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Abstract

Cryptographic protocols are structured sequences of mes-
sages that are used for exchanging information in a hostile
environment. Many protocols have epistemic goals: a suc-
cessful run of the protocol is intended to cause a participant
to hold certain beliefs. As such, epistemic logics have been
employed for the verification of cryptographic protocols. Al-
though this approach to verification is explicitly concerned
with changing beliefs, formal belief change operators have
not been incorporated in previous work. In this paper, we in-
troduce a new approach to protocol verification by combining
a monotonic logic with a non-monotonic belief change oper-
ator. In this context, a protocol participant is able to retract
beliefs in response to new information and a protocol partic-
ipant is able to postulate the most plausible event explaining
new information. We illustrate that this kind of reasoning is
particularly important when protocol participants have incor-
rect beliefs.

Introduction

Logics of belief have been useful in the design and anal-
ysis of cryptographic protocols, starting with the pioneer-
ing work on BAN logic (Burrows, Abadi, & Needham
1989) and continuing with several related logics (Adadi
& Tuttle 1991; Agray, van der Hoek, & de Vink 2002;
Bleeker & Meertens 1997; Syverson & van Oorschot 1996;
Syverson & Cervesato 2001). The basic idea behind all of
the BAN-like logics is to encode protocols in a logic of be-
lief, then prove that the agents involved must have certain
beliefs after a protocol is properly executed. Hence, proto-
col verification is fundamentally concerned with modelling
changing beliefs. However, BAN-like logics do not involve
any explicit formal model of belief change; the manner in
which beliefs change is simply captured by some ad hoc ax-
ioms. In this paper, we argue that a more appropriate ap-
proach to protocol verification can be defined by describing
beliefs in a static logical framework together with a formal
belief change operator.

In this paper, we illustrate how formal approaches to be-
lief change may be useful in reasoning about cryptographic
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protocols. The paper makes two main contributions to ex-
isting research. First, we extend the application of formal
belief change techniques to a new class of problems. Cryp-
tographic protocol verification provides a large class of be-
lief change problems which are not only of theoretical inter-
est, but also have great practical significance. The second
contribution is the introduction of a specific model of belief
change that is particularly suitable for the the verification
of cryptographic protocols. Broadly speaking, researchers
in belief change and researchers in protocol verification are
both interested in the same kinds of problems. Our aim is
to make this salient, and to illustrate how work in each area
can benefit the other.

We proceed as follows. First, we introduce some prelimi-
nary background on the logical approach to cryptographic
protocol verification. Next, we argue that BAN-like log-
ics can not capture the kind of non-monotonic belief change
that occurs in an authentication protocol, and we introduce
some more appropriate belief change operators. Finally, we
present a simple approach to protocol verification in terms
of formal belief change operators. We conclude with a gen-
eral discussion about belief change in the context of protocol
verification.

Preliminaries

Authentication Protocols

For the purposes of this paper, we focus on the verification of
authentication protocols. An authentication protocol is used
to ensure that all parties in a communication session know
with whom they are communicating. Authentication proto-
cols may have additional goals as well, such as establish-
ing a shared key for communication (Syverson & Cervesato
2001). In this section, we briefly introduce some standard
notation for describing authentication protocols.

If P and Q denote agents in a communication session,
then

P → Q : X

means that agent P sends the message X to agent Q. A sym-
metric key that is shared by agents P and Q will be denoted
by Kpq. If the message X is encrypted with the key K, then
we write {X}K . We let Np denote a nonce generated by
the agent P . A nonce is simply a random number that is
generated by an agent during a communication session.
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The following protocol is executed by agent P in order to
determine if agent Q is alive in the communication session.

The Challenge-Response Protocol
1. P → Q : {Np}Kpq

2. Q → P : Np

In this protocol, P generates a random number and encrypts
it with the shared key Kpq before sending it to Q. Infor-
mally, if this message is intercepted by an intruder, it will
not be possible for the intruder to determine the value Np.
So if P receives the message Np, then it is natural to con-
clude that Q must have decrypted the original message and
therefore Q is alive on the network. In the vocabulary of
(Guttman & Thayer 2000), this protocol involves a single
outgoing authentication test.

The standard model for cryptographic protocol analysis
assumes that an intruder can read every message that is
sent, and the intruder may choose to prevent messages from
reaching the desired recipient. Moreover, when a message
is received, it is assumed that the sender is always unknown.
The only way that P can be certain Q sent a particular mes-
sage is if the message contains information that is only avail-
able to Q. It is assumed that cryptography is strong in that
encrypted messages can not be unencrypted during a proto-
col run without the proper key. Under these assumptions,
there is an attack on the Challenge-Response protocol.
An Attack on the Challenge-Response Protocol
1. P → IQ : {Np}Kpq

1′. IQ → P : {Np}Kpq

2′. P → IQ : Np

2. IQ → P : Np

In this attack, IQ intercepts the original message and then
initiates a new protocol run by sending it back to P . After
P receives the message encrypted with Kpq, then P follows
the protocol and returns the decrypted nonce. At the last
step, IQ sends the same decrypted nonce to P . Note that, at
the conclusion of the protocol, Q has not sent any messages.
Hence P has no assurance that Q is actually alive on the
network, which was the stated goal of the protocol.

Logics of Belief: BAN Logic

As noted above, the first logical approach to protocol verifi-
cation was the so-called BAN logic. See (Burrows, Abadi,
& Needham 1990) for a formal introduction to the logic. We
briefly sketch the basic idea.

Sentences of BAN logic are generated through construc-
tions of the following form.
• P believes X: P thinks that X is true
• P received X: a message containing X was received by

P

• P said X: a message containing X was sent by P previ-
ously

• P controls X: P has jurisdiction on X . P is an authority
on X and should be trusted on this matter.

