
ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 1 of 41 23-Jan-18

ELEX 7660: Digital System Design
Group 5 Design Project - FPGA Audio Effects Generator

Brandon Pham, Navraj Kambo

Abstract
The FPGA Audio Effects Generator is a project that attempts to utilize the Terasic DE1-SoC
development board and System Verilog to generate sound effects hardware. Audio is passed through the
system via an auxiliary in/out interface, which joins an audio source and a sink. (In our case, speakers).

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 2 of 41 23-Jan-18

Table of Contents
Table of Contents 2

Table of Figures 3

Table of Equations 4

1 Introduction 5

1.1 Motivation 5

1.2 Inspiration 5

2 Background 5

3 System Architecture 6

3.1 Audio Hardware Processor 6

3.1.1 QSYS generated ADC-DAC IP 6

3.1.2 Ready-Valid Handshake, Address Counters, and RAM 8

3.1.3 Echo Effect 12

3.1.4 Tremolo Effect 13

3.2 Effect Controller 14

4 Conclusion 15

5 References 16

6 Code and Quartus Schematics 17

6.1 Audio Hardware Processor Code 17

6.1.1 audiodelay.sv (top-level) 17

6.1.2 chipsel.sv 22

6.1.3 handshake.sv 24

6.1.4 ramctrlc.sv 25

6.1.5 readaddresscounter.sv 27

6.1.6 writeaddresscounter.sv 28

6.1.7 sevensegdecoder.sv 30

6.1.8 delayoutput.sv 31

6.1.9 tencounter.sv 32

6.1.10 sinewave.sv 33

6.1.11 sineedit.sv 35

6.2 Audio Hardware Processor Schematic 37

6.3 Effect Controller Code 38

6.3.1 effectcontrol.sv (top-level) 38

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 3 of 41 23-Jan-18

6.4 Effect Controller Schematic 40

6.5 MATLAB Code 41

Table of Figures
Figure 1 - Platform Designer audio module .. 6

Figure 2 - MIKROE-506 breakout board with Wolfson WM7831 audio codec .. 7

Figure 3 - Ready-Valid protocol waveforms, Altera version (left) and UC Berkeley version (right) 9

Figure 4 - Chip select testbench before modification ... 9

Figure 5 - Chip select testbench waveforms ... 10

Figure 6 - Address counter testbench waveforms ... 11

Figure 7 - Signal flow graph of Equation 3 ... 12

Figure 8 - Sinewave generator module testbench ... 13

Figure 9 - Wiring diagram for the effect controller .. 14

Figure 10 - audiodelay.sv code(1) (top-level) ... 17

Figure 11 - audiodelay.sv code(2) (top-level) ... 18

Figure 12 - audiodelay.sv code(3) (top-level) ... 19

Figure 13 - audiodelay.sv code(4) (top-level) ... 20

Figure 14 - audiodelay.sv code(5) (top-level) ... 21

Figure 15 - chipsel.sv code .. 22

Figure 16 – chipse_tb.sv code ... 23

Figure 17 – handshake.sv code ... 24

Figure 18 – ramctrlc.sv code(1) .. 25

Figure 19 – ramctrlc.sv code(2) .. 26

Figure 20 – readaddresscounter.sv code ... 27

Figure 21 – writeaddresscounter.sv code .. 28

Figure 22 – write_tb.sv code ... 29

Figure 23 – sevensegdecoder.sv code ... 30

Figure 24 – delayoutput.sv code(1) ... 31

Figure 25 – delayoutput.sv code(2) ... 32

Figure 26 – tencounter.sv code ... 32

Figure 27 – sinewave.sv code(1) ... 33

Figure 28 – sinewave.sv code(2) ... 34

Figure 29 – sineedit.sv code .. 35

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 4 of 41 23-Jan-18

Figure 29 – tencounter_tb.sv code .. 36

Figure 30 - Top level schematic audio hardware processor without effects ... 37

Figure 31 - effectcontrol.sv code(1) (top-level) .. 38

Figure 32 - effectcontrol.sv code(2) (top-level) .. 39

Figure 33 - effectcontrol.sv code(3) (top-level) .. 40

Figure 34 - Effect controller schematic ... 40

Figure 35 - matlabfx.m code ... 41

Table of Equations
Equation 1 - Single echo sound effect relationship ... 12

Equation 2 - Multiple echoes sound effect using multiple feedback paths ... 12

Equation 3 - Multiple echoes sound effect using single feedback path .. 12

Equation 4 - Tremolo Effect relationship .. 13

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 5 of 41 23-Jan-18

1 Introduction
1.1 Motivation

This project was in part inspired by our passion for musical production, while also exploring the
realm of signal processing. Growing up listening to a plethora of different musical producers, we’ve had
the chance to experience and understand audio effects, and their place in music. When we first were
given this assignment, it was established early that we would be exploring music in one form or another.
Our first idea was based synthesizing sounds similar to the Roland TR-808 drum machine, however this
task seemed too complex for our allotted time. We decided instead to alter instead of source audio, due
to our time constraints.

1.2 Inspiration
 Past projects have been centered on real time audio effects processing and were used as a source
of inspiration. Said projects, such as the FPGA Implementation of Audio Effects project by students of
the University of Alberta were used as reference material, and a base for our project. The project also
provided some insight into the implementation of such effects.
 To better understand the signal processing aspect of our project, we found a tutorial which
walked through some common sound effects using MATLAB. The effects were implemented similar to
how they would be in hardware, which made the conversion easy.

2 Background
Audio effects are used in nearly all applications that involves music or sound of some sort,

whether it's in live concert performances, video game soundtracks, or television shows, it’s almost
certain that an audio effect of some kind is being used. So, what are audio effects? Audio effects, also
known as sound effects, are software or hardware generated sounds or sound processes used to modify
or add depth to an audio signal. These effects vary, and they are organized based on the parameter of the
audio signal that they modify, such as amplitude, time-based, spectral, and dynamic effects.

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 6 of 41 23-Jan-18

3 System Architecture
3.1 Audio Hardware Processor
 To have the system perform as expected, we needed to generate hardware based on how certain
effects would operate. Our main goal for this project was to create echo and tremolo effects in hardware.
Each of the effects were first coded and analysed in MATLAB, and then were designed using the
MATLAB code as a reference. Luckily, a document published by Cardiff University [1] explains a
plethora of audio DSP effects using MATLAB, which we found useful.

3.1.1 QSYS generated ADC-DAC IP
 In order to sample and write data, we needed to initialize the Terasic DE1-SoC audio codec. This
can be done using the Quartus Prime Platform Designer, which includes all the necessary IP for
initializing the codec, including the ADC and DAC IP, the codec initialization IP and the audio PLL
required to operate the codec. These components can be interconnected in Platform Designer to be
instantiated as a single module, needed later in the project. A useful tutorial for creating this module can
be found in a lab tutorial provided by University of Cambridge [2], which walks through the Platform
Designer setup and requirements, including connections shown below in Figure 1. When initializing the
codec in Platform Designer, the following settings were selected in the wizard;

● Avalon Type: Streaming
● Data Width: 24 bits
● Audio-in path: Line-in to ADC
● Sampling Rate: 48kHz
● Audio Clock Frequency: 12.288MHz

Figure 1 - Platform Designer audio module

 The codec on board the DE1-SoC is the Wolfson WM8731 codec, which includes a 24-bit sigma
delta DAC and ADC. From the datasheet [3] provided by Altera regarding the DE1-SoC and the
Wolfson Audio Codec [4], internal signals which were exported from Platform Designer were matched
to those on the codec, giving rise to the appropriate pins being assigned in Quartus, via the Assignment
Editor. Some of the important signals to consider include, but are not limited to the following;

● SCLK - Serial interface clock
● ADCLRC - ADC left-right channel clock
● DACLRC - DAC left-right channel clock
● ADCDAT - Data coming out of ADC on serial interface
● DACDAT - Data going into DAC on serial interface
● BCLK - Bit clock
● XCLK - PLL generated clock to codec (12.288MHz)

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 7 of 41 23-Jan-18

 It’s important to note that although this project was carried out on an Terasic DE1-SoC, it could
be carried out on an Terasic DE0 FPGA as well. The only caveat being that due to the lack of a built-in
audio codec, an external codec such as the one shown in Figure 2, can be would need to be interfaced. A
breakout board with Wolfson WM8731 would be the most ideal solution due to IP already available in
Quartus, however other audio codecs may also have IP written. Implementation in hardware is exactly
the same as it would be with the built-in audio codec on the Terasic DE1-SoC.

Figure 2 - MIKROE-506 breakout board with Wolfson WM7831 audio codec

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 8 of 41 23-Jan-18

3.1.2 Ready-Valid Handshake, Address Counters, and RAM
Using the audio codec with the IP supplied in Quartus required a handshake between hardware

interfaces, such as the ADC and DAC interface. This wasn’t a problem with a straight-through
connection, where the ADC was connected directly to the DAC, because both interfaces had the correct
signals to ensure their connection. However, this was not the case when interfacing with other Quartus
IP such as 2-port RAM, which uses enable signals instead of hand shakes, and is needed for some
memory-based audio effects. A hardware module was needed to fill the gap between the two hardware
interfaces, that would be able to facilitate the transfer of data correctly between the codec and RAM.

Initially, we decided that we could possibly edit a FIFO buffer module previously written, which
already employed the Ready-Valid interface, but this seemed to stem its own problems. For starters, the
FIFO buffer needed to be modified so that it could be used as a ring buffer, where an external tap would
control which memory address was being read from. In addition to this, the buffer would need to be able
to accommodate a second of data. Using equation 2 and the fact we were sampling at 48kHz, we were
able to determine that a depth of 6000 words was needed. Also, since we had a 24-bit wide bus, this
meant we needed to have at least 1.152 million bits of memory allocated, which was greater than the
maximum size in Quartus.

𝐷𝑒𝑝𝑡ℎ = 𝑓𝑠𝑎𝑚𝑝 ∗ 𝐷𝑒𝑙𝑎𝑦𝑀𝑎𝑥 Equation 2 - Buffer depth and sample frequency relationship.

 In the end, what was decided was that we should’ve used 3 2-port RAM modules which had
depths of 2048 words, and have some sort of interface circuitry to be able to handle addressing. This
gave rise to the chip select module coded in Verilog, whose purpose was to be able to direct 16-bit read
and write addresses into 14-bit addresses for the appropriate RAM chip, as well as toggle the enable pins
on the respective RAM chip.
 The chip select module works in conjunction with the hand shake module, which converts the
Ready-Valid interface into a simpler enable interface. To better understand how the Ready-Valid
interface actually works, we looked at some notes from UC Berkeley College of Engineering [5] on this
topic, which were both helpful and misleading. They were helpful in the sense that they explained how
the data is transferred only when both ready and valid signals are asserted, but what they neglected to
mention was that they were basing their notes on a specific version of the protocol. Altera uses a version
of the protocol which starts with initiation of the ready signal, unlike the UC Berkeley version which
starts with a high, valid signal. Also, information regarding the Ready-Valid protocol is hidden deep
inside of a document provided by Altera, titled “Avalon Interface Specifications” [6], which is not
included in the documentation of the audio interface IP. Below, Figure 3 shows the difference between
the two versions of the protocol, including the enable and address signals which are used in our
modules. The black signals are driven by interfaces, while the blue signals are derived from the
modules. It’s important to note that we designed based on the UC Berkeley specifications instead of
those provided by Altera, which caused come connection issues.

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 9 of 41 23-Jan-18

Figure 3 - Ready-Valid protocol waveforms, Altera version (left) and UC Berkeley version (right)

 Although our hand shake module is incorrect, we’ve included a testbench and its output in this
report, shown in Figure 4. Initially, the testbench waveform showed a write address counter
incrementing through addresses which would be written to during simulation.

Figure 4 - Chip select testbench before modification

The testbench was edited to accommodate more signals later during the project, and to show
when the RAM modules would be read from and written to. The output waveforms for this edited
testbench are displayed in Figure 5.

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 10 of 41 23-Jan-18

Figure 5 - Chip select testbench waveforms

 A separate RAM address counter testbench was created, for separately debugging the RAM
address read and write counters. These counter modules are used to provide the RAM controller module
a 16-bit address to read from or write to. The addresses are then broken up by the RAM controller
module into separate 14 bit addresses to be used with the RAM modules. This module is used mainly to
control the delay between feedback and input, by setting the read pointer an integer number of addresses
away. This is discussed more in depth in the

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 11 of 41 23-Jan-18

3.1.3 Echo Effect portion of the report, and the testbench for this module is provided in the appendix,
with the waveforms shown in Figure.

Figure 6 - Address counter testbench waveforms

 After 48000 addresses have been written to, a count full signal latches, causes the read address
counter to begin incrementing with the write address counter. This ensures that delays will only occur
once the RAM has been filled.
 All testbenches and code for this section of the report can be found in the appendix of this report.

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 12 of 41 23-Jan-18

3.1.3 Echo Effect
 The echo effect works on the premise of the addition of a signal and it’s delayed. This
relationship can be shown in equation 1.

𝑦[𝑛] = 𝑥[𝑛] + 𝑎 ∗ 𝑍−𝑏𝑥[𝑛]
Equation 1 - Single echo sound effect relationship

Two variable parameters in Equation 1, 𝑎 and 𝑏 represent the gain and amount of delay the
output experiences, respectively. The echo effect can be carried out in hardware by using a ring buffer,
which stores the most recent input 𝑥[𝑛] and reads a delayed version of the input from the buffer. The
sound effect can further be extended, by having multiple echos added to the signal, as shown in
Equation 2.

𝑦[𝑛] = 𝑥[𝑛] + ∑ 𝑎𝑖 ∗ 𝑍−𝑖𝑏𝑥[𝑛]

𝑘

𝑖=1

Equation 2 - Multiple echoes sound effect using multiple feedback paths

In this case, an extra parameter is needed, 𝑘, to represent the amount of echos which would be
present in the output. From Equation 2, it’s clear that implementing multiple echoes would require 𝑘
read pointers, or taps. To save processing power and time, this can be re-worked to the form shown in
Equation 3.

𝑦[𝑛] = 𝑥[𝑛] − 𝑎 ∗ 𝑍−𝑏𝑦[𝑛]
Equation 3 - Multiple echoes sound effect using single feedback path

 It’s important to note that instead of the addition of feedback into the system, subtraction is
carried out for stability of the system. Having feedback as the previous output means storing the
previous output of the system, instead of storing the previous input, as was done before in the previous
two cases.

Figure 7 - Signal flow graph of Equation 3

 Implementation of any of these echo effects in hardware requires memory. Choices for memory
include FIFO buffers or RAM, however FIFO buffers don’t allow control over which memory address is
being read, therefore RAM seemed like the more logical choice.

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 13 of 41 23-Jan-18

3.1.4 Tremolo Effect
 The tremolo effect is essentially amplitude modulation, which varies the max level of the input.
The relationship for the effect is shown in Equation 4.

𝑦[𝑛] = (1 + 𝑎 ∗ sin[Ω𝑡𝑛]) ∗ 𝑥[𝑛]
Equation 4 - Tremolo Effect relationship

 The two parameters, Ω𝑡 and 𝑎, are the tremolo and gain of the effect respectively. The tremolo
frequency in in Hz, and is usually a low frequency, while the gain is usually less than 1.
 Creating this effect in hardware took some creativity, and experience with MATLAB. Since
there isn’t a sinewave function in Verilog, a sinewave module needed to be constructed. While
researching this problem, we encountered two interesting solutions, using the CORDIC algorithm, or
creating a look up table (LUT).
 The CORDIC algorithm allowed us to create sinewaves with precise values, but the implication
with the CORDIC algorithm was that it took processing time. Matrix manipulation on the FPGA could
take precious time away, and since we were working on a real time system, this seemed rather risky.

Instead we decided to generate a LUT for a sinewave. This was done in MATLAB, by creating a
vector that was 100 samples long, and then running the vector through a sine function. The sine function
was then scaled, so that it’s peak amplitude reached a max value of 16, and a minimum value of 0. A
separate module was then created, whose sole purpose was to add a scalar of 16, so that the net effect
would result in a sinewave with a gain of 1, which was multiplied by a scalar of 16. This multiplication
could later be undone, by shifting 4 bits to the right, saving processing power and time.

The end goal of this whole ordeal was to produce a quarter of the period of a sinewave in 100
samples, so that we could generate a LUT which was efficient with respect to memory usage. However,
the trade off was that our logic needed to be able to know when and how to effectively flip the LUT
coefficients, so that a full sinewave could be produced. We were able to design and simulate a set of
modules which accomplished this task, including a testbench shown in Figure 8.

Figure 8 - Sinewave generator module testbench

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 14 of 41 23-Jan-18

3.2 Effect Controller
 One goal of our project was to come up with a way to be able to control our sound effects and to
be able to change the parameters of our effects. So, we designed a controller using our original Terasic
DE0-Nano development board.

Our controller worked by taking inputs from two push buttons, one for increasing the effect
level, and the other for decreasing the effect level. These push buttons would increment a count, like a
volume controller, and are limited between 0 and 10; 0 being no effect at all, and 10 being the effect
amplified as much as possible for our application. This value was also shown visually using the 8 LEDS
that are built in to the Terasic DE0-Nano board.

The count control signals are exported using 4 output pins which represented the four bits
required to represent an integer between 0 and 10. These pins would then be connected into the DE1-
SoC board to be read and used in the audio processing top-level design. Figure 3 below shows the
wiring diagram of our effect controller.

Figure 9 - Wiring diagram for the effect controller

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 15 of 41 23-Jan-18

4 Conclusion
 This project was a great way to show off what we’ve learned in ELEX 7660, while providing an
opportunity to learn on our own. It really gave us the chance to experiencing the kinds of problems
hardware designers have to face in terms of interfacing components, and generally making things work
together as they should. Unfortunate, we were not able to provide sound effects as we had hoped, due to
problems and limited documentation on the Quartus IP, however we were able to make a leap in the
right direction. Hardware for this project can be salvaged, and hopefully someone in the future will
continue with what we have laid out.

Also, we feel as though other groups can learn from our mistakes. Having put aside this project
with respect to other classwork, it’s possible that we could’ve put more time into the project overall, or
started earlier. We hope that our project will help others struggling with the Ready-Valid interface
problem in Quartus, as well as provide general information on the Quartus Audio IP core.

Some future work which can be carried out includes, adding the effects into the top level, and
coding a convolution reverb using the Quartus FFT IP core.

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 16 of 41 23-Jan-18

5 References

[1
]

Cardiff University, "10_CM0268_Audio_FX.pdf," [Online]. Available:
http://users.cs.cf.ac.uk/Dave.Marshall/CM0268/PDF/10_CM0268_Audio_FX.pdf. [Accessed 12
February 2018].

[2
]

S. Moore, "Computer Laboratory - Courses 2016–17 - ECAD and Architecture Practical Classes -
Tutorial," University of Cambridge, 2016. [Online]. Available:
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/optional-tonegen.html. [Accessed 22 March
2018].

[3
]

Intel Corporation, "Intel FPGA University Program Audio core," [Online]. Available:
ftp://ftp.altera.com/up/pub/Intel_Material/16.1/University_Program_IP_Cores/Audio_Video/Audio.
pdf. [Accessed 12 February 2018].

[4
]

Wolfson Microelectronics, "WM8731/WM8731L," 2010. [Online]. Available:
http://www.cs.columbia.edu/~sedwards/classes/2012/4840/Wolfson-WM8731-audio-CODEC.pdf.
[Accessed 10 March 2018].

[5
]

C. Fletcher, "Interfaces.pdf," 24 February 2009. [Online]. Available:
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf. [Accessed 22 March 2018].

[6
]

Intel Corporation, "Avalon® Interface Specifications," 3 March 2018. [Online]. Available:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf. [Accessed 22 March 2018].

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 17 of 41 23-Jan-18

6 Code and Quartus Schematics
6.1 Audio Hardware Processor Code
6.1.1 audiodelay.sv (top-level)

Figure 10 - audiodelay.sv code(1) (top-level)

// audiodelay.sv - ELEX 7660 201810 top level entity of project

//

// Navraj Kambo A00###### 2018-3-10

module audiodelay(

 CLOCK_50,

 SW,

 KEY, // AA14, AA15, W15

 LED,

 AUD_ADCDAT,

 AUD_ADCLRCK,

 AUD_BCLK,

 AUD_DACDAT,

 AUD_DACLRCK,

 FPGA_I2C_SDAT,

 FPGA_I2C_SCLK,

 AUD_XCK,

 HEX5, // V25, AA28, Y27, AB27, AB26, AA26, AA25

 HEX0, // AE26, AE27, AE28, AG27, AF28, AG28, AH28

 HEX1, // AJ29, AH29, AH30, AG30, AF29, AF30, AD27

 HEX2, // AB23, AE29, AD29, AC28, AD30, AC29, AC30

 HEX3, // AD26, AC27, AD25, AC25, AB28, AB25, AB22

 GPIO_0

);

///

// FPGA internal connections

//

input AUD_ADCDAT;

input SW;

input [2:0] KEY;

output [6:0] HEX0, HEX1, HEX2, HEX3, HEX5;

input CLOCK_50;

input AUD_BCLK;

input AUD_ADCLRCK;

input AUD_DACLRCK;

inout FPGA_I2C_SDAT;

output AUD_XCK;

output FPGA_I2C_SCLK;

output AUD_DACDAT;

output LED;

logic clk;

output logic [4:0] GPIO_0;

//////////////////////////////////////

// FPGA assorted signals

//////////////////////////////////////

assign clk = CLOCK_50;

logic [23:0] l_chan_adc, r_chan_adc, l_chan_dac, r_chan_dac ;

logic l_chan_adc_valid, r_chan_adc_valid, l_chan_dac_valid, r_chan_dac_valid;

logic l_chan_adc_ready, r_chan_adc_ready, l_chan_dac_ready, r_chan_dac_ready;

logic clr;

assign clr = KEY[0];

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 18 of 41 23-Jan-18

Figure 11 - audiodelay.sv code(2) (top-level)

logic [23:0] l_chan_fx, r_chan_fx;
logic l_chan_fx_ready, r_chan_fx_ready, l_chan_fx_valid, r_chan_fx_valid;
logic [4:0] delay = 'd10;

///

// Debug

///

assign GPIO_0[0] = AUD_ADCDAT;
assign GPIO_0[1] = AUD_DACDAT;
assign GPIO_0[2] = AUD_XCK;
//assign GPIO_0[3] = '1;

//assign GPIO_0[4] = '1;

//assign GPIO_0[5] = ;

//assign GPIO_0[6] = ;

 //////////////////////////////////////
 // FPGA module instantiations
 //////////////////////////////////////
 // platform designer module
 audiointerface u0 (
.audio_0_avalon_left_channel_source_data (l_chan_adc), //

audio_0_avalon_left_channel_sink.data
.audio_0_avalon_left_channel_source_valid (l_chan_adc_valid), //

.valid

.audio_0_avalon_left_channel_source_ready (l_chan_adc_ready), //

.ready

.audio_0_avalon_left_channel_sink_ready (l_chan_dac_ready), //

audio_0_avalon_left_channel_source.ready
.audio_0_avalon_left_channel_sink_data (l_chan_dac), //

.data

.audio_0_avalon_left_channel_sink_valid (l_chan_dac_valid), //

.valid

.audio_0_avalon_right_channel_source_data (r_chan_adc), //

audio_0_avalon_right_channel_sink.data
.audio_0_avalon_right_channel_source_valid (r_chan_adc_valid), //

.valid

.audio_0_avalon_right_channel_source_ready (r_chan_adc_ready), //

.ready

.audio_0_avalon_right_channel_sink_ready (r_chan_dac_ready), //

audio_0_avalon_right_channel_source.ready
.audio_0_avalon_right_channel_sink_data (r_chan_dac), //

.data

.audio_0_avalon_right_channel_sink_valid (r_chan_dac_valid), //

.valid

.audio_0_external_interface_ADCDAT (AUD_ADCDAT), //

audio_0_external_interface.ADCDAT
.audio_0_external_interface_ADCLRCK (AUD_ADCLRCK), //

.ADCLRCK

.audio_0_external_interface_BCLK (AUD_BCLK), //

.BCLK

.audio_0_external_interface_DACDAT (AUD_DACDAT), //

.DACDAT

.audio_0_external_interface_DACLRCK (AUD_DACLRCK), //

.DACLRCK

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 19 of 41 23-Jan-18

Figure 12 - audiodelay.sv code(3) (top-level)

.audio_and_video_config_0_external_interface_SDAT (FPGA_I2C_SDAT),

 // audio_and_video_config_0_external_interface.SDAT
 .audio_and_video_config_0_external_interface_SCLK (FPGA_I2C_SCLK),

 // .SCLK
 .audio_pll_0_audio_clk_clk (AUD_XCK),

 // audio_pll_0_audio_clk.clk
 .clk_clk (clk),

 // clk.clk
 .reset_reset_n (clr)

 // reset.reset_n
);
 logic l_chan_fx_iready, r_chan_fx_iready;
 logic [23:0] l_chan_fx_o, r_chan_fx_o;
 logic l_chan_fx_ovalid, r_chan_fx_ovalid;
// echo effect (not working)

/*

 delayfx u1_l(

 .clk(clk),

 .clr(clr),

 .idata(l_chan_adc),

 .ivalid(l_chan_adc_valid),

 .iready(l_chan_fx_iready),

 .odata(l_chan_fx_o),

 .oready(l_chan_dac_ready),

 .ovalid(l_chan_fx_ovalid),

 .debug1(GPIO_0[3]),

 .debug2(GPIO_0[4]),

 .debug3(),

 .delay(delay)

);

 delayfx u1_r(

 .clk(clk),

 .clr(clr),

 .idata(r_chan_adc),

 .ivalid(r_chan_adc_valid),

 .iready(r_chan_fx_iready),

 .odata(r_chan_fx_o),

 .oready(r_chan_dac_ready),

 .ovalid(r_chan_fx_ovalid),

 .debug1(),

 .debug2(),

 .debug3(),

 .delay(delay)

);

*/
 //////////////////////////////////////
 // Modules for displaying delay
 // in ms on 7segment displays
 //////////////////////////////////////

 delayoutput u2(
 .clk(clk),
 .rst(clr),

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 20 of 41 23-Jan-18

Figure 13 - audiodelay.sv code(4) (top-level)

 delayoutput u2(
 .clk(clk),
 .rst(clr),
 .delay(delay),
 .HEX0(HEX0),
 .HEX1(HEX1),
 .HEX2(HEX2),
 .HEX3(HEX3)
);

 // display number of echoes on 7 segment display
 echoinit u3(
 .clk(clk),
 .rst(clr),
 .HEX5(HEX5),
 .plus(KEY[1]),
 .minus(KEY[2]),
 .echos() // output
);

 //////////////////////////////////////
 // State machine and logic
 // for effects selection
 //////////////////////////////////////

 logic delayen, delayen_next;
 always_comb begin
 delayen_next = delayen;
 if(SW) begin delayen_next = '1; end
 else begin delayen_next = '0; end
 end

 always @(posedge clk)begin
 delayen <= delayen_next;
 end
/*

 always_comb begin

 if(delayen) begin

 l_chan_dac = l_chan_fx_o;

 r_chan_dac = r_chan_fx_o;

 l_chan_dac_valid = l_chan_fx_ovalid;

 r_chan_dac_valid = r_chan_fx_ovalid;

 l_chan_adc_ready = l_chan_fx_iready;

 r_chan_adc_ready = r_chan_fx_iready;

 LED = '1;

 end

 else begin

 l_chan_dac = l_chan_adc;

 r_chan_dac = r_chan_adc;

 l_chan_dac_valid = l_chan_adc_valid;

 r_chan_dac_valid = r_chan_adc_valid;

 l_chan_adc_ready = l_chan_dac_ready;

 r_chan_adc_ready = r_chan_dac_ready;

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 21 of 41 23-Jan-18

Figure 14 - audiodelay.sv code(5) (top-level)

 LED = '0;

 end

 end

// set straight through connection from ADC to DAC for debugging purposes

assign l_chan_dac = l_chan_adc;
assign r_chan_dac = r_chan_adc;

assign l_chan_adc_ready = l_chan_dac_ready;
assign r_chan_adc_ready = r_chan_dac_ready;

assign l_chan_dac_valid = l_chan_adc_valid;
assign r_chan_dac_valid = r_chan_adc_valid;
assign LED = '1;

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 22 of 41 23-Jan-18

6.1.2 chipsel.sv

Figure 15 - chipsel.sv code

// chipsel.sv - ELEX 7660 201810 selects 1 of 3 RAM chips based on the read

// and write address inputs, converts the Ready-Valid interface for the RAM

// chips into enable signals, and converts 16 bit addresses into 14 bit

// addresses

// Navraj Kambo A00###### 2018-3-20

module chipsel(

 input logic [15:0] writeaddress, readaddress,

 input logic iready, ovalid, cntfull,

 output logic [13:0] cwaddr, craddr,

 output logic [2:0] wen, ren

);

 logic [2:0] write, read;

 assign wen = write;

 assign ren = read;

 always_comb begin

 if(iready) begin

 if(writeaddress < 'd16384) write = 3'b001;

 else if(writeaddress >= 'd16384 && writeaddress < 'd32768)

write = 3'b010;

 else write = 3'b010;

 end

 else write = 3'b000;

 end

 always_comb begin

 unique case(write)

