
An Explicit Model of Belief Change for Cryptographic Protocol Verification

Aaron Hunter and James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

{amhunter, jim}@cs.sfu.ca

Abstract

Cryptographic protocols are structured sequences of mes-
sages that are used for exchanging information in a hostile
environment. Many protocols have epistemic goals: a suc-
cessful run of the protocol is intended to cause a participant
to hold certain beliefs. As such, epistemic logics have been
employed for the verification of cryptographic protocols. Al-
though this approach to verification is explicitly concerned
with changing beliefs, formal belief change operators have
not been incorporated in previous work. In this preliminary
paper, we introduce a new approach to protocol verification
by combining a monotonic logic with a non-monotonic belief
change operator. In this context, a protocol participant is able
to retract beliefs in response to new information and a proto-
col participant is able to postulate the most plausible event ex-
plaining new information. Hence, protocol participants may
draw conclusions from received messages in the same man-
ner conclusions are drawn in formalizations of commonsense
reasoning. We illustrate that this kind of reasoning is par-
ticularly important when protocol participants have incorrect
beliefs.

Introduction
Logics of belief have been useful in the design and anal-
ysis of cryptographic protocols, starting with the pioneer-
ing work on BAN logic (Burrows, Abadi, & Needham
1989) and continuing with several related logics (Adadi
& Tuttle 1991; Agray, van der Hoek, & de Vink 2002;
Bleeker & Meertens 1997; Syverson & van Oorschot 1996;
Syverson & Cervesato 2001). The basic idea behind all of
the BAN-like logics is to encode protocols in a logic of be-
lief, then prove that the agents involved must have certain
beliefs after a protocol is properly executed. Hence, proto-
col verification is fundamentally concerned with modelling
changing beliefs. However, BAN-like logics do not involve
any explicit formal model of belief change; the manner in
which beliefs change is simply captured by some ad hoc ax-
ioms. In this paper, we argue that a more appropriate ap-
proach to protocol verification can be defined by describing
beliefs in a static logical framework together with a formal
belief change operator.

This is an exploratory paper intended to illustrate how for-
mal approaches to belief change may be useful in reasoning
about cryptographic protocols. The paper makes two main

contributions to existing research. First, we extend the ap-
plication of formal belief change techniques to a new class
of problems. Cryptographic protocol verification provides
a large class of belief change problems which are not only
of theoretical interest, but also have great practical signif-
icance. The second contribution is the introduction of a
specific model of belief change that is particularly suitable
for the the verification of cryptographic protocols. Broadly
speaking, researchers in belief change and researchers in
protocol verification are both interested in the same kinds of
problems. Our aim is to make this salient, and to illustrate
how work in each area can benefit the other.

We proceed as follows. First, we introduce some prelimi-
nary background on the logical approach to cryptographic
protocol verification. Next, we argue that BAN-like log-
ics can not capture the kind of non-monotonic belief change
that occurs in an authentication protocol, and we introduce
some more appropriate belief change operators. Finally, we
present a simple approach to protocol verification in terms
of formal belief change operators. We conclude with a gen-
eral discussion about belief change in the context of protocol
verification.

Preliminaries

Authentication Protocols

For the purposes of this paper, we focus on the verification of
authentication protocols. An authentication protocol is used
to ensure that all parties in a communication session know
with whom they are communicating. Authentication proto-
cols may have additional goals as well, such as establish-
ing a shared key for communication (Syverson & Cervesato
2001). In this section, we briefly introduce some standard
notation for describing authentication protocols.

If P and Q denote agents in a communication session,
then

P → Q : X

means that agentP sends the messageX to agentQ. A sym-
metric key that is shared by agentsP andQ will be denoted
by Kpq. If the messageX is encrypted with the keyK, then
we write {X}K . We let Np denote a nonce generated by
the agentP . A nonce is simply a random number that is
generated by an agent during a communication session.

The following simple protocol is executed by agentP in
order to determine if agentQ is alive in the communication
session.