• fresh(X): Formula X has not been sent in any message
at any time before the current protocol.

• P
K←→ Q: K is a good key for communication between

P and Q

• PK(P, k): K is a public key of P . K−1 is the correspond-
ing secret key.

• P
X� Q: X is a secret (e.g. a password) known only to P

and Q.
• {X}K : X is encrypted under key K.
The intended semantics of these constructions is given
through a collection of rules of inference. Space doesn’t al-
low a full listing of the rules; however a consideration of two
such rules gives a good indication of the overall approach.
For example, the following rule concerns shared keys:

P believes P
K←→ Q P received {X}K

P believes Q said X
.

This rule is called Message Meaning, and it attempts to cap-
ture the manner in which beliefs change during protocol ex-
ecution. The rule states that, if P receives a message en-
crypted in a key that P shares with Q, then P should con-
clude that Q said X (and implicitly sent the message).

Similarly, for public keys there is the rule:

P believes PK(Q,K) P received {X}K−1

P believes Q said X
.

Thus if P believes that K is Q’s public key and P receives
a message encoded with this key, then P concludes that Q
said X .

From a logical point of view, one well-known problem
with BAN is the fact that there is no agreed upon seman-
tics(Agray, van der Hoek, & de Vink 2002). However, sev-
eral different semantics have been proposed (Adadi & Tut-
tle 1991; Bleeker & Meertens 1997; Syverson & Cervesato
2001), and new protocol logics have been introduced based
on the standard semantics for epistemic logic (Syverson &
van Oorschot 1996). We remark that such logics typically
address belief change by introducing some ad hoc axioms or
rules of inference.

It is worth noting that BAN logic is not able to establish
the insecurity of the Challenge-Response Protocol. In BAN
logic, it is simply assumed that an agent can recognize the
messages that they have sent. Under this assumption, the
given attack can not occur. Not only is this assumption ad
hoc, but it is often unjustified in real applications.

Non-Monotonic Belief Change

In practice, a protocol like the Challenge-Response Proto-
col will not be run in isolation. The agent P will receive
information from many sources, each with differing degrees
of reliability. As such, it is possible that P will have be-
liefs that are incorrect. Therefore, P needs to be able to re-
tract beliefs and modify the current belief state in response
to new information. The monotonic models of belief change
in BAN-like logics are not suitable for this kind of reason-
ing. Instead, we suggest that we need to treat belief change
in cryptographic protocols in terms of non-monotonic be-
lief change operators. Informally, the goal of an intruder
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is to convince a protocol participant to hold certain beliefs.
As such, we can view protocol verification as a problem in
commonsense reasoning. A protocol participant is likely to
draw many (possibly non-monotonic) conclusions when a
message is received. We need a more realistic model of be-
lief change to capture the reasoning of a protocol participant.

Belief Update and Belief Revision

We will represent action effects by transition systems, as de-
fined in (Gelfond & Lifschitz 1998); note however that our
definition of a transition system is a restriction of that in
(Gelfond & Lifschitz 1998). Define an action signature to
be a pair 〈A,F〉 where A,F are non-empty sets of symbols.
We call A the set of action symbols, and F the set of fluent
symbols.

Formally, the fluent symbols in F are propositional vari-
ables. The action symbols in A denote the actions that an
agent may perform. We assume that the effects of actions
are given by a transition system.
Definition 1 A transition system T for an action signature
σ = 〈A,F〉 is a pair 〈S, R〉 where
1. S ⊆ 2F

2. R ⊆ S × A × S.
The set S is called the set of states and R is the transition
relation. For F ∈ F, if F ∈ s ∈ S, then then we say that
F is true in s; otherwise F is false in s. If (s,A, s′) ∈ R,
then we think of the state s′ as a possible resulting state that
could occur if the action A is executed in state s.

Transition systems can be visualized as directed graphs,
where each node is labeled with a state and each edge is
labeled by an action symbol. Informally, an edge from s to
s′ labelled with A is interpreted to mean that executing the
action A in the state s results in the state s′.

An agent’s belief state κ is represented by a set of states,
informally consisting of those states that an agent considers
to be possible. The belief change that occurs when an agent
receives new information about some change in the world is
called belief update. In belief update, we ask the following
question: if an agent initially has belief state κ, then what
should the new belief state be following the action A? We
define a conditional belief update operator � to represent the
belief change due to an action as follows.1

Definition 2 The update operator � is the function � : 2S ×
A → 2S given by:

κ � A = {s′ | (s,A, s′) ∈ R and s |= κ}.
Hence, the semantics of belief update is based on projecting
an initial belief set to accomodate the changed information.

The belief change that occurs when an agent receives new
information about a static world is called belief revision.2
In the interest of space, we assume that the reader is famil-
iar with the AGM approach to belief revision (Alchourrón,

1More accurately, our operator is a belief progression operator;
it has been argued elsewhere that update is a special case of belief
progression (Lang 2006).

2This is slightly simplistic, but suffices here. See (Friedman &
Halpern 1999; Lang 2006)

G ardenfors, & Makinson 1985). AGM revision is usually
stated in terms of operators on sets of formulas, but it can
easily be reformulated in terms of sets of states. In this con-
text, the beliefs of an agent are represented by a set of states
and the new information acquired is also represented by a
set of states. We refer to a set of states representing new
information as an observation. Let 2F denote the set of all
states over F. We say that a function ∗ : (2F × F) → 2F is
an AGM revision operator if it satisfies the AGM postulates
suitably reformulated in terms of states. Such a function
maps a belief state and an observation to a new belief state.

We define a specific belief revision operator that we call
topological belief revision (Hunter & