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Abstract

The spectrum of a first-order sentence is the set of cardi-
nalities of its finite models. Relatively little is known about
the subclasses of spectra that are obtained by looking only
at sentences with a specific signature. In this paper, we
study natural subclasses of spectra and their closure prop-
erties under simple subdiagonal functions. We show that
many natural closure properties turn out to be equivalent to
the collapse of potential spectrum hierarchies. We prove all
of our results using explicit transformations on first-order
structures.

1. Introduction

1.1. Historical Motivation

The spectrum of a first-order sentence φ is the set of car-
dinalities of its finite models. Let Sp(φ) denote the spec-
trum of φ and let SPEC denote the set of all spectra.

Let BIN1 denote the class of spectra of sentences involv-
ing a single binary relation symbol. In [5], Fagin asks if
every spectrum is in BIN1. Actually, Fagin restricts the sin-
gle relation to be irreflexive and symmetric, but we will al-
low an arbitrary relation in this paper. Fagin also introduces
a potential spectrum hierarchy. Let Fk denote the class of
spectra of sentences involving relation symbols of arity at
most k. Clearly Fk ⊆ Fk+1 for all k. Fagin proposes that
this hierarchy is strict, yet no one has been able to prove that
it does not collapse to the second level.

Relatively little is known about the classes Fk. Part of
the reason that they are not understood is because research
on spectra has tended to rely heavily on the techniques
of descriptive complexity theory. Many interesting results
have been proved by characterizing subclasses of spectra in
terms of complexity, and then applying the results of com-
plexity theory [7, 8, 11]. However, no natural characteriza-
tion of Fk has been given. As a result, little research has

been done on the properties of the classes in Fagin’s pro-
posed spectrum hierarchy.

Similarly, very little is known about the classes of spec-
tra obtained by varying the number of binary relation sym-
bols, or the number of unary relation symbols allowed in
sentences. In this paper, we will use model-theoretic tech-
niques to explore the properties of these restricted classes
of spectra.

1.2. Closure Properties

Given a set of natural numbers S and a function f over
the natural numbers, we write f(S) as a shorthand notation
for {f(n)|n ∈ S}. We say that a class of spectra S is closed
under f if f(S) ∈ S whenever S ∈ S.

Using explicit transformations on graphs, More proves
that F2 is closed under every polynomial with rational co-
efficients that is assymptotically greater than the identity
function [12]. In this paper, we study closure properties un-
der functions that are assymptotically less than the identity
function. It turns out that establishing these closure proper-
ties is more difficult.

1.3. Summary of Main Results

In order to summarize our results, we introduce a more
general notation for subclasses of spectra.

Definition S ∈ Fmk,...,m1
k if S = Sp(φ) for some sentence

φ which satisfies the following conditions:

1. for each i ≤ k, φ involves at most mi relation symbols
of arity i

2. φ involves no other non-logical symbols.

It will be convenient to write Fp
2 as a shorthand for Fp,0

2 .
We remark that BIN1 = F1

2 .
We study three potential spectrum hierarchies:

(1) F1,0
2 ⊆ F1,1

2 ⊆ F1,2
2 ⊆ . . .
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(2) F1
2 ⊆ F2

2 ⊆ F3
2 ⊆ . . .

(3) F2 ⊆ F3 ⊆ F4 ⊆ . . .

The first hierarchy is based on the number of unary relation
symbols in the sentence and the second hierarchy is based
on the number of binary relation symbols. The third hier-
archy is Fagin’s hierarchy, and it is based on the arity of
the relation symbols. The inclusions given above are trivial,
but it is not clear if any of them are strict. We remark that
(1) is the simplest spectrum hierarchy that is worth study-
ing, because it is well-known that F1 is the set of finite and
co-finite sets.

In this paper, we prove that the collapse of each hierar-
chy is equivalent to an arithmetic closure condition on the
lowest level. In particular, we establish the following re-
sults.

• (1) collapses ⇐⇒ BIN1 is closed under n �→ n− 1

• (2) collapses ⇐⇒ BIN1 is closed under n �→ �n
2 	

• (3) collapses ⇐⇒ F2 is closed under n �→ �√n	.
In the last section of the paper, we turn our attention to

the class BIN1
bo introduced in [3]. This is the class of spectra

of sentences involving a single binary relation symbol with
bounded outdegree. More precisely, S ∈ BIN1

bo if S =
Sp(φ) for some φ involving a single binary relation symbol
R and there is some k such that every model of φ assigns R
a relation with outdegree bounded by k. Although this class
of spectra is clearly a subset of BIN1, it is not clear if it is a
strict subset. We prove that, if BIN1 = BIN1

bo, then Fagin’s
hierarchy collapses.

Throughout the paper, we will generally assume that all
signatures are relational. We remark that some related work
has been done on a proposed spectrum hierarchy based on
signatures involving only unary function symbols[3, 6].

1.4. Significance of the Results

The most famous problem in the theory of spectra was
posed by Asser, when he asked if SPEC is closed under
complement [1]. This problem has proven to be very dif-
ficult, due to a well-known characterization of SPEC in
terms of complexity theory. Given a set of natural numbers
S, there is a corresponding language Ŝ over the alphabet
{0, 1} that contains the binary representation of every ele-
ment of S. It has been shown that S ∈ SPEC if and only
if Ŝ is accepted in exponential time by a non-deterministic
Turing machine [4, 9]. Hence, if Asser’s problem has a neg-
ative solution, it follows by a straightforward argument that
P �= NP . This fact has motivated a great deal of research
on spectra.

Understanding BIN1 and the hierarchies we have out-
lined in this section is important for our understanding of

spectra. For example, it has been shown that, if there is a
spectrum whose complement is not a spectrum, then there
is one in BIN1 [4]. Establishing general arithmetic closure
conditions for BIN1 and related classes may provide a first
step towards an improved understanding of these important
subclasses of spectra.

The results that we present give arithmetic conditions for
the collapse of some potential spectrum hierarchies. We do
not know of any other attempts to systematically study the
arithmetic closure properties of SPEC under natural subdi-
agonal functions. We prove our results using simple, de-
finable transformations on first-order structures. This kind
of proof was employed in Fagin’s early work[5] and more
recently this approach was explicitly studied by More[12].

2 Preliminaries

2.1. Definitions and Notation

A finite set of non-logical symbols together with an arity
for each symbol will be called a vocabulary (or a signature).
We will assume that all vocabularies contain only relation
symbols. Given a vocabulary L = {R1, . . . , Rm}, an L-
structure M = 〈M,P1, . . . , Pm〉 is composed of a finite
set M called the universe and, for each k-ary relation sym-
bol Ri, a relation Pi ⊆ Mk called the interpretation of Ri.
Note that, by convention, M is used to denote the universe
of the structureM. Normally, RM will denote the interpre-
tation of R in the structure M. Following the conventions
of set theory, we identify n with the set {0, . . . , n−1}when
we are specifying the universe of a structure.

The notation ā will be used as an abbreviation for a tuple
(a1, . . . , an) when the value of n is understood or unimpor-
tant. If φ(x̄) is a formula with free variables x̄, then we
writeM |= φ[ā] to indicate that ā satisfies φ(x̄) inM. The
satisfaction relation is defined rigorously in [2].

For some familiar functions f , we use a natural short-
hand notation for f(S). For example, if f is n �→ n + 1,
then S + 1 denotes f(S).

2.2. Methodology

Typically, we will start with a vocabulary L1 and a func-
tion f . Given an L1-spectrum S, we will be interested in
proving that f(S) is the spectrum of a sentence in some tar-
get vocabulary L2. For example, we might be interested in
proving that, if S is an {R}-spectrum, then S + 1 is also an
{R}-spectrum. The prototypical question we are interested
in can be stated as follows:

(*) Given an L1-spectrum S and a function f
whose domain includes S, does it follow
that f(S) is an L2-spectrum?
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If L1 = L2, then we are simply asking if the class of L1-
spectra is closed under the function f . Our proofs will
be constructive. Starting with an arbitrary L1-sentence φ,
we will contruct an L2-sentence φ∗ such that Sp(φ∗) =
f(Sp(φ)). We outline the procedure in detail below.

Our methods will be similar to those used in [3] and [12].
Suppose we are given vocabulariesL1, L2 and a function f .
We want to show that f(S) is an L2-spectrum whenever S
is an L1-spectrum. Inuitively, we would like to proceed as
follows.

(a) construct an injection M �→ M∗ from L1-structures
to L2-structures such that |M∗| = f(|M |).

(b) construct an injection ψ �→ ψ∗ from L1-sentences to
L2-sentences that syntactically captures the transfor-
mation on structures

(c) prove that M |= ψ if and only if M∗ |= ψ∗ for every
L1-sentence ψ and every L1-structureM.

If we could establish (c), then we would have accomplished
our goal. Note that (c) requires us to prove a result for all
sentences of the vocabulary L. In order to prove a result
for all sentences, we typically need to use induction and
prove the result more generally for all formulas. Hence,
although the procedure outlined above captures the intuitive
idea of our proofs, in practice we need to use a slightly more
complicated procedure.

Let L1, L2 be vocabularies and let f be a function on the
natural numbers. In order to give an affirmative answer to
the sample query (*) above, we would procede as follows.

1. let φ be an arbitrary L1-sentence

2. construct an injection M �→ M∗ from L1-structures
to L2-structures such that |M∗| = f(|M |).

3. construct an injection (ψ(x̄), ā) �→ (ψ∗̄
a(ȳ), ā∗) which

takes an L1 formula and a tuple of elements ofM and
returns a formula of L2 and a tuple of elements ofM∗.

4. prove that M |= ψ[ā] if and only if M∗ |= ψ∗̄
a[ā∗],

for every L1-formula ψ(x̄), every L1-structureM and
every tuple ā of elements of M .

5. prove that Sp(φ∗) = f(Sp(φ)).

Although this procedure may seem complex in the abstract,
it is a natural technique for proving the results that we want
to prove. In practice, we will see that the transformations
on structures are intuitive, and the proofs basically fall out
of these constructions.

3 Extra Unary relations

We now turn to our proposed spectrum hierarchy based
on a single binary relation and an arbitrary number of unary
relations. Clearly, for any p, F1,p

2 ⊆ F1,p+1
2 . In this sec-

tion, we prove that determining whether or not this hierar-
chy collapses to BIN1 is equivalent to determining if BIN1

is closed under n �→ n− 1.
Our first theorem states that, if S is an L-spectrum for

some L involving k binary relation symbols, then S − 1
is an (L ∪ {U1, . . . , U2k})-spectrum, where each Ui is a
new unary relation symbol. As an illustration, we prove this
theorem in some detail; for subsequent results, we normally
provide a simple sketch of the proof.

Theorem 1 If S ∈ Fk,p
2 , then S − 1 ∈ Fk,p+2k

2 .

Proof We prove the theorem for k = 1 and p = 0; the
proof extends easily to the general case. Let S = Sp(φ)
where φ involves only one binary relation symbol R.

Given M = 〈n,RM〉, we construct M∗ =
〈n − 1, PM∗

, UM∗
1 , UM∗

2 〉, where PM∗
is binary and

UM∗
1 , UM∗

2 are unary. For all a, b < n− 1, let

PM∗
ab ⇐⇒ RMab

UM∗
1 a ⇐⇒ RMa(n− 1)

UM∗
2 a ⇐⇒ RM(n− 1)a.

Observe that, givenM∗ and (a, b) ∈ n× n such that either
a �= n−1 or b �= n−1, it is possible to determine whether or
not (a, b) ∈ RM. However, there is no way of determining
fromM∗ whether or not (n− 1, n− 1) ∈ RM.

Given a t-tuple ā = (a1, . . . , at) ∈ nt, let v(ā) =
(v(a1), . . . , v(at)) denote the unique t-tuple in {0, 1}t such
that v(ai) = 1 if and only if ai = n − 1. Let ψ(x̄) be
an {R}-formula. Relative to v(ā), there is a natural trans-
lation ψ0

v(ā)(x̄) of ψ(x̄) into the vocabulary {P,U1, U2}.
Intuitively, we want ψ0

v(ā)(x̄) to be a formula that is satis-
fied by ā in M∗ if and only if ψ(x̄) is satisfied by ā in M.
For example, if v(ai) = 1 and v(aj) < 0, then one step in
the translation would be to replace all occurrences ofRxixj

with the formula U2xj , because M∗ is constructed so that
UM∗

2 aj if and only if RM(n − 1)(aj). The only prob-
lem is that there is no appropriate replacement for Rxixj

when v(ai) = v(aj) = 1. However, if we assume that
RM(n− 1)(n− 1), then all occurrences of Rxixj can sim-
ply be replaced by xi = xi in this case.

Let ū = (u1, . . . , ut) ∈ {0, 1}t. Define the formula
ψ0

ū(x̄) recursively as follows:

1. If ψ(x̄) is xi = xj for some i, j, 1 ≤ i, j ≤ t:

• If ui = uj = 0, then ψ0
ū(x̄) is xi = xj .

• If ui = uj = 1, then ψ0
ū(x̄) is xi = xi.
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• If ui �= uj , then ψ0
ū(x̄) is xi �= xi.

2. If ψ(x̄) is Rxixj for some i, j, 1 ≤ i, j ≤ t:

• If ui = 0 and uj = 0, then ψ0
ū(x̄) is Pxixj .

• If ui = 0 and uj = 1, then ψ0
ū(x̄) is U1xi.

• If ui = 1 and uj = 0, then ψ0
ū(x̄) is U2xj .

• If ui = 1 and uj = 1, then ψ0
ū(x̄) is xi = xi.

3. If ψ(x̄) is ¬θ(x̄):

• ψ0
ū(x̄) is ¬θ0

ū(x̄).

4. If ψ(x̄) is θ(x̄) ∧ γ(x̄):

• ψ0
ū(x̄) is θ0

ū(x̄) ∧ γ0
ū(x̄).

5. If ψ(x̄) is (∃xt+1θ)(x̄):

• ψ0
ū(x̄) is (∃xt+1(θ0

ū∧0 ∨ θ0
ū∧1))(x̄).

By induction on ψ(x̄), we prove the following proposi-
tion:

Proposition 1 Let M = 〈n,RM〉 where n > 1 and
RM(n − 1)(n − 1). For every {R}-formula ψ(x̄), every
ā ∈ nt and every b̄ ∈ (n − 1)t such that ai = bi whenever
ai < n− 1, we have

M |= ψ[ā] ⇐⇒ M∗ |= ψ0
v(ā)[b̄].

In each stage of the induction, assume that ψ(x̄) is an {R}-
formula, ā ∈ nt, b̄ ∈ (n − 1)t and ai = bi whenever ai <
n− 1.

Suppose ψ(x̄) is xi = xj . If ai, aj < n− 1, then clearly
M |= ai = aj if and only if M∗ |= bi = bj , since bi = ai

and bj = aj . If ai = aj = n − 1, then M |= ai = aj

and M∗ |= bi = bi. If ai = n − 1 and aj < n − 1 (or
ai < n − 1 and aj = n − 1), then M �|= ai = aj and
M∗ �|= ψ0

v(ā)[ai, aj ], since ψ0
v(ā)(xi, xj) is xi �= xi. So the

result holds for equality formulas.
Suppose ψ(x̄) is Rxixj . Then

RMaiaj ⇐⇒ ai, aj < n− 1 and PM∗
aiaj

or ai < aj = n− 1 and UM∗
1 ai

or aj < ai = n− 1 and UM∗
2 aj

or ai = aj = n− 1
⇐⇒ M∗ |= ψ0

v(ā)[b̄].

It is clear that the result holds for negations and conjunc-
tions. Now suppose that ψ(x̄) is (∃xt+1θ)(x̄) and assume

that Proposition 1 holds for θ(x̄, xt+1).

M |= (∃xt+1θ)[ā]
⇐⇒ for some c < n,M |= θ[ā, c]
⇐⇒ for some c < n− 1,M |= θ[ā, c]

orM |= θ[ā, n− 1]
⇐⇒ for some c < n− 1,M∗ |= θ0

v(ā)∧0[b̄, c]

orM∗ |= θ0
v(ā)∧1[b̄, c]

⇐⇒ M∗ |= (∃xt+1(θ0
v(ā)∧0 ∨ θ0

v(ā)∧1))[b̄].

This completes the proof of Proposition 1.
Next, we define a mapping that intuitively repre-

sents a translation of an {R}-formula into the vocabulary
{P,U1, U2} provided that (n− 1, n− 1) �∈ RM. Given an
{R}-formula ψ(x̄) and a t-tuple ū ∈ {0, 1}t, let ψ1

ū(x̄) be
defined recursively in exactly the same way as ψ0

ū(x̄) except
that the last clause of step 2 is replaced by

• If ui = 1 and uj = 1, then ψ1
ū(x1, . . . , xt) is xi �= xi.

