
When selecting the roles for each of our individual team members, it was important that their
project roles favored towards their strengths. It was also crucial that each team member had the
opportunity to expand and develop their skills and knowledge of electrical and mechanical
engineering design. To outline each team member’s individual roles and responsibilities, the
team developed a responsibility assignment matrix (RAM). Each member’s responsibilities were
interlinked with other members of the team by assigning either responsibility (R), consult (C),
and Inform (I) to team members per activity. Assignment of the activities for each team member
was a critical for defining project deadlines in the developed Gantt chart for project time
management.

Activity Jonathan Oliver Ethan Andrew Taco

Vehicle Frame R I I C I
Mission
Objectives
Design

C C C R C

Motor Control C C R C C
Communication
System

I R C I I

Data Acquisition
System

C C R C C

Video Capture
System

I R C I C

Prototyping C C C R I
Operational
Testing

R C C I C

Developmental
Testing

R C C C C

Underwater
Testing

C C C R C

Jobsite safety R C I I C
Spare
Components

I C C R I

Graphical User
Interface

C C R I I

Figure 2 - Responsibility Assignment Matrix

9

Design phases and process
The ROV project consisted of two design phases. Phase one consisted of building the functional
ROV which consisted of the mechanical design of the frame and electronics housing, and phase
two consisted of designing the mission specific tools. Because this was the first ROV built by the
design team, it was important that phase one be completed in a timely manner to confirm that the
expected maneuverability and control was adequate. Insuring adequate maneuverability and
control from phase 1 was critical to commence phase 2. This is because adequate
maneuverability would allow more freedom of design for the mission specific tools. From
examining previous competition results, it was apparent that the function and maneuverability
developed in phase 1 was much more critical to success than attempting to develop mission
specific tools in phase 2 that compensated an ROV with inadequate maneuverability and control.
Therefore, a majority of the design team’s time was spent designing and building the ROV frame
and electronics housing in phase 1. After completion of phase 1, the design team began focusing
on phase 2, which consisted of mission specific tool design. To complete each design phase, the
design team approached each problem using a collaborative design process.

The design team’s collaborative design process shown in Figure 3, consisted of each team
member creating conceptual designs and prototypes that could demonstrate potential
functionality for both phase 1 and phase 2. After comparing individual design concepts and
numerical ranking using a decision matrix, the team would select a concept to continue forward
with. A decision matrix was vital when completing phase 1 of the design process because of the
numerous configurations of the thrusters and electronics housing design choices available.
Utilizing a decision matrix proved useful when designing the mission specific tools because of
the numerous ways to complete each task. The design team typically chose designs that could be
manufactured rapidly and easily with an expected low risk of failure. By utilizing this
collaborative design approach, the design team was skillfully fortunate to avoid many potential
catastrophic failures.

Component implementation and organization
To implement and organize the various components through-out the ROV, the design team used
block diagrams. Block diagrams allowed both design teams to identify and diagnose potential
errors during implementation and to properly organize the required components for subsystems
quickly and effectively. An example block diagram for the wi-fi sensor is pictured in Figure 4.

Figure 4 - Example Block Diagram (Wi-fi Sensor)

Figure 3 - Collaborative design process

10

Time management
The design team managed time spent on each activity assigned in the responsibility assignment
matrix of the project using a Gantt chart. The Gantt chart was useful to ensure the both adequate
time was spent on each task and to ensure that no time was being wasted. By allocating time
effectively, the design team anticipated completion by May 9th, 2018. However, the design team
completed the defined scope early on May 4th, 2018. The design team also tracked progress and
completion of critical objectives using a milestone schedule.

Figure 5 - Gantt Chart for time management

15-11-2017 15-12-2017 14-01-2018 13-02-2018 15-03-2018 14-04-2018 14-05-2018

Mission Objectives Design

Vehicle Frame

Motor Control

Communication System

Data Acquisition System

Video Capture System

Prototyping

Operational Testing

Developmental Testing

UnderWater Testing

Graphical User Interface

2017-12-22 2018-02-05 2018-03-22 2018-05-06 2018-06-20

Compete at international competition
Submit all required documentation to MATE

Last Day to submit demonstration video
Test prototype and film/submit…

Manufacture functional prototype
Pass Fluid Power Quiz

Submit Laser specifications
Registration Closes for international…

Solidworks models
Electrical system design and component…

Select final concept

Milestone Schedule

Figure 6 - Milestone schedule for objective management

11

ROV Mechanical Design Rationale

Frame
The frame as seen in Figure 7, is designed in such a way to
provide both adaptability and ease of manufacturing. To ensure the
frame is adaptable to many different setups of tooling the team
uses t-slots which allow positioning of components anywhere
along them on all four sides. The t-slots in combination with the
plethora of mounting holes on the side panels as shown in Figure 7
provide endless mounting possibilities for tooling. The frame is
also designed in such a way that any 2-dimensional cutting
machines such as a CNC router or waterjet would be able to easily
machine the profiles. The frame also includes mounting holes on
the side panels for additional ballast weights to accommodate
potential inaccuracy in determining the total buoyancy force and
the buoyancy center of the ROV. In addition to correcting
extbuoyancy, the added ballast weights lower the ROV’s center of
mass further below its buoyancy center, thus improving stability.

Electronics Housing
The electrical housing as seen in Figure 8 consists of three main
parts: a casted polyurethane foam cover (shown below), a set of
¼” aluminum rings and a 6mm Lexan bottom piece. The cast
polyurethane foam prior to machining to size is pictured in Figure
9. There will also be an assortment of intelligently spaced bolts to
compress an O-ring that lives between the Lexan and aluminum to
seal against water and to provide a consistent and easily
replaceable seal. To seal the polyurethane foam to the aluminum
the team used a 2-part marine epoxy. Both the Lexan cover and
the aluminum rings are cut on a waterjet cutter with the aluminum
rings receiving a CNC milled O-ring groove. The O-ring groove
has been slightly undersized for a 3mm O-ring to ensure good
contact with the Lexan. This foam housing also doubles as the
main source of buoyancy for the ROV.

Figure 8 - Electronics Housing Section
View

Figure 7 - ROV Frame

Figure 9 - Foam casting before
machining

12

Mission Specific Tooling Design Rationale
Task 1- Tool Integration
To accomplish task 1 the ROV
must lift debris weighing about
40 N in water off of a platform
and then release it via Bluetooth.
To accomplish this, the ROV
utilizes the 3 separate tools.
These 3 components work in
conjunction to grab, lift and
release debris wirelessly.
Combined, they are what make
up DBME’s lift bag release
mechanism.

Task 1 – Lift Bag
This lift bag is a simple diver’s lift bag that inflates and allows it to lift
very heavy objects underwater. The design team found an old lift bag and
then modified it to displace the correct amount of water to give us the
target lifting force of just under 40 newton’s. The lift bag is simply
inflated via the pneumatic system and a 2/2 valve plumbed into the bag.

Figure 10 - Task 1 Components

Hinge

Servo

Bluetooth & Servo Controller

Release Mechanism

Figure 11 – Lift Bag

13

Task 1 – Release Mechanism
The release mechanism as seen in Figure 12 uses a lever arm to allow a
small servo to release an object weighing well of 40 newton’s. The servo
is controlled by an onboard Arduino which has a Bluetooth board
connected to it. The Bluetooth board is constantly looking to connect to
the ROV which has a similar Bluetooth board. Once connected the ROV
can trigger the servo to release the weight. This design is used because it
allowed easy integration with the onboard electronics is reliable and
simply ties inline between the grabber and lift bag, so only one design is
need for the grabber to also accomplish the second half of Task 1.

Task 1 - Grabber
The grabber as seen in Figure 13 is a one-way latch that can be driven into
a U-bolt to connect it. Then a tapered sleeve cut into the aluminum holder
will release once the ROV reverses. This is an extremely simple design
that has proven to be very effective at semi-permanently attaching itself to
a U-bolt.

Task 2 - Ocean Bottom Seismometer Inductive Coupling
The inductive coupling contained three vital components for successful
operation. First, an adapter for the OBS was designed and 3D printed
using PLA as seen in Figure 14. The OBS adapter contains the inductive
power transmitter which was potted in marine epoxy for extra weight and
waterproofing. The housing for the batter housing was then made using 2-
inch PVC pipe with a screw on end-cap. The screw on end-cap was
chosen to allow for easy replacement of the 9V and AA batteries.

Task 2 - Ocean Bottom Seismometer Tee Manipulator
The tee manipulator, as seen in Figure 15, consisted of three vital
components. The waterproof servo, the mounting bracket, and the end-
effector. Before water-proofing the servo, the feedback potentiometer was
removed and replaced with 2 equal resistors to allow for continuous
rotation in both directions. The hobby servo was waterproofed using
marine epoxy and placing an o-ring at the output shaft. After submerging
the servo overnight and then performing a megaohm test, the servo was
deemed water proof after reading greater than 10 Mega ohms. The
mounting bracket was 3D printed using PLA and designed to provide
adequate support as a cantilever beam and provide torsional rigidity. The
end-effector was designed with four prongs to allow easy positioning and
was mounted on an extended shaft to allow for better viewing from the
bird’s eye and forward-facing cameras. Because of their complex shape,
the four-pronged end effector and mounting bracket were 3D printed
using PLA.

Figure 14 - Inductive coupling

Figure 15 - Tee Manipulator

Figure 13 - Grabber

Figure 12 - Release Mechanism

14

Task 2 – Ocean Bottom Seismometer Wi-fi Receiver
The wi-fi receiver to recover seismometer data from the OBS was
developed using the ESP8266-01. This wi-fi board was used because of
it’s functionality as a wi-fi client as well as it’s compact size and weight.
The ESP8266-01 was configured as a wi-fi client and connected to the
Arduino Mega on board the ROV. The wi-fi sensor was mounted to the
gripper to have closer proximity to the OBS because of the limited range
of wi-fi underwater. The wi-fi sensor was waterproofed using epoxy that
cured transparent so that the ESP8266-01’s built in LEDs could still be
viewed for trouble shooting (Figure 16). After testing, this device was
found to be relatively unreliable. On the first attempt during testing, the
firmware on board the wi-fi sensor ceased to function, making the device
unusable. There was no apparent reason as to why this occurred because
the device had not been touched since it had last been functioning.
Another wi-fi sensor was remade to rectify this issue.

Task 3 - Pneumatic Gripper
Task 3 mainly consists of gripping components and moving them to
designated areas or inserting them into other apparatuses. This includes
installing a tidal turbine in the optimum location, an Intelligent Adaptable
Monitoring Package (I-AMP), placing a mooring a given distance from
the tidal turbine, and suspending an Acoustic Doppler Velocimeter at a
given height on the mooring. With regards to Task 1, a pneumatic system
was already in place on the ROV and adding an additional line to
manipulate the gripper was the easier option rather than going through the
process of waterproofing a motor. The gripper (Figure 17) was designed
such that it can grip the maximum diameter of PVC pipe which is 2
inches.

Figure 17: Pneumatic Gripper

Figure 16 - Wi-fi Sensor before
and after waterproofing

15

Task 3 - Acoustic Doppler Velocimeter
The last part of Task 3 consists of suspending an Acoustic Doppler
Velocimeter (ADV) at a given height on the mooring. DBME was tasked
with designing its own ADV to simulate the equipment. From the
specifications given by MATE, the ADV was created as shown in Figure
18. Sticking with a simple design to minimize manufacturing work, the
ADV was created with a two-inch PVC pipe, compatible with the
maximum diameter the pneumatic gripper can handle, and a metal hook
on the top to hook onto the #310 U-bolt. To counter-act the buoyancy of
PVC, holes were drilled into the ADV to allow water to flood inside and
caused it to become negatively buoyant. To ensure that the ADV does not
slip through the gripper’s claws, it was wrapped in duct tape.

Figure 18: Acoustic Doppler
Velocimeter

Task 3 - Measuring Tape
To measure the horizontal distance from the tidal turbine, DBME
fashioned a measuring tape on the front of the ROV. This apparatus is
pictured in Figure 19. Through cooperation with the camera angles, the
pilot will be able to hook onto the PVC pipe with a ring installed at the
end of the tape, and drive backwards to measure distance. This simplistic
design does not further complicate the electrical system as it only relies on
the cameras to read horizontal distance and the pilot to be able to retract
the measuring tape.

Figure 19: Measuring Tape

Electrical System Design rationale

Control System
The ROV’s control system consists of the communication, motion control and feedback,
peripheral control subsystems. Communication will be handled via a full duplex RS485 serial
communication protocol circuit between two Arduino MEGA 2560 microcontrollers and two
MAX488 integrated circuit chips. Motion control and feedback consisted of five thrusters, an
inertial measurement unit, and an absolute pressure sensor to measure depth. Lastly, the
peripheral control subsystem will control the pneumatic solenoids for the gripper and airbags.

16

Communication Subsystem
The communication subsystem has two Arduino MEGA 2560 microcontrollers communicating
via full duplex RS485 serial communication through a CAT-5 cable through the tether. The
RS485 serial communication protocol was chosen for its noise cancelling capabilities, its high
data transfer rate, and its ease of implementation. This protocol’s noise cancelling capabilities
stems from the use of a differential signal in which two signals are created from the original
communication signal: a non-inverting and an inverting signal. And through the twisted pair of
the CAT-5 cable, the induced noise current from the magnetic fields in the environment are in
opposite directions, resulting in each of the amplitudes of the noise to be cancelled.

This microcontroller was selected for its ease of implementation and the amount of digital and
analog I/O pins. Furthermore, the multiple hardware serial ports allow for communication
between the Arduinos as well as with the graphical user interface that will be displayed on a
laptop. Although the Arduino IDE has software serial capability, using this feature would
increase the chances of miscommunication due to the complexity of code needed compared to
hardware serial ports.

Inside the top-side control box, we will be using two two-axis joysticks, one rotational
potentiometer, two two-position switches, two-three-position rocker switches, and seven
indicator LEDs. The joysticks and potentiometer will be connected to the analog inputs of the
microcontroller and will undergo A/D conversion and thrust vectoring to obtain the desired
values for motion control. Furthermore, the switches will be connected to digital inputs and will
send boolean logic to the ROV for task specific and peripheral controls.