The Challenge-Response Protocol
1. P → Q : {Np}Kpq

2. Q→ P : Np

In this protocol,P generates a random number and encrypts
it with the shared keyKpq before sending it toQ. Infor-
mally, if this message is intercepted by an intruder, it will
not be possible for the intruder to determine the valueNp.
So if P receives the messageNp, then it is natural to con-
clude thatQ must have decrypted the original message and
thereforeQ is alive on the network. In the vocabulary of
(Guttman & Thayer 2000), this protocol involves a single
outgoing authentication test.

The standard model for cryptographic protocol analysis
assumes that an intruder can read every message that is
sent, and the intruder may choose to prevent messages from
reaching the desired recipient. Moreover, when a message
is received, it is assumed that the sender is always unknown.
The only way thatP can be certainQ sent a particular mes-
sage is if the message contains information that is only avail-
able toQ. It is assumed that cryptography is strong in that
encrypted messages can not be unencrypted during a proto-
col run without the proper key. Under these assumptions,
there is an attack on the Challenge-Response protocol.

An Attack on the Challenge-Response Protocol
1. P → IQ : {Np}Kpq

1′. IQ → P : {Np}Kpq

2′. P → IQ : Np

2. IQ → P : Np

In this attack,IQ intercepts the original message and then
initiates a new protocol run by sending it back toP . After
P receives the message encrypted withKpq, thenP follows
the protocol and returns the decrypted nonce. At the last
step,IQ sends the same decrypted nonce toP . Note that, at
the conclusion of the protocol,Q has not sent any messages.
HenceP has no assurance thatQ is actually alive on the
network, which was the stated goal of the protocol.

Logics of Belief
As noted above, the first logical approach to protocol verifi-
cation was the so-called BAN logic. We refer the reader to
(Burrows, Abadi, & Needham 1990) for a formal introduc-
tion to the logic. We very briefly sketch the basic idea.

Sentences of BAN logic are generated through construc-
tions of the following form.

• P believesX : P thinks thatX is true

• P receivedX : a message containingX was received by
P

• P saidX : a message containingX was sent byP previ-
ously

• P
K←→ Q : K is a good key for communication between

P andQ

This list is not exhaustive, but simply illustrates the flavour
of BAN constructions. The semantics of these constructions
is given through a collection of rules of inference. For ex-
ample, the following rule of inference is defined for BAN
logic:

P believes P
K←→ Q P received {X}K

P believes Q said X
.

This rule is called Message Meaning, and it attempts to cap-
ture the manner in which beliefs change during protocol ex-
ecution. The rule states that, ifP receives a message en-
crypted in a key thatP shares withQ, thenP should con-
clude thatQ sent the message.

From a logical point of view, one well-known problem
with BAN is the fact that there is no agreed upon seman-
tics(Agray, van der Hoek, & de Vink 2002). However, sev-
eral different semantics have been proposed (Adadi & Tut-
tle 1991; Bleeker & Meertens 1997; Syverson & Cervesato
2001), and new protocol logics have been introduced based
on the standard semantics for epistemic logic (Syverson &
van Oorschot 1996). We remark that such logics typically
address belief change by introducing some ad hoc axioms or
rules of inference.

It is worth noting that BAN logic is not able to establish
the insecurity of the Challenge-Response Protocol. In BAN
logic, it is simply assumed that an agent can recognize the
messages that they have sent. Under this assumption, the
given attack can not occur. Not only is this assumption ad
hoc, but it is often unjustified in real applications.

Non-Monotonic Belief Change
Belief Update and Belief Revision
In practice, a protocol like the Challenge-Response Proto-
col will not be run in isolation. The agentP will receive
information from many sources, each with differing degrees
of reliability. As such, it is possible thatP will have be-
liefs that are incorrect. Therefore,P needs to be able to re-
tract beliefs and modify the current belief state in response
to new information. The monotonic models of belief change
in BAN-like logics are not suitable for this kind of reason-
ing. Instead, we suggest that we need to treat belief change
in cryptographic protocols in terms of non-monotonicbe-
lief change operators. Informally, the goal of an intruder
is to convince a protocal participant to hold certain beliefs.
As such, we can view protocol verification as a problem in
commonsense reasoning. A protocol participant is likely to
draw many (possibly non-monotonic) conclusions when a
message is received. We need a more realistic model of be-
lief change to capture the reasoning of a protocol participant.