By an induction similar to the proof of Proposition 1, one
can prove the next result.

Proposition 2 Let M = 〈n,RM〉 where n > 1 and not
RM(n − 1)(n − 1). For every {R}-formula ψ(x̄), every
ā ∈ nt and every b̄ ∈ (n − 1)t such that ai = bi whenever
ai < n− 1, we have

M |= ψ[ā] ⇐⇒ M∗ |= ψ1
v(ā)[b̄].

We remark that the constructions outlined above define
mappings on sentences that do not rely on any particular
tuple of elements. We now prove that Sp(φ0∨φ1) = S−1.

Suppose that n ∈ S − 1, so there exists M = 〈n +
1, RM〉 such that M |= φ. By Proposition 1, if RMnn
then M∗ |= φ0. Otherwise, by Proposition 2, M∗ |= φ1.
HenceM∗ |= φ0 ∨ φ1, so n ∈ Sp(φ0 ∨ φ1).

Suppose that n ∈ Sp(φ0 ∨ φ1) and say A =
〈n, PA, UA

1 , UA
2 〉 |= φ0 ∨ φ1. If A |= φ0, then define

M = 〈n + 1, RM〉 as follows:

RMab ⇐⇒ a, b < n and PAab
or a < n, b = n and UA

1 a

or a = n, b < n and UA
2 a

or a = b = n.

Hence, A = M∗ and RMnn. By Proposition 1, M |= φ.
Similarly, ifA |= φ1 then we can defineM so thatM |= φ
and M = n + 1. Therefore, n + 1 ∈ Sp(φ) which means
that n ∈ S − 1. This completes the proof. �

We prove the converse of Theorem 1.

Theorem 2 If S ∈ Fk,p+2k
2 , then S + 1 ∈ Fk,p

2 .
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Proof We sketch the case k = 1, p = 0.
In this case, we simply want to reverse the tranforma-

tion on structures from the previous proof. We start with an
{R,U1, U2}-structure, and we would like to encode it in an
{R}-structure with one additional element. This is straight-
forward: the interpretation of R on the addional element
can be used to pick out the interpretations of U1 and U2 in
the original model.

The simple transformation on structures in this case
leads directly to a simple translation on formulas. As an
intermediate step we introduce a constant symbol for the
additional element c. We translate {R,U1, U2}-formulas by
relativizing all quantifiers to the set of elements other than
c, we replace U1x with Rxc, and we replaceU2x with Rcx.
Given this translation, we can prove our desired result by a
simple induction. �

By combining Theorems 1 and 2, we get a nice bicondi-
tional relationship:

S ∈ Fk,p+2k
2 ⇐⇒ S + 1 ∈ Fk,p

2 . (1)

This result is particularly satisfying because the classes
involved are both natural spectrum classes that are con-
structed by simply placing restrictions on the vocabulary of
the sentences that define them. In the following sections, we
need to have a slightly more complicated condition defining
some of the spectrum classes which we discuss.

As a simple consequence of (1), we get a corresponding
result for the function n �→ n+ l for any l.

Corollary 1 S ∈ Fk,p+2kl
2 if and only if S + l ∈ Fk,p

2 .

Proof Immediate. �

We are now in a position to prove a theorem that relates
the closure of BIN1 under n �→ n − 1 with the collapse of
the spectrum hierarchy based on the number of extra unary
relation symbols.

Theorem 3 The following are equivalent:

1. BIN1 is closed under n �→ n− 1

2. BIN1 = F1,2
2

3. BIN1 =
∞⋃

i=0

F1,i
2

Proof (1 ⇒ 3) Assume BIN1 is closed under n �→ n− 1.
Let l ∈ ω and let φ involve one binary relation symbol and
2l unary relation symbols. By Corollary 1, Sp(φ) + l ∈
BIN1. Now apply the hypothesis l times to the set Sp(φ)+ l
to get Sp(φ) ∈ BIN1.

(3⇒ 2) Immediate.
(2 ⇒ 1) Assume the hypothesis and suppose S ∈ BIN1.

By Theorem 1, S − 1 ∈ F1,2
2 . Therefore S − 1 ∈ BIN1. �

4 Number of Binary Relation Symbols

In this section we are concerned with the hypothetical
spectrum hierarchy generated by looking at classes of spec-
tra of sentences involving k binary relation symbols, for
each k ∈ ω. The following definition extends the notation
introduced in the introduction.

Definition Let σ be a first-order sentence. S ∈
Fmk,...,m1

k [σ] if S = Sp(σ ∧ φ) for some sentence φ which
satisfies the following conditions:

1. φ may involve any of the non-logical symbols in σ

2. for each i ≤ k, φ involves at most mi relation symbols
of arity i other than the relation symbols in σ

3. φ involves no other non-logical symbols.

We think of these as relativized spectrum classes.
For the rest of this section, let Ω denote the following

sentence:

∀x∃y [(Qxy ∨Qyx)
∧¬(Qxy ∧Qyx)
∧∀z �= y(¬Qxz ∧ ¬Qzx)].

Notice that Ω is true in a structure M just in case the rela-
tion QM divides the universe into |M |/2 ordered pairs such
that every element of M is in exactly one pair.

There are two principal results in this section. The first
result is the following:

S ∈ Fk,0
2 [Ω] ⇐⇒ S/2 ∈ F4k,0

2 . (2)

We obtain this result by mapping models of Ω with size 2n
to structures with size n where each element of the smaller
structure intuitively represents an ordered pair of elements
from the larger structure.