Motion Control and Feedback Subsystem
This subsystem is in charge of linear movement in the x-, y-, and z-axes, rotation around the z-
axis, and obtaining information regarding position and orientation for the use of the pilot. To
achieve this, the ROV is equipped with five thrusters (four at each corner angled at 45 and one
vertical central thruster), an IMU module, and a pressure sensor for determining the depth of the
ROV.

The thrusters are mounted at 45 instead of parallel to the x- and y-axes because it allows for
more balanced translational and rotational movement. However, the drawback to this method of
mounting the thrusters is that the implementation of precise control is more complex. The motors
must be thrust vectored to achieve the desired motion, which is the process of vector addition of
all the thrusts to achieve an overall thrust in a certain direction.

17

To implement thrust vectoring, four matrices must be created: 𝜏 which contains the duty cycle
values from the joysticks in the x-, and y-axes and rotation about the z-axis, 𝑓 which contains the
final thrust vectored values, 𝑄ሬ⃗ which contains the coefficients necessary for adjusting each
motor’s duty cycle for a given angle and radius, and the thrust allocation matrix 𝑊ሬሬሬ⃗ . When thrust
vectoring is completed, the following equations were obtained and then implemented directly
into the code:

𝑓 =
1

4
𝑊ሬሬሬ⃗ ൤

0
𝑄ିଵ𝜏

൨ =
1

4

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜏௫

𝑐𝑜𝑠𝜙
+

𝜏௬

sin 𝜙
+

𝜏௥௢௧

𝑟
𝜏௫

𝑐𝑜𝑠𝜙
−

𝜏௬

sin 𝜙
−

𝜏௥௢௧

𝑟

−
𝜏௫

𝑐𝑜𝑠𝜙
+

𝜏௬

sin 𝜙
−

𝜏௥௢௧

𝑟

−
𝜏௫

𝑐𝑜𝑠𝜙
−

𝜏௬

sin 𝜙
+

𝜏௥௢௧

𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

In terms of the feedback portion of this subsystem, the IMU and the pressure sensor give the
pilot information about positioning and orientation, which is very useful when the ROV pilot is
constrained to only the on-board camera views. The IMU is a 6-axis module that contains a 3-
axis gyroscope, and 3-axis accelerometer. The gyroscope will be used to detect any rotational
movement and the accelerometer will detect translational movement as well as yaw, pitch, roll
movements. Furthermore, the pressure sensor will be calibrated to output data regarding the
depth of the ROV. The pressure sensor senses absolute pressure and by the use of careful
calibration and simple hydrostatic pressure calculations.

Peripheral Control Subsystem
The Peripheral Control subsystem is the control system for task specific functions and will be
controlled be the Communications subsystem, similar to the Motion Control and Feedback
subsystem. This subsystem will control the pneumatic gripper, the inflation of the two lift bags,
the Bluetooth module used for Task 1, and the servo that will be used to level the ocean-bottom
seismometer.

Boolean logic values from the switches on the top-side control box will be used to control the
task specific peripherals on the ROV. Two 12V electric solenoid valves will be controlled by the
microcontroller and two TIP-122 NPN transistor circuits for the inflation of the lift bags. And
similarly, a 24V electric solenoid will be used to control the gripper. Furthermore, the Bluetooth
module for Task 1 will be controlled by an Arduino Pro Micro that will turn the servo that
releases a latch when a HIGH signal from the main Arduino MEGA microcontroller is
transmitted. Lastly, the same Arduino Pro Micro previously mentioned will control a continuous
rotation servo motor used to level the ocean-bottom seismometer. The servo will follow the same
operational protocol as the Bluetooth module in which a HIGH signal from the Arduino MEGA
to the Arduino Pro Micro will determine the direction of rotation of the servo motor.

18

Camera System
The Camera System was kept as an independent system to minimize troubleshooting and
complications. Two cameras providing the front view for the ROV were used to incorporate
depth perception by crossing views and utilizing the resulting parallax. The third camera
provides a top-down view of the task-specific components on the front of the ROV to further aid
the driver in accomplishing tasks. To minimize the amount of wires in the tether, a 4-Channel
BNC to RJ45 video balun was used to convert up to four video signals to one ethernet cable
running up the tether. This design allows for an additional camera to be implemented for future
work incase another view was needed for driving or competition purposes. From the ethernet
cable running up the tether to the shore, the signal is converted back into separate BNC video
signals through another video balun and plugged into their respective monitors with an RCA
adapter.

Power System
From the shore, 48VDC at 30A is sent through an in-line 30A fuse, then through the tether and
into the ROV which is then distributed into two step-down buck converters, a 24V and 12V
converter. These two converters were chosen for their efficiency and added safety precautions
that are built in. They use an electrical circuit comprised of inductors and capacitors to step the
voltage down whereas the counterpart – linear regulators – step down the voltage by dissipating
power as heat, making our converters much more efficient. Furthermore, these converters
include safety features such as over-load, current, temperature, and voltage protection, and a
water- and moisture proof-design. Following the 24V converter, an in-line 20A fuse is placed for
added protection for our five Seabotix BTD150 thrusters. The 12V converter does not have an
in-line fuse because it supplies power to easily-replaceable, and inexpensive components;
although the initial fuse on the top should be sufficient for any unforeseen problems. The two
voltage levels are then distributed into two separate power rails, powering the other subsystems.

19

SYSTEM INTERGRATION DIAGRAMS
Electrical SID

20

Pneumatic SID

SAFTEY
Throughout the build of the ROV the company kept a keen eye for where implementing a safety
feature may be necessary. Our philosophy is that an untrained person could safely operate the
vehicle without training. This started with making the controls intuitive so that any pilot could
safely navigate through the water. Another key safety feature was to ensure a pilot had a sense of
depth perception so they know how close the ROV is to objects.

A key feature which is a requirement for
passing tech are thruster guards to ensure
fingers do not get sucked into the thruster. The
company made custom 3D printed guards
which attached semi permanently to the
thruster. These thruster guards are pictured in
Figure 20

 Figure 20 - Custom 3D printed thruster guards

The most important safety feature on the ROV is the shutdown sequence when communication is
lost but power is not. Our ROV checks that it is getting updated commands from the surface
constantly and should that communication stop the ROV shuts down all motors to zero thrust.
Due to the positive buoyancy of the ROV, it will then slowly float to the surface of the water.

21

CHALLENGES
Technical Challenges
Since this was the first underwater ROV designed by the team, there were numerous technical
challenges the team had to overcome. The main technical challenges the team encountered
originated from the ROV frame and electrical housing design, the ROV’s communication
programming, and the mission specific tooling design. The technical challenges associated with
the frame and electrical housing design primarily involved the calculations involved in
estimating the ROV’s total buoyancy force and drag center. The estimation of the ROV’s total
buoyancy force was difficult because of the complex nature of the volume displaced by the ROV
and the unknown parameters of the mission specific tooling that had not been developed before
building the ROV’s frame and electrical housing. In order to overcome the technical challenge
involved in estimation/calculation of the ROV’s buoyancy force, the team added additional
weights and fabricated the electrical housing out of Urethane foam in order to be easily
machined down to tune the total buoyancy force after the ROV was fully assembled. To
overcome technical challenges in estimation/calculation of the center of drag of the ROV, the
team simplified the frame to rectangular shapes and drag factors. Estimating the center of drag
was important to analytically validate the potential stability of the ROV while in motion.