We will represent action effects by transition systems,
as defined in (Gelfond & Lifschitz 1998). We introduce
some standard notation. Assume an underlying set of atomic
propositional formulasF and a setA of action names. A
stateis an interpretation overF, and atransition systemis
a directed graph where each node is labeled by a state and
each edge is labeled by a set of action symbols. Informally,
an edge froms to s′ labelled withA is interpreted to mean
that executing the actionA in the states results in the state

s′. A belief stateis a set of states, informally the set of states
that an agent considers to be possible.

The belief change that occurs when an agent receives new
information about some change in the world is calledbelief
update. In belief update, we ask the following question: if
an agent initially has belief stateκ, then what should the new
belief state be following the actionA? We define a condi-
tional belief update operator� to represent the belief change
due to an action. More accurately, our operator is abelief
progressionoperator; it has been illustrated elsewhere that
update is a special case of belief progression (Lang 2006).
If κ is a belief state andA is an action, then define

κ �A = {s′ | (s,A, s′) ∈ E ands |= κ}.
Hence, the semantics of belief update is based on projecting
the initial belief set to accomodate the changed information.

The belief change that occurs when an agent receives new
information about a static world is calledbelief revision. In
the interest of space, we assume that the reader is famil-
iar with the AGM approach to belief revision (Alchourrón,
G ardenfors, & Makinson 1985). AGM revision is normally
stated in terms of operators on sets of formulas, but it can
easily be reformulated in terms of sets of states. In this con-
text, the beliefs of an agent are represented by a set of states
and the new information acquired is also represented by a
set of states. We refer to a set of states representing new
information as anobservation. Let 2F denote the set of all
states overF. We say that a function∗ : (2F × F) → 2F is
an AGM revision operator if it satisfies the AGM postulates
suitably reformulated in terms of states. Such a function
maps a belief state and an observation to a new belief state.

Belief Evolution
Protocol verification involves a combination of belief update
and belief revision. When an agent sends a message, then
the state of the world changes in a predictable manner. As
such, sending a message causes an agent to perform belief
update. On the other hand, received messages need not be
the result of a change in the state of the world. An agent
that receives a message may simply be receiving new infor-
mation that must be incorporated in the current belief state.
Hence, receiving messages may cause an agent to perform
belief revision. Therefore, in order to reason about the it-
erated sequences of messages exchanged in a cryptographic
protocol, one needs to reason about alternating sequences of
revisions and updates.

There are plausible examples where it is clear that se-
quences of revisions and updates can not be interpreted by
simply applying the operators iteratively;belief evolution
operators have been proposed to combine an update oper-
ator and a revision operator (Hunter & Delgrande 2005).
The problem is that many AGM belief revision operators are
Markovian, in the sense that the new belief set is completely
determined by the current belief set and the formula for re-
vision. However, even simple protocols like the Challenge-
Response Protocol require an agent to consider the history
of messages sent in order to interpret incoming messages.
As such, we need to use a non-Markovian belief change op-
erator suitable for reasoning about iterated belief change. In

this section, we briefly present a simplified version of belief
evolution.

A belief evolution operator is defined with respect to a
fixed update operator and a fixed revision operator. As such,
assume that∗ is an AGM revision operator (defined on sets
of states), and let� be an update operator. The basic intuition
behind belief evolution operators is that an agent should
trace back new observations to conditions on the initial be-
lief state. LetĀ denote a finite sequence of actions, and letα
denote an observation. Defineα−1(Ā) to be the set of states
w such that the sequence of actionsĀ leads to a state inα.
Define◦ as follows:

κ ◦ 〈Ā, α〉 = κ ∗ α−1(Ā) � Ā.

Hence, belief evolution operators essentially revise the ini-
tial belief state before applying the effects of actions.