The second principal result gives a closure property that
is equivalent to the collapse to BIN1 of the hierarchy on F2

based on the number of relation symbols. For any rational
number q, let �q	 denote the least integer greater than or
equal to q. We prove that BIN1 is closed under n �→ �n

2 	 if
and only if BIN1 = F2.

Theorem 4 If S ∈ Fk,0
2 [Ω], then S/2 ∈ F4k,0

2 .

Proof We remark that, if S satisfies the premise of the
theorem, then every element of S is even. Hence S/2 will
be a well-defined set of natural numbers.

We consider the case when k = 1, because the
proof is essentially the same for higher values of k. Let
S = Sp(Ω ∧ φ) for some {Q,R}-sentence φ. Given
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M = 〈2m,QM, RM〉, define the structure M∗ =
〈QM, FM∗

1 , FM∗
2 , FM∗

3 , FM∗
4 〉 by:

FM∗
1 (a, b)(c, d) ⇐⇒ RMac

FM∗
2 (a, b)(c, d) ⇐⇒ RMbc

FM∗
3 (a, b)(c, d) ⇐⇒ RMad

FM∗
4 (a, b)(c, d) ⇐⇒ RMbd.

Note that the universe of M∗ is the subset of 2m × 2m
which is the interpretation of the relation symbol Q inM.

In order to complete the proof, we need to create a trans-
lation from {Q,R}-formulas to {F1, F2, F3, F4}-formulas.
Intuitively, it is clear that this is possible. The idea is sim-
ply to use the Fi relation symbols to give a component-wise
translation of R. We omit the details of the translation, be-
cause they are somewhat long for the present work. �

We now state a useful corollary. In the proof, we use
the standard notation φψ(x) to denote the relativization of φ
under ψ(x).

Corollary 2 F2 is closed under n �→ �n
2 	.

Proof Let S = Sp(φ) ∈ F2. Notice that Sp(Ω) = {2n :
n ∈ ω}. LetU be a new unary relation symbol and consider
the sentence Ω ∧ (φ ∨ (∃!yUy ∧ φ¬Ux)). The spectrum of
this sentence is

T = {2n : n ∈ ω} ∩ {n : n ∈ S or n− 1 ∈ S}
Observe that T ∈ F2[Ω], so by Theorem 4, T/2 ∈ F2. But
�S/2	 = T/2, so �S/2	 ∈ F2. �

We prove the converse of Theorem 4.

Theorem 5 If S ∈ F4k,0
2 , then 2S ∈ Fk,0

2 [Ω].

Proof Consider the case where k = 1. Given M =
〈n, FM

1 , FM
2 , FM

3 , FM
4 〉, we construct a new structure

M∗ = 〈2n,QM∗
, RM∗〉. The binary relation QM∗

is
{(a, a+n) : a < n}, and the binary relationRM∗

is defined
as follows:

RM∗
ab ⇐⇒ a < n, b < n, and FM

1 ab

n ≤ a < 2n, b < n, and FM
2 (a− n)b

a < n, n ≤ b < 2n, and FM
3 a(b − n)

n ≤ a, b < 2n, and FM
4 (a− n)(b − n)

The translation on formulas is a straightforward syntactic
representation of this transformation on structures. �

By combining the last two theorems, we get the follow-
ing relationship:

S ∈ F4k,0
2 ⇐⇒ 2S ∈ Fk,0

2 [Ω].
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We remark that, using our methods, it does not seem to be
possible to prove this result if the class Fk,0

2 [Ω] is replaced
by Fk,0

2 .
The following corollary is immediate.

Corollary 3 If S ∈ F4k,0
2 , then 2S ∈ Fk+1,0

2 .

We would like to use this corollary to relate the closure of
BIN1 under n �→ �n

2 	 with the collapse of the spectrum
hierarchy based on the number of binary relations. We need
one more tool.

Lemma 1 If S ∈ F2,0
2 , then 2S ∈ BIN1.

Proof Let S = Sp(φ) for some sentence φ involving two
binary relation symbolsQ and R. LetM = 〈n,QM, RM〉.
The idea is to defineM∗ = 〈2n, PM∗〉 so that it divides the
universe into two disjoint components and it acts like RM

on one and QM on the other.
The basic picture of M∗ is shown in Figure 1. The ar-

rows in Figure 1 represent how the interpretation of PM∗
is

used to partition the universe into two sets. On the left side
PM∗

behaves like QM and on the right side PM∗
behaves

like RM. We use the element n to partition the universe.
Specifically, if (n, a) ∈ PM∗

, then a is on the RM-side.
Otherwise a is on the QM-side.

The main problem that must be addressed is related to
the element n. Since n must be used to define a particular
subset of the universe, the edges from n cannot encode the
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relation RM on the element n. However, as indicated in
Figure 1, the element 0 is the only element from the left
side that is related to n. This means that 0 is syntactically
definable, and it can be used to encode the behaviour of
RM at n. In the interest of space, we omit the details of the
proof. �

A more general version of Lemma 1 would say that
kS ∈ BIN1 whenever S ∈ Fk,0

2 . We have not proved
this general version because the combination of the existing
lemma with Theorem 5 gives a stronger result in the sense
that, for large k, there will always be a p < k such that
pS ∈ BIN1. We also remark that the next theorem could
be proved without Theorem 5 by appealing to a more gen-
eral version of Lemma 1. However, Theorem 5 was needed
to give a simple characterization of F4,0

2 which would not
have followed from a generalized lemma.

Theorem 6 BIN1 is closed under n �→ �n
2 	 if and only if

BIN1 = F2.