In terms of programming, the task that had the highest priority, was the serial communication
between the top side and the ROV. The procedure in solving this task began with brainstorming
ideas on how this can be programmed, and testing these methods using online Arduino
simulation software. Initially, a simple algorithm was created in which raw data would be sent
and read; however, assigning these data values to a variable on the receiving end would be nearly
impossible because the order of the data being sent is unreliable because the timing between
sending and receiving data can be easily off, it also would only work for a simplex
communication circuit. At this point, the algorithm was changed slightly to add a specific and
constant character at the beginning of each iteration of the loop function and a wait function to
create a quasi-duplex circuit. Although this is a viable solution, it does not fully utilize the
RS485 protocol’s capability since wait function will slow down the overall data transfer rate. In
this case, we implemented an Arduino library created by a member of the Arduino community
that eases the implementation of serial communication and fully utilizes its capabilities. The
library saves the values into the memory of the Arduino and sends the chunk of memory through
serial. Overall, the communication challenges in programming stemmed from the timing
between the two Arduinos.

Technical challenges involved with the mission specific tooling design were primarily found
during system implementation. Because each of the three missions were proven to be
substantially different, they required specialized tooling that created technical challenges in
programming and electrical system design. The sub systems that required servo motors,
Bluetooth sensors, and wi-fi sensors were the primary source of technical challenges in
programming implementation. Technical challenges in the electrical system were also found
because of the need to accommodate several different voltages ranging from 3.3V to 24V.
Although this was not a huge challenge, it created unwanted complexity in the electronics
housing.

22

Teamwork Challenges
Challenges in teamwork originated primarily in coordination of project time for each team
member. Because each team member was enrolled in a Bachelors of Engineering and had to
complete additional course assignments, it was difficult to coordinate group project work and
manufacturing sessions. Because it was difficult coordinating group project work sessions, team
members had to perform work outside of school time without proper ability to involve other
team members during their design. This lack of consulting other team members created problems
later on in manufacturing in the form of mechanical interference between individual components,
and electrical errors in PCB design that required the PCB to be re-designed and remade. These
avoidable mechanical interferences and electrical design errors caused the team time and created
additional costs. The nature of the small design team and large scope provided by MATE also
increased the presence of errors created during design that were not found until manufacturing
because projective objectives had to be completed rapidly by team members to meet deadlines.

LESSONS LEARNED

Learning how to efficiently waterproof our components and electronics housing was a very
essential aspect of this project. To seal the electronics housing, a custom O-ring was used and in
order to utilize it properly the groove in which the O-ring sits must be precision machined to get
a smooth finish. This requirement for using O-rings deterred us from using them with 3D printed
parts since it is difficult to achieve the required surface finish. Furthermore, using O-rings in this
project showed us the potential of O-rings, in that they can be used to seal almost any shaped
housing as long as there are no sharp corners and that the groove has a smooth surface finish.
Apart from O-rings, to waterproof our components, 3M 5200 (Marine Adhesive Sealant) and
epoxy were used to coat the Bluetooth module, Wi-Fi module, and the servo motor. The epoxy
was proved to be very effective and efficient in that it set quickly especially compared to the 3M
5200. The marine adhesive sealant we used was very effective when used to seal cables and
connections exposed to water; however, the drawback that came with this product is that its
setting time was in excess of four days. This created setbacks in testing, and fully implementing
certain task specific components.

Valuable lessons learned when working with electronics were cable management and the
importance of correct and complete wiring diagrams. Since there are many subsystems that are
interconnected, these aspects were intrinsic in building a functional ROV. For example, the
initial wiring of the control box was not optimal and the untidiness caused wires to disconnect
and produce unreliable data values. A simple fix of shortening the wires to a more reasonable
length and adding heat shrink to organize the wires helped mitigate this issue. Furthermore,
many iterations of the top and bottom side Arduino shields were made due to incomplete or
incorrect wiring diagrams. This issue caused the timeline to slow down since these shields were
necessary for implementing most of the electronic subsystems.

23

Furthermore, working within competition rules enabled the team to be more creative work
around certain guidelines to achieve a working and competition-ready ROV. For example, to
control the thrusters, only electronic speed controllers for brushless DC motors or H-bridge
based motor controllers for brushed DC motors can be used. This guideline was a setback since
the initial motor controller was not H-bridge based instead it used on small on-board
microcontroller to determine the amount of voltage being sent to the motors. However, a simple
replacement to an H-bridge motor controller helped us remain within our competition
constraints.

TEAM REFLECTIONS
Jonathan Murphy, Project Manager
Having designed and manufactured a 3 degrees of freedom robot with a team of 4 in my second
year at BCIT, I welcomed the challenge of building an ROV. Having been my first experience
acting as a project manager, I was able to learn and apply the fundamentals of project
management I have learned in previous courses. Applying project management instruments such
as Gantt and milestone charts provided me with excellent experience. Although these time
management tools were implemented, a simple improvement would be starting the design of the
ROV earlier to decrease stress around deadlines. Overall, designing an ROV for the MATE
international ROV competition was a worthwhile experience and learning opportunity.

Andrew Miltimore, Lead Designer
I couldn’t think of a better project to demonstrate the skills learned in post-secondary that will
need to be applied in the real world. This project exposed me to new engineering practices that
required me to learn and understand prior to implementing them myself. A great example of this
is in Task 1 where I designed the Bluetooth module to release the lift bag. The concept of UART
data transfer has been taught to me however the implementation of this in a Bluetooth module
was a new challenge that required learning new concepts and protocols. The large scope of this
project had me soldering one day and CNC machining the next, I hope future students will take
the leap and take on this project as their capstone project.

Oliver Law, Task Lead
The ROV project was an excellent learning experience as mechanical engineers can be exposed
to electrical system design and constraints along with mechanical design. With previous
experience in completing a three degrees of freedom robotic arm, this project allowed me to
apply the knowledge of robotic systems and collaborating mechanical and electrical designs. The
best lessons learned from completing this project were the ability to meet strict deadlines and
design components within specified rules and constraints. The ROV competition gave enough
leeway such that designing components for individual tasks included some freedom although
designing around safety codes and competition rules gave me a sense of direction. While
brainstorming how to complete Task 3, I learned that simple designs work best and trying to
create a complicated design will just create problems for the team down the line. Working within
time constraints and alongside school assignments and labs, the most important thing is that the
job gets done at the end of the day so aim for a simple design that works and requires minimal
troubleshooting. Overall, creating an ROV for the MATE competition helped me grow as a
future mechanical engineer and provided me with the experience and knowledge to take into the
workforce.