In the general case, belief evolution operators need to be
defined for any alternating sequence of actions and obser-
vations. This can be done by successively passing each ob-
servation to a condition on the initial beliefs, then revising
the initial beliefs by this sequence of observations. This
process introduces the problem ofiterated revision, which
is known to be a difficult problem (see (Darwiche & Pearl
1997) for one representative approach). For the present pur-
poses, we simply state that belief evolution operators gen-
erally take a sequencēA = A1, . . . , An of actions and a
sequencēα = α1, . . . , αn of observations as arguments.
Roughly speaking, the result of belief evolution corresponds
to the belief change that should occur due to an alternating
sequence of actions and observations:

κ ◦ 〈Ā, ᾱ〉 ≈ κ ·A1 · α1 · · · · ·An · αn

We refer the reader to (Hunter & Delgrande 2005) for the
details.

Belief Change in Protocol Verification
We can think of cryptographic protocols as message pass-
ing systems. In this section, we give specific revision and
update operators that are suitable for reasoning about mes-
sage passing systems. We remark that our intention is not to
define a sophisticated protocol logic that could serve as an
alternative to existing logics; instead, our goal is simply to
illustrate how a formal approach to belief change can inform
logical approaches to protocol verification.

Message Passing Systems
In order to reason about cryptographic protocols, we first
need to introduce a propositional language for describing
message passing systems. We assume a finite setM of mes-
sages, a finite setK of keys, and a finite setP of partici-
pants. Moreover, we assume that the set of keys contains
a distinguished null keyλ which will be used to represent
unencrypted messages.

The setF of propositional symbols describing the state of
the world is the following set:

{HasKey(P,K) | P ∈ P,K ∈ K}
∪{HasMessage(P,M,K) | P ∈ P,M ∈M,K ∈ K}

The setF consists of all possible propositional statements
asserting that a participant has a certain key or a certain en-
crypted message. Such statements are the only assertions
that are possible in our message passing framework. The set
A of actions is the following:

{SendMessage(P,M,K) | P ∈ P,M ∈M,K ∈ K}
Informally, SendMessage(P,M,K) represents the action
where agentP sends the message{M}K . Note that no re-
cipient is specified; this is intended to reflect the fact that
every sent message can be intercepted. We can think of
sent messages in terms of a white board system. Every time
a message is sent, it is simply placed on a public posting
board, and it can be viewed or erased by any participant.
Hence, the effect of the actionSendMessage(P,M,K) is
that it causes some agent other thanP to have the message
{M}K .

Formally, the effects of the actions inA are given by a
transition system(V,E). The set of verticesV consists of
all propositional interpretations ofF whereHasKey(P, λ)
is true for eachP . Intuitively, the edges inE should describe
which messages are transferred between agents. For exam-
ple, the act of sending a messageM should be represented
by including edges from each states to every states′ that
differs froms in that some other agent now has the message
M . Formally, the set of edgesE consists of all triples

(s, SendMessage(P0,M0,K0), s′)

wheres |= HasMessage(P0,M0,K0) ands′ satisfies the
following conditions.

1. For all(P,K),

s′ |= HasKey(P,K) ⇐⇒ s |= HasKey(P,K)

2. There is someQ0 6= P0 such that

s′ |= HasMessage(Q0,M0,K0)

and, ifs′ |= HasKey(Q0,K0), then

s′ |= HasMessage(Q0,M0, λ)

3. For all(P,M,K) 6∈ {(Q0,M0,K0), (Q0,M0, λ)},
s′ |= HasMessage(P,M,K)

⇐⇒ s |= HasMessage(P,M,K)

As stated previously, the actionSendMessage(P,M,K)
causes some agent other thanP to have the message{M}K .
In the third condition, we are actually making the simpli-
fying assumption that exactly one other agent receives the
message. In the whiteboard analogy, this is tantamount to
assuming that agents must erase the whiteboard immediately
after reading the contents. Note that, if the agent receiving
{M}K happens to have the keyK, then that agent also re-
ceivesM . We remark that the sending agent need not have
the keyK; this allows messages to be redirected without
being understood.