 3'b001: cwaddr = writeaddress;

 3'b010: cwaddr = writeaddress - 'd16384;

 3'b100: cwaddr = writeaddress - 'd32768;

 3'b000: cwaddr = '0;

 endcase

 end

 always_comb begin

 if(ovalid && cntfull) begin

 if(readaddress < 'd16384) read = 3'b001;

 else if(readaddress >= 'd16384 && readaddress < 'd32768)

read = 3'b010;

 else read = 3'b010;

 end

 else if(ovalid) begin

 read = 3'b000;

 end

 else read = 3'b000;

 end

 always_comb begin

 unique case(read)

 3'b001: craddr = readaddress;

 3'b010: craddr = readaddress - 'd16384;

 3'b100: craddr = readaddress - 'd32768;

 3'b000: craddr = '0;

 endcase

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 23 of 41 23-Jan-18

Figure 16 – chipse_tb.sv code

// chipsel_tb.sv - ELEX 7660 201810 testbench for memory interfaces used in

// echo effects

// Navraj Kambo A00###### 2018-4-02

module chipsel_tb();

 writeaddresscounter wcnt(.*);

 readaddresscounter rcnt(.*);

 chipsel ram(.*);

 handshake interf(.*);

 logic clk, clk_48k, clk_50m, rst;

 logic [3:0] delay = 'd1;

 logic ivalid, cntfull, iready, ovalid, oready;

 logic [15:0] writeaddress, readaddress;

 logic [16:0] i;

 logic [13:0] cwaddr, craddr;

 logic [2:0] wen, ren;

 assign clk = clk_50m;

 initial begin

 rst = '0;

 // generate reset signal

 #20ns rst = '1;

 #40ns begin rst = '0; end

 end

 initial begin

 clk_50m = '1;

 forever begin

 #10ns clk_50m = ~clk_50m;

 end

 end

 initial begin

 clk_48k = '1;

 forever begin

 #10.4166us clk_48k = ~clk_48k;

 end

 end

 initial begin

 @(negedge rst) begin

 for (i=0; i<65538; i=i+1) begin

 ivalid = '1;

 #10.4166us ivalid = '0;

 #10.4166us ;

 end

 $stop;

 end

 end

 always @(posedge ovalid) begin

 oready = '0;

 #2.208us oready = '1;

 #2.208us oready = '0;

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 24 of 41 23-Jan-18

6.1.3 handshake.sv

Figure 17 – handshake.sv code

// handshake.sv - ELEX 7660 201810 generates ready and valid signals for ADC

// and DAC based on RAM enable signals

// Navraj Kambo A00###### 2018-4-10

module handshake(

 input logic clk, rst,

 input logic ivalid, oready,

 output logic iready, ovalid

);

 logic iready_next, ivalid_prev, ovalid_next, oready_prev;

 logic cycleflg, cycleflg_next, outflg, outflg_next;

 always_comb begin

 if(rst) begin

 iready_next = '0;

 cycleflg_next = '0;

 end

 else begin

 iready_next = iready;

 cycleflg_next = cycleflg;

 if(ivalid && ~ovalid && ~iready && ~cycleflg) begin

iready_next = '1; cycleflg_next = '1; end

 if(ivalid && ~ovalid && iready) iready_next = '0;

 if(oready && ovalid) cycleflg_next = '0;

 end

 end

 always_comb begin

 if(rst) begin

 ovalid_next = '0;

 outflg_next = '0;

 end

 else begin

 ovalid_next = ovalid;

 outflg_next = outflg;

 if(~ivalid && ivalid_prev) ovalid_next = '1;

 if(oready && ovalid) outflg_next = '1;

 if(outflg && ~oready && oready_prev) begin outflg_next =

'0; ovalid_next = '0; end

 //if(ovalid && ~outflg) ovalid_next = '0;

 end

 end

 // flip flop

 always @(posedge clk) begin

 if(rst) begin ivalid_prev = '0; end

 iready <= iready_next;

 ivalid_prev <= ivalid;

 oready_prev <= oready;

 ovalid <= ovalid_next;

 cycleflg <= cycleflg_next;

 outflg <= outflg_next ;

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 25 of 41 23-Jan-18

6.1.4 ramctrlc.sv

Figure 18 – ramctrlc.sv code(1)

// ramctrlc.sv - ELEX 7660 201810 controls ram chips and interfaces with

// modules

// Navraj Kambo A00###### 2018-4-2

module ramctrlc(

 input logic clk, rst,

 input logic ivalid, oready,

 output logic iready, ovalid,

 input logic [23:0] data_in,

 output logic [23:0] data_out,

 output logic cnt_full,

 input logic [3:0] delay,

 output debug1, debug2, debug3

);

 logic fullflg;

 logic [15:0] writeaddress, readaddress;

 assign cnt_full = fullflg;

 assign debug1 = ovalid;

 assign debug2 = ivalid;

 assign debug3 = iready;

 writeaddresscounter wcnt(

 .clk(clk),

 .rst(rst),

 .ivalid(ivalid),

 .cntfull(fullflg),

 .writeaddress(writeaddress)

);

 readaddresscounter rcnt(

 .clk(clk),

 .rst(rst),

 .delay(delay),

 .writeaddress(writeaddress),

 .readaddress(readaddress),

 .cntfull(fullflg)

);

 chipsel chipselect(

 .writeaddress(writeaddress),

 .readaddress(readaddress),

 .iready(iready),

 .ovalid(ovalid),

 .cwaddr(addr_w),

 .craddr(addr_r),

 .wen(isel),

 .ren(osel)

);

 logic [2:0] wen, ren; //read and write enable signals

 logic [13:0] addr_w, addr_r;

 logic [2:0] isel, osel;

 logic [2:0][31:0] data_o;

 handshake interf(.*);

 always_comb begin

 unique case (ren)

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 26 of 41 23-Jan-18

Figure 19 – ramctrlc.sv code(2)

 3'b000: data_out = data_in;
 3'b001: data_out = data_o[0][23:0];
 3'b010: data_out = data_o[1][23:0];
 3'b100: data_out = data_o[2][23:0];
 endcase
 end

 RAM RAM0 (
 .clock(clk),
 .data({8'd0,data_in}),
 .rdaddress(addr_r),
 .rden(ren[0]),
 .wraddress(addr_w),
 .wren(wen[0]),
 .q(data_o[0])
);
 RAM RAM1 (
 .clock(clk),
 .data({8'd0,data_in}),
 .rdaddress(addr_r),
 .rden(ren[1]),
 .wraddress(addr_w),
 .wren(wen[1]),
 .q(data_o[1])
);
 RAM RAM2 (
 .clock(clk),
 .data({8'd0,data_in}),
 .rdaddress(addr_r),
 .rden(ren[2]),
 .wraddress(addr_w),
 .wren(wen[2]),
 .q(data_o[2])
);