24

Ethan Quisias, Electronics Lead
With robotics and electro-mechanical systems as personal interests, I was really intrigued by the
designing and building of an ROV as my capstone project. Similar to my second year project, I
was the electronics lead for the ROV. My experience from second year gave me the fundamental
knowledge of programming, control systems, wiring, and power; but the ROV enabled me to
improve my skills in the electrical and control systems aspect. Applying my knowledge in wiring
diagrams I was able to create custom PCBs to tame what would have been a very messy
electronics housing. Keeping the wiring as clean and organized as possible allowed for very easy
debugging whenever there is a problem. I found cable management a key consideration since our
electronics housing already contains many components, so the space for wires is minimal. In
terms of programming and communication, I gained valuable experience in different
communication protocols when researching our best option, and in different programming
techniques to minimize floating-point operations which improves the operating and
communication speed. Overall, creating an ROV for the international MATE ROV competition
was a great learning opportunity that diversified and improved my set of skills.

FUTURE IMPROVEMENTS

As with any design, there are always room for improvements. Upon a group reflection, The ROV
Marauder created by DBME this year could be vastly improved. The largest improvement for
the ROV involves developing a smaller frame and more compact electronics housing. This
would allow the ROV to displace less water and in turn, require less additional weight to achieve
neutral buoyancy. Although this is effective, adding additional weight to compensate for over-
buoyancy is extremely inefficient. Another improvement would be to utilize smaller cameras
that operated on an IP network on board the ROV, instead of CCTV video signals. An IP
networked camera system would create a more simplistic viewing system because the cameras
would be easier to interface with surface level computers. Although Seabotix BTD150 thrusters
offer professional grade capabilities, it was difficult to minimize the overall size of ROV
Marauder because of their overall size. As a solution, further improvements to this years ROV
would be to use the BlueRobotics T200 thrusters. Blue Robotics T200 thrusters are anticipated
by the design team to greatly reduce the overall size and cost of future ROV’s developed by the
school.

25

COST ACCOUNTING

Without incorporating travel and lodging, Marauder was built on an allocated budget from
BCIT’s Mechanical Engineering department of roughly $1000. Deep Blue Marine Engineering
acquired donations from outside vendors and through BCIT to bring our total costs down. By re-
using previous components, Marauder was manufactured under budget with an estimated value
of $865.55 as opposed to $9912.30 without re-using components and acquiring donations. Cost
accounting showed that the students are expected to cover the cost of gas, approximately $150,
with their personal contributions to the team. The cost of work provided by students was not
included because it is difficult to put a price on knowledge and experience gained.

Budget Category Item and Description Type Estimated Cost Actual Incurred Cost Allocated Budget
Mini Analog Joystick - 10k POT Purchased 19.99$ 19.99$
Accelerometer (LSM303) Purchased 20.81$ 20.81$
Fuse Holder (60A) Purchased 9.92$ 9.92$
Fuse (30A) Purchased 5.82$ 5.82$
Fuse (25A) Purchased 5.82$ 5.82$
HS645MG servo motor Purchased 37.20$ 37.20$
Logic level converted Purchased 5.90$ 5.90$
RS485 IC (MAX488ESA+CT-ND) Purchased 19.80$ 19.80$
Pressure/Depth Sensor Purchased 14.58$ 14.58$
MPU9250 (Gyro/Accel/Mag) Purchased 19.17$ 19.17$
Cytron 10A Dual Motor Driver Purchased 60.24$ 60.24$
Kuman ESP8266-01 Purchased 15.00$ 15.00$
Voltage Regulator 48V-24V Purchased 50.94$ 50.94$
Voltage Regulator 48-12V Purchased 28.93$ 28.93$
LM2596 DC to DC (adjustable) Purchased 16.99$ 16.99$
CAT5 Cabling (Stranded) Purchased 80.00$ 80.00$
Power Cable Purchased 50.00$ 50.00$
Anderson PowerPole connectors Purchased 17.99$ 17.99$
Arduino Mega Purchased 43.72$ 43.72$
Arduino Nano Purchased 26.99$ 26.99$
4 Channel BNC to RJ45 Video Balun Purchased 31.14$ 31.14$
Cameras (LCA 7700-CW) Re-used 2,700.00$ -$
Waterproof Subconn Connectors Re-used 1,000.00$ -$
Miscelaneous connectors Purchased 30.00$ 30.00$
3D printing materials (PLA, PETG) Purchased 60.00$ 60.00$
Epoxy Glue Donated (BCIT) 50.00$ -$
3/8 inch 6061 Aluminum Sheet Purchased 133.66$ 133.66$
Urethane Foam Donated (FiberTek) 150.00$ -$
6mm lexan sheet (24"x24") Donated (Bcit Racing) 50.00$ -$
1/4-20 x 1/2 inch bolts (SS) Donated (Pacific Fastener) 34.00$ -$
24"x36" sheet (UHMW PE) Purchased 60.94$ 60.94$
Aluminum t-slots (1"x1") Donated (RMMC) 42.75$ -$
Bolts and Washers Donated (Pacific Fastener) 20.00$ -$

Mechanical: Thrusters Seabotix (BTD-150) Re-used 5,000.00$ -$ 0
9,912.30$ 865.55$ 1,000.00$

Hotel Purchased 750.00$ 750.00$
Gas Purchased 150.00$ 150.00$
Competition Registration Purchased 350.00$ 350.00$

1,250.00$ 1,250.00$ 1,500.00$
BCIT Mechanical Engineering Department Donation 350.00$ -$
BCIT Student Association Donation 750.00$ -$
Captone Project Funding Donation 865.55$ -$

1,965.55$ -$
11,162.30$ 2,115.55$

-$ 1,965.55$
-$ -$
-$ 150.00$

170.00$

70.00$

-$

Electrical: Video System

Electrical: Electrical Connectors

Mechanical: Manufacturing

BCIT Deep Blue Marine Engineering Cost accounting for 2018

300.00$

100.00$

150.00$

80.00$

40.00$

30.00$

60.00$

Costs to cover by student members (gas money)

Total Expenses
Total School Donations
Funds for next year investment

Total School Donations for 2018 year

School Donations

 Total Expenses for team travel

Lodging and Travel

Mechanical: Electrical Housing

Mechanical: ROV Frame

Total Expenses for ROV construction

Electrical: Components

Electrical: Voltage Regulators

Electrical: Tether

Electrical: Microcontrollers

26

APPENDIX

Arduino Code for Surface control box (Master)

#include <EasyTransfer.h>

EasyTransfer dataIN, dataOUT;

struct RECEIVE {
 double ax, ay, az, gx, gy, gz, yaw, pitch, roll;
 byte gripperStatus;
 byte task1Status;
 byte statusCW;
 byte statusCCW;
 byte statusMPU9250;
};

struct SEND {
 int pwm_1;
 int pwm_2;
 int pwm_3;
 int pwm_4;
 int pwm_5;
 byte airBag_1;
 byte airBag_2;
 byte servoCW;
 byte servoCCW;
 byte gripper;
 byte proNano;
};

RECEIVE rxdata;
SEND txdata;

double ax;

/****** Initialize Pins for I/O ******/
int pin_x = 0;
int pin_y = 1;
int pin_yaw = 2;
int pin_heave = 3;
int pin_zOffset = 4;
int airBag1 = 31;
int airBag2 = 33;
int Servo_CW = 35;
int Servo_CCW = 37;
int gripper_pin = 41;
int pro_nano = 39;
/*************************************/