Proof (⇐) Assume BIN1 = F2, and suppose S ∈ BIN1.
By Corollary 2, �S

2 	 ∈ F2 = BIN1.
(⇒) Assume BIN1 is closed under n �→ �n

2 	, and sup-
pose S ∈ F2. By repeatedly applying Corollary 3, there is
some p such that 2pS ∈ F2,0

2 . Then by Lemma 1, 2p+1S ∈
BIN1. By the hypothesis it follows that S ∈ BIN1. �

5 Arity of Relation Symbols

In [5], Fagin suggests that, for every k, Fk � Fk+1 but
he is unable to prove it for any k > 1. In this section,
we consider some arithmetic relationships between differ-
ent levels of Fagin’s proposed spectrum hierarchy.

To prove the first result of this section, we need to define
a sentence Λ in the vocabulary of two binary relation sym-
bols F1 and F2. We define Λ in such a way thatM |= Λ if
and only if the following conditions hold:

1. for each (a, b) ∈ {a : F1aa}2, there is a unique point
m ∈M such that F1am and F2bm

2. for each m ∈ M , there is a unique pair (a, b) ∈ {a :
F1aa}2 such that F1am and F2bm.

Let Λ denote the following sentence:

∀w∃!x∃!y( F1xx ∧ F1yy ∧ F1xw ∧ F2yw
∧∀z((F1xz ∧ F2yz)→ w = z))

∧∀x∀y ((F1xx ∧ F1yy)→ ∃!z(F1xz ∧ F2yz
∧∀u∀v((F1uz ∧ F2vz)→(u = x ∧ v = y)).

Observe that every model of Λ will have cardinality m2

where m is the number of points that satisfy F1xx. Intu-
itively, whenever M |= Λ, we think of M as a set of pairs
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Figure 2.

where {a : F1aa} is the set of diagonal elements of M and
Fiab if and only if a is a diagonal element and the ith coor-
dinate of a is the ith coordinate of b.

Figure 2 provides an illustration of a model of Λ. The
points enclosed in the curve represent the set {a : F1aa}.

One of the principal results in this section is a proof that

S ∈ Fk,0,0,0
4 ⇐⇒ S2 ∈ Fk,0

2 [Λ].

To prove this result, we use the fact that every model of Λ is
isomorphic to a structure with universe n × n in which the
usual coordinatization is definable.

There is a natural bijection between binary structures
with universe n×n and quaternary structures with universe
n. By formalizing this intuitive observation, we can prove
our desired result.

Theorem 7 If S ∈ Fk,0,0,0
4 , then S2 ∈ Fk,0

2 [Λ].

Proof We prove the case k = 1. Let S = Sp(φ),
where φ involves one quaternary relation symbol R. Given
M = 〈n,RM〉, define M∗ = 〈n × n, FM∗

1 , FM∗
2 , PM∗〉

as follows:

FM∗
1 (a, b)(c, d) ⇐⇒ a = b = c

FM∗
2 (a, b)(c, d) ⇐⇒ a = b = d

PM∗
(a, b)(c, d) ⇐⇒ RMabcd.

Note that {a : FM∗
1 aa} = {(a, a) : a < n}.

Let ψ(x̄) be a formula in the vocabulary {R}. We define
a formulaψ∗(x̄) such that, for every ā = (a1, . . . , at) ∈ nt,

M |= ψ[ā] ⇐⇒ M∗ |= ψ∗[(a1, a1), . . . , (at, at)]. (3)
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The formula ψ∗(x̄) is the conjunction of Λ with the formula
ψ1(x̄) that we define presently. Let ψ1(x̄) be obtained from
ψ(x̄) by relativizing all the quantifiers to the set {a : F1aa}
and by replacing all occurrences ofRwxyz with the follow-
ing:

∃u∃v (F1ww ∧ F1xx ∧ F1yy ∧ F1zz

∧F1wu ∧ F2xu ∧ F1yv ∧ F2zv ∧ Puv).
It is now possible to prove (3) by a straightforward induc-
tion on ψ(x̄).

The last step is to show that Sp(φ∗) = S2. Suppose
n ∈ S2. Since

√
n ∈ S, it follows immediately from (3)

that n ∈ Sp(φ∗).
Suppose that n ∈ Sp(φ∗). Since Λ is a conjunct of φ,

there exists A = 〈√n×√n, FA
1 , FA

2 , PA〉 such that A |=
φ∗ and, the following conditions hold:

1. {(a, b) : FA
1 (a, b)} = {(a, a) : a < n}

2. FA
1 (a, b)(c, d) ⇐⇒ a = b = c

3. FA
2 (a, b)(c, d) ⇐⇒ a = b = d

Define the structureM = 〈√n,RM〉 as follows:

RMabcd ⇐⇒ PA(a, b)(c, d).

Clearly A = M∗, so it follows from (3) that M |= φ.
Therefore

√
n

2 = n ∈ S2. �

Fagin proves a result similar to Theorem 7 in [5]. In
particular, Fagin uses model-theoretic techniques to prove
that Sk ∈ BIN1 whenever S ∈ Fk. Under the premise of
Theorem 7, Fagin’s result allows us to conclude that S4 ∈
BIN1. Hence, although our result requires more relation
symbols in the target vocabulary, it uses a smaller power to
bring the spectrum into F2 .

We now prove the converse of Theorem 7.

Theorem 8 If S ∈ Fk,0
2 [Λ], then

√
S ∈ Fk,0,0,0

4 .