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 27 of 41 23-Jan-18

6.1.5 readaddresscounter.sv

Figure 20 – readaddresscounter.sv code

// readaddresscounter.sv - ELEX 7660 201810 generates read address based on

// write address, delay and RAM flag

// Navraj Kambo A00###### 2018-3-20

module readaddresscounter(

 input logic clk, rst,

 input logic [3:0] delay,

 input logic [15:0] writeaddress,

 output logic [15:0] readaddress,

 input logic cntfull

);

 logic [15:0] readaddress_next, delay_c;

 logic [6:0] delay_p;

 always_comb begin

 if(rst) begin

 readaddress_next = '0;

 end

 else begin

 readaddress_next = readaddress;

 if(cntfull) begin

 if ((writeaddress - delay_c) >= '0) readaddress_next

= writeaddress - delay_c;

 else readaddress_next = 'd47999 - delay_c - writead-

dress;

 end

 end

 end

 always_comb begin

 if(delay > 'd10) delay_p = 'd10 * delay; // turn delay into per-

centage

 else delay_p = 'd100;

 delay_c = ('d480 * delay_p)-1; // turn percentage into delay in

cycles

 end

 always @(negedge clk) begin

 readaddress <= readaddress_next;

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 28 of 41 23-Jan-18

6.1.6 writeaddresscounter.sv

Figure 21 – writeaddresscounter.sv code

// writeaddresscounter.sv - ELEX 7660 201810 generates write address and

// and counts up to 48000 before resetting

// Navraj Kambo A00###### 2018-3-19

module writeaddresscounter(

 input logic clk, rst,

 input logic ivalid,

 output logic cntfull,

 output logic [15:0] writeaddress

);

 logic [15:0] writeaddress_next;

 logic cntfull_next;

 always_comb begin

 if(rst) begin

 writeaddress_next = '0;

 cntfull_next = '0;

 end

 else begin

 writeaddress_next = writeaddress;

 cntfull_next = cntfull;

 if(writeaddress >= 'd47999)begin writeaddress_next = '0;

cntfull_next = '1; end

 else writeaddress_next += 1;

 end

 end

 always @(posedge rst or negedge ivalid) begin

 writeaddress <= writeaddress_next;

 cntfull <= cntfull_next;

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 29 of 41 23-Jan-18

Figure 22 – write_tb.sv code

// write_tb.sv - ELEX 7660 201810 read and write address counter testbench

// Navraj Kambo A00###### 2018-3-22

module write_tb();

 writeaddresscounter wcnt(.*);

 readaddresscounter rcnt(.*);

 logic clk, clk_48k, clk_50m, rst;

 logic [3:0] delay = 'd1;

 logic ivalid, cntfull;

 logic [15:0] writeaddress, readaddress;

 logic [16:0] i;

 assign clk = clk_50m;

 initial begin

 rst = '0;

 // generate reset signal

 #20ns rst = '1;

 #40ns begin rst = '0; end

 end

 initial begin

 clk_50m = '1;

 forever begin

 #10ns clk_50m = ~clk_50m;

 end

 end

 initial begin

 clk_48k = '1;

 forever begin

 #10.4166us clk_48k = ~clk_48k;

 end

 end

 initial begin

 @(negedge rst) begin

 for (i=0; i<65538; i=i+1) begin

 ivalid = '1;

 #10.4166us ivalid = '0;

 #10.4166us ;

 end

 $stop;

 end

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 30 of 41 23-Jan-18

6.1.7 sevensegdecoder.sv

Figure 23 – sevensegdecoder.sv code

// sevensegdecoder.sv - ELEX 7660 201810 decoder for seven segment displays

// Navraj Kambo A00###### 2018-3-19

module sevensegdecorder(

 input logic [3:0] din,

 output logic [6:0] dout

);

 always_comb begin

 unique case(din)

 'd0: dout = 7'b1000000;

 'd1: dout = 7'b1111001;

 'd2: dout = 7'b0100100;

 'd3: dout = 7'b0110000;

 'd4: dout = 7'b0011001;

 'd5: dout = 7'b0010010;

 'd6: dout = 7'b0000010;

 'd7: dout = 7'b1111000;

 'd8: dout = 7'b0000000;

 'd9: dout = 7'b0010000;

 'd10: dout = 7'b0001000;

 'd11: dout = 7'b0000011;

 'd12: dout = 7'b1000110;

 'd13: dout = 7'b0100001;

 'd14: dout = 7'b0000110;

 'd15: dout = 7'b0001110;

 default: dout = 7'b1000000;

 endcase

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 31 of 41 23-Jan-18

6.1.8 delayoutput.sv

Figure 24 – delayoutput.sv code(1)

// delayoutput.sv - ELEX 7660 201810 displays delay in ms on 7 segment

// displays

// Navraj Kambo A00###### 2018-3-25

module delayoutput(

 input clk, rst,

 input logic [3:0] delay,

 output logic [6:0] HEX0,

 output logic [6:0] HEX1,

 output logic [6:0] HEX2,

 output logic [6:0] HEX3

);

 sevensegdecorder displ0(

 .din(dispnum0),

 .dout(HEX0)

);

 sevensegdecorder displ1(

 .din(dispnum1),

 .dout(HEX1)

);

 sevensegdecorder displ2(

 .din(dispnum2),

 .dout(HEX2)

);

 sevensegdecorder displ3(

 .din(dispnum3),

 .dout(HEX3)

);

 logic [3:0] dispnum0,dispnum1,dispnum2,dispnum3;

 logic [3:0] dispnum0_next,dispnum1_next,dispnum2_next,dispnum3_next;

 always_comb begin

 if(rst) begin

 dispnum0_next = 'd0;

 dispnum1_next = 'd0;

 dispnum2_next = 'd0;

 dispnum3_next = 'd0;

 end

 else begin

 dispnum0_next = dispnum0;

 dispnum1_next = dispnum1;

 dispnum2_next = dispnum2;

 dispnum3_next = dispnum3;

 dispnum0_next = '0;

 dispnum1_next = '0;

 unique case(delay)

 'd1: begin

 dispnum2_next ='d1;

 dispnum3_next ='d0;

 end

 'd2: begin

 dispnum2_next ='d2;

 dispnum3_next ='d0;

 end

 'd3: begin

 dispnum2_next ='d3;

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 32 of 41 23-Jan-18

Figure 25 – delayoutput.sv code(2)

6.1.9 tencounter.sv

 dispnum3_next ='d0;
 end
 'd4: begin
 dispnum2_next ='d4;
 dispnum3_next ='d0;
 end
 'd5: begin
 dispnum2_next ='d5;
 dispnum3_next ='d0;
 end
 'd6: begin
 dispnum2_next ='d6;
 dispnum3_next ='d0;
 end
 'd7: begin
 dispnum2_next ='d7;
 dispnum3_next ='d0;
 end
 'd8: begin
 dispnum2_next ='d8;
 dispnum3_next ='d0;
 end
 'd9: begin
 dispnum2_next ='d9;
 dispnum3_next ='d0;
 end
 'd10: begin
 dispnum2_next ='d0;
 dispnum3_next ='d1;
 end
 default: begin
 dispnum2_next ='d0;
 dispnum3_next ='d0;
 end
 endcase
 end
 end

 always @(posedge clk) begin
 dispnum0 = dispnum0_next;
 dispnum1 = dispnum1_next;
 dispnum2 = dispnum2_next;
 dispnum3 = dispnum3_next;
 end
endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 33 of 41 23-Jan-18

6.1.10 sinewave.sv

Figure 27 – sinewave.sv code(1)