/****** Initialize Variables ******/
int joystick_x, joystick_y, yaw, heave, zOffset;
int x[5], y[5], yw[5], h[5], z[5];
int m_1[5], m_2[5], m_3[5], m_4[5], m_5;

27

int pwm_1, pwm_2, pwm_3, pwm_4;
float pi = 3.14159;
float phi = pi / 4, theta = pi / 4, d_COG = 2.3348666 / 3; // 2.3348666
float t_x = cos(phi);
float t_y = sin(phi);
float t_yaw = d_COG;
/**********************************/

int servoCW_pin = 2; // Gripper closed/open
int servoCCW_pin = 3; // GUI communication established
int LB1_pin = 4; // Pro Nano on/off
int commROV_pin = 5; // Serial communication established between Master and Slave
Arduinos
int gripperStatus_pin = 6; // Servo CW
int commGUI_pin = 7; // Servo CCW
int statusTask1_pin = 8; // MPU9250 communication established

/************* GUI Setup ***************
String inString;
int inByte = 0;
boolean firstContact = false;
int i;
int sensorNumber = 0;
/***************************************/

void setup() {
 Serial.begin(115200);
 Serial1.begin(115200);

 dataIN.begin(details(rxdata), &Serial1);
 dataOUT.begin(details(txdata), &Serial1);

 pinMode(servoCW_pin, OUTPUT);
 pinMode(servoCCW_pin, OUTPUT);
 pinMode(LB1_pin, OUTPUT);
 pinMode(commROV_pin, OUTPUT);
 pinMode(gripperStatus_pin, OUTPUT);
 pinMode(commGUI_pin, OUTPUT);
 pinMode(statusTask1_pin, OUTPUT);

 digitalWrite(servoCW_pin, LOW);
 digitalWrite(servoCCW_pin, LOW);
 digitalWrite(LB1_pin, LOW);
 digitalWrite(commROV_pin, LOW);
 digitalWrite(gripperStatus_pin, LOW);
 digitalWrite(commGUI_pin, LOW);
 digitalWrite(statusTask1_pin, LOW);

 pinMode(airBag1, INPUT);
 pinMode(airBag2, INPUT);
 pinMode(Servo_CW, INPUT);
 pinMode(Servo_CCW, INPUT);
 pinMode(gripper_pin, INPUT);
 pinMode(pro_nano, INPUT);

28

 /*while (Serial.available() <= 0) {
 // pwm1, pwm2, pwm3, pwm4, pwm5, ax, ay, az, yaw, pitch, roll
 // Serial.println("0,0,0,0,0,0,0,0,0,0,0");
 Serial.println("0,0,0,0,0");
 Serial.flush();
 delay(500);
 }*/
}

/**/

void loop() {

 //if (Serial.available() > 0); {

 //digitalWrite(commGUI_pin, HIGH);

 if (Serial1.available()) {
 digitalWrite(commROV_pin, HIGH);
 }

 /*if (txdata.gripper) {
 digitalWrite(gripperStatus_pin, HIGH);
 }
 if (!(txdata.gripper)) {
 digitalWrite(gripperStatus_pin, LOW);
 }*/

 /********* Thrust Vectoring Control Values *********/
 for (int i = 0; i < 5; i++) {
 x[i] = (analogRead(pin_x) >> 2); // Read potentiometer value --> convert from
10-bit to 8-bit number
 y[i] = (analogRead(pin_y) >> 2); // Read potentiometer value --> convert from
10-bit to 8-bit number
 yw[i] = (analogRead(pin_yaw) >> 2); // Read potentiometer value --> convert
from 10-bit to 8-bit number
 h[i] = (analogRead(pin_heave) >> 2); // Read potentiometer value --> convert
from 10-bit to 8-bit number
 z[i] = (analogRead(pin_zOffset) >> 2);
 }
 joystick_x = (x[0] + x[1] + x[2] + x[3] + x[4]) / 5;
 joystick_y = (y[0] + y[1] + y[2] + y[3] + y[4]) / 5;
 yaw = (yw[0] + yw[1] + yw[2] + yw[3] + yw[4]) / 5;
 heave = (h[0] + h[1] + h[2] + h[3] + h[4]) / 5;
 zOffset = (z[0] + z[1] + z[2] + z[3] + z[4]) / 5;

 /***************** Deadzone ******************/
 if (joystick_x > 120 && joystick_x < 136) {
 joystick_x = 128;
 }
 if (joystick_y > 120 && joystick_y < 136) {
 joystick_y = 128;
 }

29

 if (yaw > 120 && yaw < 136) {
 yaw = 128;
 }
 if (heave > 120 && heave < 136) {
 heave = 128;
 }
 /**/

 for (int i = 0; i < 5; i++) {
 m_1[i] = (joystick_y / t_y + joystick_x / t_x + yaw / t_yaw);
 m_2[i] = (joystick_y / t_y - joystick_x / t_x - yaw / t_yaw);
 m_3[i] = (-joystick_y / t_y + joystick_x / t_x - yaw / t_yaw);
 m_4[i] = (-joystick_y / t_y - joystick_x / t_x + yaw / t_yaw);
 }
 pwm_1 = (m_1[0] + m_1[1] + m_1[2] + m_1[3] + m_1[4]) / 5;
 pwm_2 = (m_2[0] + m_2[1] + m_2[2] + m_2[3] + m_2[4]) / 5;
 pwm_3 = (m_3[0] + m_3[1] + m_3[2] + m_3[3] + m_3[4]) / 5;
 pwm_4 = (m_4[0] + m_4[1] + m_4[2] + m_4[3] + m_4[4]) / 5;

 zOffset = map(zOffset, 0, 255, -127, 128);
 pwm_1 = map(pwm_1, 0, 1048, 0, 255);
 pwm_2 = map(pwm_2, -688, 360, 0, 255);
 pwm_3 = map(pwm_3, -688, 360, 0, 255);
 pwm_4 = map(pwm_4, -721, 327, 0, 255);
 m_5 = heave + zOffset;

 if (m_5 > 255) {
 m_5 = 255;
 }
 if (m_5 < 0) {
 m_5 = 0;
 }

 /***/

 digitalWrite(gripperStatus_pin, txdata.gripper);
 digitalWrite(statusTask1_pin, txdata.proNano);
 digitalWrite(servoCW_pin, txdata.servoCW);
 digitalWrite(servoCCW_pin, txdata.servoCCW);
 digitalWrite(LB1_pin, txdata.airBag_1);

 /********* Peripheral Controls ***********/
 txdata.airBag_1 = digitalRead(airBag1);
 txdata.airBag_2 = digitalRead(airBag2);
 txdata.servoCW = digitalRead(Servo_CW);
 txdata.servoCCW = digitalRead(Servo_CCW);
 txdata.gripper = digitalRead(gripper_pin);
 txdata.proNano = digitalRead(pro_nano);
 /***/

 /********* Send Data to Slave Arduino *********/
 txdata.pwm_1 = pwm_1;
 txdata.pwm_2 = pwm_2;
 txdata.pwm_3 = pwm_3;
 txdata.pwm_4 = pwm_4;

30

 txdata.pwm_5 = m_5;
 dataOUT.sendData();
 /**/

 /********* Receive Data from Slave Arduino *********/
 for (int i = 0; i < 5; i++) {
 dataIN.receiveData();
 }
 /***/

 /********** Status LEDs ***********/

 /**********************************/

 /********** GUI Communication **********
 // Read serial data
 inByte = Serial.read();
 if (inByte > 0 && isDigit(inByte)) // Expecting a "1" from Processing.
 {
 inString = (char)inByte;
 sensorNumber = inString.toInt();
 // Send back the requested results
 Serial.print(String(pwm_1) + ",");
 Serial.print(String(pwm_2) + ",");
 Serial.print(String(pwm_3) + ",");
 Serial.print(String(pwm_4) + ",");
 Serial.print(String(m_5) + ",");
 /*Serial.print(String(1000 * rxdata.ax) + ",");
 Serial.print(String(1000 * rxdata.ay) + ",");
 Serial.print(String(1000 * rxdata.az) + ",");
 Serial.print(String(1000 * rxdata.yaw) + ",");
 Serial.print(String(1000 * rxdata.pitch) + ",");
 Serial.println(String(1000 * rxdata.roll));
 }
 }
 /***************************************/

 Serial.println("m_1: " + String(pwm_1) + " " + "m_2: " + String(pwm_2) + " " +
"m_3: " + String(pwm_3) + " " + "m_4: " + String(pwm_4) + " " + "m_5: " +
String(m_5) + " " + "z Offset: " + String(zOffset) + " " + "airbag 1: " +
String(txdata.airBag_1) + " " + "airbag 2: " + String(txdata.airBag_2) + " " +
"Servo CW: " + String(txdata.servoCW) + " " + "servo CCW: " +
String(txdata.servoCCW) + " " + "Pro Nano: " + String(txdata.proNano) + " " +
"Gripper: " + String(txdata.gripper));
}

31

Arduino Code for ROV electronics housing (Slave)

#include <PWM.h>
#include <EasyTransfer.h>
//#include "quaternionFilters.h"
//#include "MPU9250.h"
#include <Servo.h>
#include <I2Cdev.h>
#include <helper_3dmath.h>
#include <MPU6050_6Axis_MotionApps20.h>

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif

/********* Initialize Serial Communication with Master Arduino *********/
EasyTransfer dataIN, dataOUT;

struct RECEIVE {
 int pwm_1;
 int pwm_2;
 int pwm_3;
 int pwm_4;
 int pwm_5;
 byte airBag_1;
 byte airBag_2;
 byte servoCW;
 byte servoCCW;
 byte gripper;
 byte proNano;
};

struct SEND {
 double ax, ay, az, gx, gy, gz, yaw, pitch, roll;
 byte gripperStatus;
 byte task1Status;
 byte statusCW;
 byte statusCCW;
 byte statusMPU9250;
};

RECEIVE rxdata;
SEND txdata;
/***/

/********* Initialzie Pins for I/O's *********/
int pwm_pin1 = 30, pwm_pin2 = 32; // PWM Pins for Motor Controller 1
int pwm_pin3 = 34, pwm_pin4 = 36; // PWM Pins for Motor Controller 2
int pwm_pin5 = 38; // PWM Pin for Motor Controller 3
int dir_1 = 3, dir_2 = 5, dir_3 = 6, dir_4 = 7, dir_5 = 8; // DIR Pins for Motor
Controllers
int pressure_pin = 0;
/***/

32

/********* Intitialize Variables *********/
int m_1, m_2, m_3, m_4, m_5;
int32_t frequency = 8000; // Set PWM Frequency to 20 kHz
uint16_t res;
uint16_t dzTop, dzBottom;
uint16_t maxPWM, minPWM;
uint16_t dead;
int pressure_analog;
double pressure_voltage;
int communication[5];
double commAvg;
/***/

/********* Initialize MPU9250 *********
#define AHRS false
int intPin = 12;
//MPU9250 myIMU;
double fXg = 0;
double fYg = 0;
double fZg = 0;
const float alpha = 0.5;

double a_x[4], a_y[4], a_z[4];
double delta = 1 / 1000;
/**************************************/

/*************** MPU6050 Setup ****************/
MPU6050 mpu;
// Connect INT pin to DIO PIN 2

#define OUTPUT_READABLE_QUATERNION
#define OUTPUT_READABLE_YAWPITCHROLL

bool dmpReady = false;
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0
= error)
uint16_t packetSize;
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

Quaternion q;
VectorInt16 aa;
VectorInt16 aaReal;
VectorInt16 aaWorld;
VectorFloat gravity;

volatile bool mpuInterrupt = false;
void dmpDataReady() {
 mpuInterrupt = true;
}
/**/

/************** Peripherals Initialization ***************/
int airBag1 = 41;

33

int airBag2 = 43;
int servo = 2;
int gripper_pin = 45;
int pro_nano = 47;
int servoCW_pin = 10;
int servoCCW_pin = 9;

Servo dank_servo;
/***/

void setup() {
 /******** Initialize Serial Comm. *********/
 Serial.begin(115200);
 Serial1.begin(115200);
 dataIN.begin(details(rxdata), &Serial1);
 dataOUT.begin(details(txdata), &Serial1);
 /**/

 /*********** Peripheral Setup *************/
 pinMode(airBag1, OUTPUT);
 pinMode(airBag2, OUTPUT);
 pinMode(gripper_pin, OUTPUT);
 pinMode(pro_nano, OUTPUT);
 pinMode(servoCW_pin, OUTPUT);
 pinMode(servoCCW_pin, OUTPUT);

 dank_servo.attach(servo);
 /**/

 /********** Initialize Motor Control and PWM Frequency ***********/
 InitTimersSafe(); // Initialize all timers except Timer 0
 SetPinFrequencySafe(dir_1, frequency);
 SetPinFrequencySafe(dir_2, frequency);
 SetPinFrequencySafe(dir_3, frequency);
 SetPinFrequencySafe(dir_4, frequency);
 SetPinFrequencySafe(dir_5, frequency);
 // SetPinFrequencySafe(servo, freqServo);

 res = Timer3_GetTop();
 dzTop = res / 2 + 12;
 dzBottom = res / 2 - 12;
 maxPWM = res * 0.75;
 minPWM = res * 0.25;
 dead = res / 2;

 Serial.println(String(dead) + " " + String(res) + " " + String(maxPWM) + " " +
String(minPWM));

 pinMode(pwm_pin1, OUTPUT);
 pinMode(pwm_pin2, OUTPUT);
 pinMode(pwm_pin3, OUTPUT);
 pinMode(pwm_pin4, OUTPUT);
 pinMode(pwm_pin5, OUTPUT);
 /***/

34

 txdata.statusMPU9250 = LOW;
 txdata.gripperStatus = LOW;
 txdata.statusCW = LOW;
 txdata.statusCCW = LOW;
 txdata.task1Status = LOW;
 dataOUT.sendData();

 /***************** Setup MPU9250 ********************
 Wire.begin();
 pinMode(intPin, INPUT);
 digitalWrite(intPin, LOW);

 byte c = myIMU.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);

 if (c == 0x71) // WHO_AM_I should always be 0x71
 {
 myIMU.MPU9250SelfTest(myIMU.selfTest); // start by performing self test
 myIMU.calibrateMPU9250(myIMU.gyroBias, myIMU.accelBias);

 myIMU.initMPU9250();
 myIMU.getAres();
 myIMU.getGres();
 }
 else
 {
 txdata.statusMPU9250 = HIGH;
 dataOUT.sendData();
 abort();
 }
 /**/