We illustrate with an example.

Example In the Challenge-Response protocol, we have the
following messages, keys and partipants:

• M = {N}
• K = {K, λ}
• P = {P,Q, IQ}
We have omitted the subscripts onNp and Kpq,
since there is only one nonce and one non-null
key. The atomic formulas in this domain include
the following: HasKey(P,K), HasKey(P, λ),
HasMessage(P,N, K), and HasMessage(P,N, λ).
In each caseP can be replaced with eitherQ or IQ, giving
a total of 12 atomic formulas.

The initial state in the Challenge-Response pro-
tocol is the states satisfying exactly the following
atomic formulas: HasKey(P, λ), HasKey(Q, λ),
HasKey(IQ, λ), HasKey(P,K), HasKey(Q,K),
HasMessage(P,N, λ), HasMessage(P,N, K). Hence,
s represents the state whereP is the only agent with the
messageN , andP,Q are the only agents that haveK.

Defines1 to be the interpretation satisfying the following
conditions.
• s1 |= HasMessage(Q,N,K)
• s1 |= HasMessage(Q,N, λ)
• For all other atomic formulasφ,

s1 |= φ ⇐⇒ s |= φ

Similary, defines2 to be the interpretation satisfying the fol-
lowing conditions.
• s2 |= HasMessage(IQ, N, K)
• For all other atomic formulasφ,

s2 |= φ ⇐⇒ s |= φ

Hence,s1 represents the state that will result ifQ receives
the message{N}K ands2 represents the state that will re-
sults if IQ receives the message{N}K . It is easy to verify
that,(s, SendMessage(P,N, K), s′) ∈ E if and only if s′

is one ofs1 or s2.

Belief Change in Message Passing Systems
In the previous section, we presented a transition system
framework for reasoning about the effects of actions in a
message passing system. We also illustrated that we can de-
scribe the messages sent in a cryptographic protocol using
our framework. However, as noted previously, many cryp-
tographic protocols have epistemic goals. As such, before
we can actually prove the correctness of a protocol, we need
to address belief change in message passing systems. In a
message passing system, sending messages causes an agent
to update their beliefs, whereas receiving messages causes
an agent to revise their beliefs. Hence, the belief change
following a sequence of sent and received messages can be
captured by a belief evolution operator. In this section, we
illustrate how to define a belief evolution operator in our
framework.

In order to define a belief evolution operator for message
passing systems, we need a belief update operator and a be-
lief revision operator. We already have a belief update op-
erator defined with respect to the transition system giving

action effects. In order to proceed, we need to illustrate how
to define a belief revision operator.

In general, AGM revision operators rely on an underlying
similarity relation on states. In particular, given any fixed
states, we need to define a total pre-order�s over all states.
The minimal elements of�s are intuitively the states that
are the “most similar” tos.

In a message passing system, we can define the degree of
similarity between two statess1 ands2 to be the number of
actions that would need to be performed in order to get from
s1 to s2. More specificially, letT be a transition system and
let κ, α be sets of states. For technical reasons, we assume
that every state inα is reachable fromκ by a finite path in
Φ. Defineκ ∗ α to be the set of elements ofα that can be
reached by a minimum lengthΦ-path. It is easy to prove that
∗ defines an AGM revision operator; we refer to this as the
topological revision operatordefined byT .

Let (V,E) be a transition system giving the effects of ac-
tions for a message passing system. Let� be the update
operator defined by(V,E) and let∗ be the corresponding
topological revision operator. Let◦ be the belief evolution
operator defined with respect to� and∗. In the next section,
we illustrate that this operator provides a model of belief
change that is useful for reasoning about protocol verifica-
tion.

Verifying Authentication Protocols
A complete treatment of cryptographic protocols requires
multiple agents with nested beliefs. In BAN logic, for ex-
ample, the goals of a protocol typically involve beliefs about
the beliefs of protocol participants. Dealing with nested be-
liefs is beyond the scope of this paper; reasoning about the
revision of nested beliefs is a difficult problem on its own.
However, it is possible to give a simple treatment of authen-
tication tests in terms of belief evolution operators on the
propositional beliefs of a single-agent.