// sinewave.sv - ELEX 7660 201810 sinewave LUT

// Navraj Kambo A00###### 2018-4-6

module sinewave(

 input logic clk, rst,

 input logic [6:0] count,

 output logic [7:0] data_out

);

 logic [99:0][7:0]sine;

 initial begin

 sine[0] = 'd0;

 sine[1] = 'd0;

 sine[2] ='d1;

 sine[3] ='d1;

 sine[4] ='d1;

 sine[5] ='d1;

 sine[6] ='d2;

 sine[7] ='d2;

 sine[8] ='d2;

 sine[9] ='d2;

 sine[10] ='d3;

 sine[11] ='d3;

 sine[12] ='d3;

 sine[13] ='d3;

 sine[14] ='d3;

 sine[15] ='d4;

 sine[16] ='d4;

 sine[17] ='d4;

 sine[18] ='d4;

 sine[19] ='d5;

 sine[20] ='d5;

 sine[21] ='d5;

 sine[22] ='d5;

 sine[23] ='d6;

 sine[24] ='d6;

 sine[25] ='d6;

 sine[26] ='d6;

 sine[27] ='d7;

 sine[28] ='d7;

 sine[29] ='d7;

 sine[30] ='d7;

 sine[31] ='d7;

 sine[32] ='d8;

 sine[33] ='d8;

 sine[34] ='d8;

 sine[35] ='d8;

 sine[36] ='d9;

 sine[37] ='d9;

 sine[38] ='d9;

 sine[39] ='d9;

 sine[40] ='d9;

 sine[41] ='d10;

 sine[42] ='d10;

 sine[43] ='d10;

 sine[44] ='d10;

 sine[45] ='d10;

 sine[46] ='d11;

 sine[47] ='d11;

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 34 of 41 23-Jan-18

Figure 28 – sinewave.sv code(2)

 sine[48] ='d11;
 sine[49] ='d11;
 sine[50] ='d11;
 sine[51] ='d11;
 sine[52] ='d12;
 sine[53] ='d12;
 sine[54] ='d12;
 sine[55] ='d12;
 sine[56] ='d12;
 sine[57] ='d12;
 sine[58] ='d13;
 sine[59] ='d13;
 sine[60] ='d13;
 sine[61] ='d13;
 sine[62] ='d13;
 sine[63] ='d13;
 sine[64] ='d14;
 sine[65] ='d14;
 sine[66] ='d14;
 sine[67] ='d14;
 sine[68] ='d14;
 sine[69] ='d14;
 sine[70] ='d14;
 sine[71] ='d14;
 sine[72] ='d14;
 sine[73] ='d15;
 sine[74] ='d15;
 sine[75] ='d15;
 sine[76] ='d15;
 sine[77] ='d15;
 sine[78] ='d15;
 sine[79] ='d15;
 sine[80] ='d15;
 sine[81] ='d15;
 sine[82] ='d15;
 sine[83] ='d15;
 sine[84] ='d15;
 sine[85] ='d16;
 sine[86] ='d16;
 sine[87] ='d16;
 sine[88] ='d16;
 sine[89] ='d16;
 sine[90] ='d16;
 sine[91] ='d16;
 sine[92] ='d16;
 sine[93] ='d16;
 sine[94] ='d16;
 sine[95] ='d16;
 sine[96] ='d16;
 sine[97] ='d16;
 sine[98] ='d16;
 sine[99] ='d16;
 end
 always_comb begin
 data_out = sine[count];
 end
endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 35 of 41 23-Jan-18

6.1.11 sineedit.sv

Figure 29 – sineedit.sv code

// sineedit.sv - ELEX 7660 201810 shifts sinewave up by 16, and fixes period

// Navraj Kambo A00###### 2018-4-7

module sineedit(

 input logic clk1, // 50 MHz

 input logic clk2, // slow clock

 input logic rst,

 input logic position,

 input logic [7:0] sinein,

 output logic [7:0] sineout);

 logic trig1, trig1_next, trig2, trig2_next;

 always @(posedge position or posedge rst) begin

 if(rst) trig1_next = '0;

 else begin

 trig1_next = ~trig1;

 end

 end

 always @(negedge trig1 or posedge rst) begin

 if(rst) trig2_next ='0;

 else begin

 trig2_next = ~trig2;

 end

 end

 always @(posedge clk1) begin

 trig1 <= trig1_next;

 trig2 <= trig2_next;

 end

 always_comb begin

 if(trig2)

 sineout = sinein +'d16;

 else

 sineout = -6'd1*sinein +'d16;

 end

endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 36 of 41 23-Jan-18

Figure 30 – tencounter_tb.sv code

// tencounter_tb.sv - ELEX 7660 201810 sinewave testbench

// Navraj Kambo A00###### 2018-4-7

`timescale 1ns / 1ns

module tencounter_tb();

 logic clk_50m, clk, rst;

 logic clk_out;

 logic [6:0] count;

 logic position, position_next;

 logic flg, flg_next;

 logic [7:0] sinewavex, sinewaveo;

 assign clk = clk_50m;

 // instantiation

 tencounter cntten(.*);

 hundredudcounter cnthun(.clk(clk_out), .rst(rst), .count(count), .posi-

tion(position_next));

 sinewave sinfunc(

 .clk(clk),

 .rst(rst),

 .count(count),

 .data_out(sinewavex)

);

 sineedit sinefun2(

 .clk1(clk),

 .clk2(clk_out),

 .rst(rst),

 .position(position),

 .sinein(sinewavex),

 .sineout(sinewaveo)

);

 // start tb code

 initial begin

 rst = '0;

 // generate reset signal

 #20ns rst = '1;

 #40ns begin rst = '0; end

 end

 initial begin

 clk_50m = '1;

 forever begin

 #10ns clk_50m = ~clk_50m;

 end

 end

 always @(posedge clk_out) begin

 if(rst) begin

 flg_next = '0;

 end

 else begin

 flg_next = flg;

 if(count == 'd99) begin

 flg_next = '1;

 end

 if(flg && count == '0) flg_next = '0;

 end

 end

 always_comb begin

 $display("%b", position);

 end

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 37 of 41 23-Jan-18

6.2 Audio Hardware Processor Schematic

Figure 31 - Top level schematic audio hardware processor without effects

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 38 of 41 23-Jan-18

6.3 Effect Controller Code
6.3.1 effectcontrol.sv (top-level)

Figure 32 - effectcontrol.sv code(1) (top-level)

// effectcontrol.sv - ELEX 7660 201810 top level entity of effect controller

// module (DE0-Nano)

// Brandon Pham A00###### 2018-3-10

module effectcontrol (output logic [3:0] count,

 output logic [7:0] LED,

 output logic volup, voldown,

 input logic volupin, voldownin, CLOCK_50);

 logic [3:0] count_next;

 logic countup, countdown;

 logic clk;

 pll pll0 (.inclk0(CLOCK_50), .c0(clk)) ;

 always_comb begin

 count_next = count;

 if(volupin) begin

 if (count < 10)

 count_next = count_next + 1;

 else

 count_next = count_next;

 end

 if(voldownin) begin

 if (count > 0)

 count_next = count_next - 1;

 else

 count_next = count_next;

 end

 unique case (count)

 0: LED = 8'b0000_0000;

 1: LED = 8'b0000_0001;

 2: LED = 8'b0000_0011;

 3: LED = 8'b0000_0111;

 4: LED = 8'b0000_1111;

 5: LED = 8'b0001_1111;

 6: LED = 8'b0011_1111;

 7: LED = 8'b0111_1111;

 8: LED = 8'b1111_1111;

 9: LED = 8'b1111_1110;

 10: LED = 8'b1111_1100;

 default: LED = 8'b0101_0101;

 endcase

 end

 always_ff @(posedge clk) begin

 count <= count_next;

 end

endmodule

// megafunction wizard: %ALTPLL%

// ...

// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

// ...

module pll (inclk0, c0);

 input inclk0;

 output c0;

 wire [0:0] sub_wire2 = 1'h0;

 wire [4:0] sub_wire3;

 wire sub_wire0 = inclk0;

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 39 of 41 23-Jan-18

Figure 33 - effectcontrol.sv code(2) (top-level)

 wire [1:0] sub_wire1 = {sub_wire2, sub_wire0};
 wire [0:0] sub_wire4 = sub_wire3[0:0];
 wire c0 = sub_wire4;
 altpll altpll_component (.inclk (sub_wire1), .clk
 (sub_wire3), .activeclock (), .areset (1'b0), .clkbad
 (), .clkena ({6{1'b1}}), .clkloss (), .clkswitch
 (1'b0), .configupdate (1'b0), .enable0 (), .enable1 (),
 .extclk (), .extclkena ({4{1'b1}}), .fbin (1'b1),
 .fbmimicbidir (), .fbout (), .fref (), .icdrclk (),
 .locked (), .pfdena (1'b1), .phasecounterselect
 ({4{1'b1}}), .phasedone (), .phasestep (1'b1),
 .phaseupdown (1'b1), .pllena (1'b1), .scanaclr (1'b0),
 .scanclk (1'b0), .scanclkena (1'b1), .scandata (1'b0),
 .scandataout (), .scandone (), .scanread (1'b0),
 .scanwrite (1'b0), .sclkout0 (), .sclkout1 (),
 .vcooverrange (), .vcounderrange ());
 defparam
 altpll_component.bandwidth_type = "AUTO",
 altpll_component.clk0_divide_by = 10000,
 altpll_component.clk0_duty_cycle = 50,
 altpll_component.clk0_multiply_by = 1,
 altpll_component.clk0_phase_shift = "0",
 altpll_component.compensate_clock = "CLK0",
 altpll_component.inclk0_input_frequency = 20000,
 altpll_component.intended_device_family = "Cyclone IV E",
 altpll_component.lpm_hint = "CBX_MODULE_PREFIX=lab1clk",
 altpll_component.lpm_type = "altpll",
 altpll_component.operation_mode = "NORMAL",
 altpll_component.pll_type = "AUTO",
 altpll_component.port_activeclock = "PORT_UNUSED",
 altpll_component.port_areset = "PORT_UNUSED",
 altpll_component.port_clkbad0 = "PORT_UNUSED",
 altpll_component.port_clkbad1 = "PORT_UNUSED",
 altpll_component.port_clkloss = "PORT_UNUSED",
 altpll_component.port_clkswitch = "PORT_UNUSED",
 altpll_component.port_configupdate = "PORT_UNUSED",
 altpll_component.port_fbin = "PORT_UNUSED",
 altpll_component.port_inclk0 = "PORT_USED",
 altpll_component.port_inclk1 = "PORT_UNUSED",
 altpll_component.port_locked = "PORT_UNUSED",
 altpll_component.port_pfdena = "PORT_UNUSED",
 altpll_component.port_phasecounterselect = "PORT_UNUSED",
 altpll_component.port_phasedone = "PORT_UNUSED",
 altpll_component.port_phasestep = "PORT_UNUSED",
 altpll_component.port_phaseupdown = "PORT_UNUSED",
 altpll_component.port_pllena = "PORT_UNUSED",
 altpll_component.port_scanaclr = "PORT_UNUSED",
 altpll_component.port_scanclk = "PORT_UNUSED",
 altpll_component.port_scanclkena = "PORT_UNUSED",
 altpll_component.port_scandata = "PORT_UNUSED",
 altpll_component.port_scandataout = "PORT_UNUSED",
 altpll_component.port_scandone = "PORT_UNUSED",
 altpll_component.port_scanread = "PORT_UNUSED",
 altpll_component.port_scanwrite = "PORT_UNUSED",
 altpll_component.port_clk0 = "PORT_USED",
 altpll_component.port_clk1 = "PORT_UNUSED",
 altpll_component.port_clk2 = "PORT_UNUSED",

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 40 of 41 23-Jan-18

Figure 34 - effectcontrol.sv code(3) (top-level)

6.4 Effect Controller Schematic

Figure 35 - Effect controller schematic

 altpll_component.port_clk3 = "PORT_UNUSED",
 altpll_component.port_clk4 = "PORT_UNUSED",
 altpll_component.port_clk5 = "PORT_UNUSED",
 altpll_component.port_clkena0 = "PORT_UNUSED",
 altpll_component.port_clkena1 = "PORT_UNUSED",
 altpll_component.port_clkena2 = "PORT_UNUSED",
 altpll_component.port_clkena3 = "PORT_UNUSED",
 altpll_component.port_clkena4 = "PORT_UNUSED",
 altpll_component.port_clkena5 = "PORT_UNUSED",
 altpll_component.port_extclk0 = "PORT_UNUSED",
 altpll_component.port_extclk1 = "PORT_UNUSED",
 altpll_component.port_extclk2 = "PORT_UNUSED",
 altpll_component.port_extclk3 = "PORT_UNUSED",
 altpll_component.width_clock = 5;
endmodule

ELEX 7660: Digital System Design GROUP 5

Navraj Kambo, Brandon Pham 41 of 41 23-Jan-18

6.5 MATLAB Code

Figure 36 - matlabfx.m code

// Navraj Kambo A00###### 2018-3-10

function y=convreverb(x, h)

 ly=length(x)+length(h)-1;

 ly2=pow2(nextpow2(ly));

 X = fft(x, ly2);

 H = fft(h, ly2);

 Y = X.*H;

 y = real(ifft(Y,ly2));

 y = y(1:1:ly);

 y=y/max(abs(y));

end

function y=flanger(x,Fs,max_time_delay,rate)

 % parameters to vary the effect %

 %max_time_delay=0.003; % 3ms max delay in seconds

 %rate=1; %rate of flange in Hz

 index=1:length(x);

 % sin reference to create oscillating delay

 sin_ref = (sin(2*pi*index*(rate/Fs)));

 %convert delay in ms to max delay in samples

 max_samp_delay=round(max_time_delay*Fs);

 % create empty out vector

 y = zeros(length(x),1);

 % to avoid referencing of negative samples

 y(1:max_samp_delay)=x(1:max_samp_delay);

 % set amp suggested coefficient from page 71 DAFX

 amp=0.7;

 % for each sample

 for i = (max_samp_delay+1):length(x)

 cur_sin=abs(sin_ref(i)); %abs of current sin val 0-1

 % generate delay from 1-max_samp_delay and ensure whole number

 cur_delay=ceil(cur_sin*max_samp_delay);

 % add delayed sample

 y(i) = (amp*x(i)) + amp*(x(i-cur_delay));

 end

end

function y=simpecho(x, Fs, D, R, a)

 length = size(x); % get the length of the music file

 D = round(D*Fs); % set the delay time in samples

 y = zeros(length); % initialize the output music signal

 for i = (R*D) + 1 : 1 : length

 y(i) = x(i);

 for n=1:1:R

 y(i) = y(i) + (a/n)*x(i-(n*D));

 end

 end

end

function y=tremolo(x,Fs,Fc,alpha)

 index = 1:length(x);

 sin_ref = sin(2*pi*index*(Fc/Fs));

 y = x;

 for i=1:length(x)

 trem = 1 + alpha*sin_ref(i);

 y(i) = trem*x(i);

 end

end