 /******************** MPU6050 Setup/Initialization **********************/
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
 Wire.begin();
 TWBR = 24;
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
 Fastwire::setup(400, true);
#endif

 mpu.initialize(); // initialize device
 devStatus = mpu.dmpInitialize();

 mpu.setXGyroOffset(95);
 mpu.setYGyroOffset(42);
 mpu.setZGyroOffset(35);
 mpu.setXAccelOffset(-2519);
 mpu.setYAccelOffset(1559);
 mpu.setZAccelOffset(3039);

 if (devStatus == 0) {
 mpu.setDMPEnabled(true);
 attachInterrupt(0, dmpDataReady, RISING);
 mpuIntStatus = mpu.getIntStatus();

 dmpReady = true;

35

 packetSize = mpu.dmpGetFIFOPacketSize();
 }
 /**/

}

void loop() {

 /********* INPUT Data **********/
 for (int i = 0; i < 5; i++) {
 dataIN.receiveData();
 }
 /*******************************/

 /*************************** GYRO/ACCEL SYSTEM ****************************/
 if (!dmpReady) return;
 while (!mpuInterrupt && fifoCount < packetSize) {}

 mpuInterrupt = false;
 mpuIntStatus = mpu.getIntStatus();

 if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
 mpu.resetFIFO();
 }
 else if (mpuIntStatus & 0x02) {
 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // wait for
correct available data length

 //read a packet from FIFO
 mpu.getFIFOBytes(fifoBuffer, packetSize);
 fifoCount -= packetSize;
 }

 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetAccel(&aa, fifoBuffer);
 mpu.dmpGetGravity(&gravity, &q);
 mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
 mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);

 txdata.ax = aaWorld.x;
 txdata.ay = aaWorld.y;
 txdata.az = aaWorld.z;
 txdata.gx = 0;
 txdata.gy = 0;
 txdata.gz = 0;
 txdata.roll = ypr[2];
 txdata.pitch = ypr[1];
 txdata.yaw = ypr[0];
 /***/

 /************** MOTOR CONTROL SYSTEM **************/
 digitalWrite(pwm_pin1, HIGH);
 digitalWrite(pwm_pin2, HIGH);

36

 digitalWrite(pwm_pin3, HIGH);
 digitalWrite(pwm_pin4, HIGH);
 digitalWrite(pwm_pin5, HIGH);

 m_1 = map(rxdata.pwm_1, 0, 255, 0, res - 1);
 m_2 = map(rxdata.pwm_2, 0, 255, 0, res - 1);
 m_3 = map(rxdata.pwm_3, 0, 255, 0, res - 1);
 m_4 = map(rxdata.pwm_4, 0, 255, 0, res - 1);
 m_5 = map(rxdata.pwm_5, 0, 255, 0, res - 1);

 /************ Create Deadzone *************/
 if (m_1 > dzBottom && m_1 < dzTop) {
 m_1 = dead;
 }
 if (m_2 > dzBottom && m_2 < dzTop) {
 m_2 = dead;
 }
 if (m_3 > dzBottom && m_3 < dzTop) {
 m_3 = dead;
 }
 if (m_4 > dzBottom && m_4 < dzTop) {
 m_4 = dead;
 }
 if (m_5 > dzBottom && m_5 < dzTop) {
 m_5 = dead;
 }
 /**/

 // PWM'ing 24V down to 19V ---> (19/24)*100% = 79.17% ---> Limit the duty cycle
 // +79% = 256*0.79 = 202;
 // Should we have a slight safety factor? Instead of 101 we use 98
 // Max = 256 + 200 = 426;
 // Min = 256 - 200 = 56;
 // The method of motor control we are using is called Locked Anti-Phase Mode --> no
rotation at 50% duty cycle, and getting closer to 0% or 100% duty cycle increases
 // speed in one direction

 if (m_1 >= maxPWM) {
 m_1 = maxPWM;
 }
 if (m_1 <= minPWM) {
 m_1 = minPWM;
 }
 if (m_2 >= maxPWM) {
 m_2 = maxPWM;
 }
 if (m_2 <= minPWM) {
 m_2 = minPWM;
 }
 if (m_3 >= maxPWM) {
 m_3 = maxPWM;
 }
 if (m_3 <= minPWM) {
 m_3 = minPWM;
 }

37

 if (m_4 >= maxPWM) {
 m_4 = maxPWM;
 }
 if (m_4 <= minPWM) {
 m_4 = minPWM;
 }
 if (m_5 >= maxPWM) {
 m_5 = maxPWM;
 }
 if (m_5 <= minPWM) {
 m_5 = minPWM;
 }

 /************* KILL MOTORS WHEN DISCONNECTED FROM THE MASTER ***************
 for (int i = 0; i < 5; i++){
 communication[i] = 1000*Serial1.available();
 }
 commAvg = (communication[0] + communication[1] + communication [2] +
communication[3] + communication[4])/5;
 if (commAvg >= 5500) {
 m_1 = dead;
 m_2 = dead;
 m_3 = dead;
 m_4 = dead;
 m_5 = dead;
 }

/**
/

 analogWrite(dir_1, m_1);
 analogWrite(dir_2, m_2);
 analogWrite(dir_3, m_3);
 analogWrite(dir_4, m_4);
 analogWrite(dir_5, m_5);
 /***/

 /**************** Peripheral Controls *****************/
 digitalWrite(airBag1, rxdata.airBag_1);
 digitalWrite(airBag2, rxdata.airBag_2);
 if (rxdata.gripper == HIGH) {
 txdata.gripperStatus = HIGH;
 }
 digitalWrite(gripper_pin, rxdata.gripper);
 if (rxdata.proNano == HIGH) {
 txdata.task1Status = HIGH;
 }
 digitalWrite(pro_nano, rxdata.proNano);

 if (rxdata.servoCW == LOW && rxdata.servoCCW == LOW) {
 digitalWrite(servoCW_pin, LOW);
 digitalWrite(servoCCW_pin, LOW);
 }
 if (rxdata.servoCW == HIGH) {
 digitalWrite(servoCW_pin, HIGH);

38

 txdata.statusCW = HIGH;
 }
 if (rxdata.servoCCW == HIGH) {
 digitalWrite(servoCCW_pin, HIGH);
 txdata.statusCCW = HIGH;
 }
 /**/

 /************* DEPTH SENSOR **************/
 pressure_analog = analogRead(pressure_pin);

 /***/

 /********* OUTPUT Data *********/
 dataOUT.sendData();
 /*******************************/

 Serial.print(m_1);
 Serial.print("\t");
 Serial.print(rxdata.pwm_1);
 Serial.print("\t");
 Serial.print(m_2);
 Serial.print("\t");
 Serial.print(rxdata.pwm_2);
 Serial.print("\t");
 Serial.println(commAvg);
}

39

Buoyancy Design Calculations

40

41

42

Drag Center Location Calculations/Estimations

43

44