Proof Once again, we prove only the case k = 1.
Suppose that S = Sp(Λ ∧ φ) where φ involves F1, F2,

and P . Note that, wheneverA |= Λ, it must be the case that
|A| = n2 for some n. GivenM = 〈n×n, FM

1 , FM
2 , PM〉,

defineM∗ = 〈n,RM∗〉 as follows:

RM∗
abcd ⇐⇒ PM(a, b)(c, d)

Let ψ be an arbitrary {F1, F2, P}-formula. The formula
ψ∗ is obtained by making the following changes to ψ:

1. replace ∃x with ∃x1∃x2

2. replace x = y with x1 = y1 ∧ x2 = y2

3. replace F1xy with x1 = x2 ∧ x1 = y1

4. replace F2xy with x1 = x2 ∧ x1 = y2

5. replace Pxy with Rx1x2y1y2.

The details of the proof fall directly out of this construction.
�

We remark that the basic idea for the proof of Theorem
8 is used by Fagin to prove that {n : nk ∈ S} ∈ SPEC
whenever S ∈ SPEC [5]. By combining Theorems 7 and 8,
we get the following relationship:

S ∈ Fk,0,0,0
4 ⇐⇒ S2 ∈ Fk,0

2 [Λ].

We now formulate a more general version of this relation-
ship.

Consider the sentence Λ. Intuitively, Λ asserts that there
is a definable 1-1 correspondence between the universe and
the set {a : F1aa}2. Let p ∈ ω and, for each i ≤ p,
let F p

i denote a p-ary relation symbol. It is clear that
there is a sentence Λp which asserts that there is a defin-
able 1-1 correspondence between the universe and the set
{a : F p

1 a . . . a}p. The following theorem is a generaliza-
tion of Theorems 7 and 8. For simplicity, we let 0̄ denote a
tuple of 0’s of indeterminate length.

Theorem 9 S ∈ Fk,0̄
p2 if and only if Sp ∈ Fk,0̄

p [Λp]

Proof The proof of the ‘if’ part is an easy generalization
of the proof of Theorem 7 and the proof of the ‘only if’ part
is an easy generalization of the proof of Theorem 8. �

Corollary 4 If S ∈ Fp2 then Sp ∈ Fp.

Proof Immediate. �

We conclude this section with an observation that relates
the collapse of Fagin’s arity hierarchy to an arithmetic clo-
sure property.

Theorem 10 F2 is closed under n �→ �√n 	 if and only if
F2 = SPEC.

Proof Suppose F2 = SPEC. Recall that, if we identify
natural numbers with their representations in binary, then
SPEC is the class of languages accepted in exponential time
by a non-deterministic Turing machine. Since this complex-
ity class is closed under n �→ �√n 	, it follows that SPEC
is closed under n �→ �√n 	. Hence, F2 is closed under
n �→ �√n 	.

Suppose that F2 is closed under n �→ �√n 	. Let
S ∈ SPEC. Clearly there exists m such that S ∈ F2m .
By applying Corollary 4 m times, S2m ∈ F2. By the hy-
pothesis applied m times, S ∈ F2. �

This theorem is also an easy consequence of Fagin’s
work in [5].
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6 Binary Relations with Bounded Outdegree

Let R be a binary relation symbol. Recall from the intro-
duction that BIN1

bo is the class of spectra of {R}-sentences
where {R} has bounded outdegree. In [3], it is shown
that BIN1

bo is the class of spectra of sentences involving
at most unary function symbols, but no relation is known
between BIN1

bo and the class BIN1 except for the trivial in-
clusion BIN1

bo ⊆ BIN1. In this section, we prove that, if
BIN1 = BIN1

bo, then Fagin’s arity hierarchy collapses.

Theorem 11 If S ∈ BIN1
bo, then {n : n2 ∈ S} ∈ F3.

Proof Suppose S ∈ BIN1
bo and let Ŝ = S ∩ {n2 : n ∈ ω}.

It follows from results in [3] and [10] that {n2 : n ∈ ω} is in
BIN1

bo. So there is a set Ŝ ∈ BIN1
bo such that Ŝ ⊆ {n2 : n ∈

ω} and {n : n2 ∈ Ŝ} ∈ F3 if and only if {n : n2 ∈ S} ∈
F3. Therefore, we can assume that S ⊆ {n2 : n ∈ ω},
because otherwise we can simply use the set Ŝ.

Suppose S = Sp(φ) where φ involves one binary rela-
tion symbol R with outdegree bounded by k. To simplify
the notation in this proof, we will use the same symbol to
denote a relation symbol and its interpretation. We feel that
this will not create confusion.

Let M = 〈n × n,R〉 be an arbitrary structure where R
is binary with outdegree k. We construct a new structure
M∗ = 〈n,<, T,A1, . . . , AN 〉, where T is ternary, < is the
usual linear order on ω, and, for each i ≤ N , Ai is binary.
The way in which the value N is determined will be clear
below.

Define T as follows:

Tabc ⇐⇒ R(a, b)(c, d) or R(a, b)(d, c), for some d ∈ n

Hence, with each (a, b) ∈ n × n, T associates the set
of coordinates that occur in some pair (c, d) such that
R(a, b)(c, d). Note that the set of pairs (c, d) such that
R(a, b)(c, d) can not be recovered from T alone.

The relations A1, . . . , AN are defined in such a way that
from (a, b) it is possible to recover all pairs (c, d) such that
R(a, b)(c, d). There are three key points:

1. since R has outdegree k, |{c : Tabc}| ≤ 2k

2. up to isomorphism, there are less than 22k+1 ordered
directed graphs on sets of size at most 2k

3. from {c : Tabc} and the isomorphism type I(a,b) of
the ordered directed graph on {c : Tabc} with edge
set {(c, d) : R(a, b)(c, d)}, it is possible to recover all
pairs (c, d) such that R(a, b)(c, d).

The relation symbols A1, . . . , AN tell us what I(a,b) is for
each pair (a, b).

In more detail, define

I(a,b) = 〈{c : Tabc}, R(a,b), <◦〉/ ∼=

where <◦ is the restriction of < and R(a,b) is the binary
relation {(c, d) : R(a, b)(c, d)}. Let A1, . . . ,AN be an
enumeration of pairwise non-isomorphic ordered directed
graphs of cardinality at most 2k such that every isomor-
phism type is represented. For each i ≤ N , let Ai =
〈ni, Qi, <i〉 where <i is the usual order on ni. Define
A1, . . . , AN on n as follows:

Aiab ⇐⇒ Ai ∈ I(a,b).

For each i ≤ N , let λAi(x, y) be a formula over {<}
such that Ai |= λAi [a, b] if and only if Qiab. Given an
{R}-formula ψ, let ψ∗ be the formula which is obtained
from ψ by performing the following steps:

• replace each occurrence of ∃x with ∃x1∃x2

• replace each occurrence of x = y with x1 = y1∧x2 =
y2

• replace each occurrence of Rxy with

Tx1x2y1 ∧ Tx1x2y2 ∧
N∨

j=1

(Ajx1x2 ∧ λAj (y1, y2)).

By a simple induction, one can show that, for any formula
ψ(x̄),

M |= ψ[(a1, a2), . . . , (a2p−1, a2p)]
⇐⇒ M∗ |= ψ∗[a1, . . . , a2p].

We omit the details of the induction.
It is straightforward to show that there is a sentence α

whose models are, up to isomorphism, the structures M∗

as M runs through all structures of the form 〈n × n,R〉.
The sentence α will be the conjunction of a number of sen-
tences. For example, one conjunct will assert that the re-
lations A1, . . . , AN partition the ordered pairs of elements
of the universe; another will assert that T links each pair of
elements of the universe to at most 2k points. Let φ1 be the
conjunction of α with φ∗.

We show that Sp(φ1) = {n : n2 ∈ S}. Suppose m ∈
{n : n2 ∈ S}. So there is an M = 〈m ×m,R〉 such that
M |= φ. By the induction, it follows that M∗ |= φ∗. It is
clear from the construction thatM∗ |= φ1.

Suppose that m ∈ Sp(φ1), so there exists A with |A| =
m such thatA |= φ∗ ∧α. SinceA |= α,A ∼=M∗ for some
M = 〈m ×m,R〉. By the induction,M |= φ and, hence,
m2 ∈ Sp(φ). �

Notice that there is no obvious way in which the method
used to prove Theorem 11 can be extended to the un-
bounded outdegree case.

As a consequence of Theorem 11, we get another suffi-
cient condition for the collapse of Fagin’s hierarchy
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Theorem 12 If BIN1
bo = F2, then (∀k ≥ 3) Fk = F3.

Proof Assume BIN1
bo = F2 and suppose S ∈ F4. By

Theorem 7, S2 ∈ F2 = BIN1
bo. Since {n : n2 ∈ S2} = S,

it follows from Theorem 11 that S ∈ F3. Hence F4 ⊆ F3.
It is easy to see that F3 ⊆ F4 and, therefore, F3 = F4.
In [5], Fagin proves that, if Fp = Fp+1 for some p, then
Fp = Fk for all k ≥ p. This completes the proof. �

We can prove a similar result involving only the classes
BIN1 and BIN1

bo, but we need the following lemma.

Lemma 2 F2 = BIN1
bo if and only if BIN1 = BIN1

bo.

Proof If F2 = BIN1
bo, then clearly BIN1 = BIN1

bo.
Conversely, assume BIN1 = BIN1

bo. Let F2,bo be the ob-
vious restriction of F2. By looking at the proof of Theorem
4, it is clear that F2,bo is closed under n �→ �n

2 	. More-
over, using techniques employed in [3] it can be showen that
F2,bo = BIN1

bo. Hence BIN1
bo is closed under n �→ �n

2 	.
It follows by our assumption that BIN1 is closed under
n �→ �n

2 	 and, therefore, BIN1 = F2 by Theorem 6. There-
fore BIN1

bo = F2. �

Theorem 13 If BIN1
bo = BIN1, then (∀k ≥ 3) Fk = F3.

Proof Immediate. �

7. Conclusion

In [12], More asks if BIN1 is closed under any subdi-
agonal function. Our results show that More’s problem is
harder than it first appears. Determing if any spectrum is
outside BIN1 has proven to be very difficult, and we have
shown that proving closure under many natural subdiagonal
functions is equally difficult. Hence, although we have not
solved More’s problem, we have given some evidence that
finding a solution may be quite a challenge.

There are some natural questions that arise from the re-
sults we present. First of all, two of our results may not be
best possible. In Theorem 3, it is shown that F1,2

2 = BIN1

if and only if BIN1 is closed under n �→ n − 1. It is natu-
ral to ask whether or not F1,2

2 can be replaced by F1,1
2 . In

§6, we give a condition which implies that Fagin’s hierarchy
collapses to F3. This result would be more satisfying if it
could be modified to get a collapse to F2.

In order to develop more powerful model-theoretic tech-
niques, it would be valuable to revisit some established re-
sults in the theory of spectra. For example, Grandjean uses a

complexity theoretic argument to prove that there is a strict
hierarchy of spectrum classes based on the number of uni-
versal quantifiers allowed in the sentence. It would be nice
to give a semantic proof of this result. Another result worth
revisiting is Fagin’s proof that SPEC is not closed under
log2 [4]. We are currently preparing a paper that provides a
new semantic proof of this result.

In this paper, we have taken the position that the natu-
ral way to study spectra is from the perspective of model
theory. This is the position taken by More [12], and it con-
stitutes a return to the historical roots of Asser’s problem.
However, in order to make any significant progress on the
long-standing open problems in the theory of spectra, we
need to develop more sophisticated tools.
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