As indicated in the preceding section, the set of actions
that we consider consists of all possible message-sending
actions. Messages received, on the other hand, are treated as
observations. From the perspective of a single agent, crypto-
graphic protocols generally have the following form, where
eachAi is an action and eachαi is an observation.

Generic Protocol
1. A1

2. α1

...
2n-1.An

2n. αn

In protocol verification, we typically assume that the princi-
ple agent has some initial belief stateκ, and we are interested
in proving that some property holds after every protocol run.
Suppose that the goal of a given protocol can be expressed as
a propositional formulaφ. Suppose that an agent executes
the sequence of actionsA1, . . . , An, interspersed with the
observationsα1, . . . , αn. So the actions and observations of
the agent together form the following sequence:

A1, α1, . . . , Anαn.

The basic problem of protocol verification consists in an-
swering the following question. IfA1, . . . , An is a subse-
qence of a larger sequenceACT1, . . . , ACTp, does it neces-
sarily follow that

κ ◦ 〈ACT,OBS〉 |= φ?

Note that this approach to protocol verification does not
require any ad hoc rules describing belief change, instead
we have framed the problem as a simple application of belief
evolution. We illustrate how this procedure can be applied
in the case of the Challenge-Response protocol.

Example The Challenge-Response protocol consists of a
single outgoing authentication test. The intuition behind an
outgoing authentication test is that the interpretation of a re-
ceived message is dependent upon the messages that have
been sent previously. In particular, if an agentP receives
a messageM , then P should believe that the actual his-
tory of the world is one in which it is possible to receive
the messageX. In the challenge response protocol, when
P receives the responseNp, it is not reasonable to conclude
thatQ decrypted{Np}Kpq

. The strongest conclusion thatP
should draw is that eitherQ decrypted{Np}Kpq

or elseP
decrypted it unknowingly.

Let the initial belief stateκ be the set of statess satisfying
the following conditions.

1. for all X ∈ P, s |= HasKey(X, λ)

2. for all X ∈ P, Y ∈M, s |=
HasMessage(X, M, K)→ HasMessage(X, M, λ)

3. s |= HasKey(P,K)

4. s |= HasKey(Q,K)

5. s |= HasMessage(P,N, λ)

Now suppose that the agentP initiates a run of the protocol
by sending the message{N}K and the run eventually termi-
nates whenP receives the messageN . Formally, the receipt
of N is identified with the observationα defined as follows:

α = HasMessage(Q,N, λ) ∨HasMessage(P,N, λ).

So α consists of all states where eitherP or Q has re-
ceived the first message. The goal of the protocol is to es-
tablish thatQ received the first message; hence, the goal
of the protocol is to guarantee thatP correctly believes
HasMessage(Q,N, λ) in the final state.

According to our approach, proving that the protocol is
correct amounts to proving that, for any alternating sequence
of the form

A1, α1, . . . , An, αn

containing the subsequence

SendMessage(P,N,K),HasMessage(P,N, λ),

it follows thatHasMessage(Q,N, λ) is true in

κ ◦ 〈〈A1, . . . , An〉, 〈α1, . . . , αn〉〉

.

The attack on the Challenge-Response protocol is given
by the sequence

A1 = SendMessage(P,N, K)
α1 = HasMessage(P,N, K)
A2 = SendMessage(P,N, λ)
α2 = HasMessage(P,N, λ).

Regardless of the underlying revision operator, the final be-
lief state following this sequence will contain the states0

that satisfies only the following atomic formulas:

HasMessage(P,N, K),HasMessage(P,N, λ).

Clearlys0 is not an element of|HasMessage(Q,N, λ)|, so
the protocol fails to establish the goal.

Note that the problem with the Challenge-Response Pro-
tocol is that a single agent can play both theP role and theQ
role in interweaved runs of the protocol. Our analysis makes
this fact clear, because we have explicitly indicated that the
receipt of{N}K causesP to believe that eitherP or Q has
the messageN . If P only uses the protocol to check for the
aliveness of another agent, then the given attack is no longer
a problem.

Discussion
The fundamental insight underlying BAN-like logics is that
cryptographic protocols have epistemic goals. As such, the
logical approach to protocol verification employs epistemic
logics to represent the beliefs of each agent following a run
of a given protocol. However, the logics use monotonic rules
of inference to reason about changing beliefs. It is well-
known that belief change is often a non-monotonic process
in which beliefs need to be retracted in response to new in-
formation. As such, we have proposed that a more appropri-
ate model of epistemic change in which protocol verification
can be defined by introducing non-monotonic belief change
operators.

In this paper, we have used belief evolution operators to
reason about a specific protocol. The details of this partic-
ular approach are not important for our overall suggestion.
The basic problem that arises in reasoning about protocols
is that agents may have incorrect beliefs, and we need to be
able to resolve such beliefs without lapsing into inconsis-
tency. AGM belief revision operators provide a simple tool
for handling this kind of problem, but we can not simply use
AGM operators because we need to incorporate some notion
of change.

Although we have focussed on authentication protocols,
we could easily apply the same methods to more com-
plex protocol goals, such as non-repudiation and anonymity.
However, using belief evolution operators as the underlying
approach is somewhat limited in that agents can not explic-
itly reason about failed or exogenous actions. For example,
we might be interested in agents that are able to make in-
ferences of the form: ifα is believed at time 2, then it is
believed that a message was intercepted at time 1. A more
flexible formalism that is suitable for such problems is pre-
sented in (Hunter & Delgrande 2006).

At the most basic level, our goal in this paper is simply
to connect two communities. The logical approach to pro-
tocol verification is explicitly concerned with belief change,
yet standard approaches have not been informed by formal
work on belief change. Similarly, there is a long history of
studying formal properties of belief change, but there are rel-
atively few practical applications. Connecting existing work
in protocol verification with existing work in belief change
is beneficial for both communities.

References
Adadi, M., and Tuttle, M. 1991. A semantics for a logic
of authentication. InProceedings of the 10th ACM Sym-
posium on Principles of Distributed Computing, 201–216.
ACM Press.
Agray, N.; van der Hoek, W.; and de Vink, E. 2002. On
BAN logics for industrial security protocols. In Dunin-
Keplicz, B., and Nawarecki, E., eds.,Proceedings of
CEEMAS 2001, 29–36.
Alchourrón, C.; G ardenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet functions
for contraction and revision.Journal of Symbolic Logic
50(2):510–530.
Bleeker, A., and Meertens, L. 1997. A semantics for BAN
logic. InProceedings of DIMACS Workshop on Design and
Formal Verification of Security Protocols.
Burrows, M.; Abadi, M.; and Needham, R. 1989. A logic
of authentication. Technical Report 39, Digital Systems
Research Center.
Burrows, M.; Abadi, M.; and Needham, R. 1990. A logic
of authentication.ACM Transactions on Computer Systems
8(1):18–36.
Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision.Artificial Intelligence89(1-2):1–29.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Linköping Electronic Articles in Computer and Informa-
tion Science3(16):1–16.
Guttman, J., and Thayer, J. 2000. Authentication tests. In
Proceedings 2000 IEEE Symposium on Security and Pri-
vacy.
Hunter, A., and Delgrande, J. 2005. Iterated belief change:
A transition system approach. InProceedings of IJCAI05,
460–465.
Hunter, A., and Delgrande, J. 2006. Belief change in the
context of fallible actions and observations. InProceedings
of AAAI06.
Lang, J. 2006. About time, revision, and update. InPro-
ceedings of NMR2006.
Syverson, P., and Cervesato, I. 2001. The logic of authen-
tication protocols. In Focardi, R., and Gorrieri, R., eds.,
Foundations of Security Analysis and Design, volume 2171
of Lecture Notes in Computer Science. Springer-Verlag.
63–136.
Syverson, P., and van Oorschot, P. 1996. A unified crypto-
graphic protocol logic. Technical Report 5540-227, Naval
Research Lab.

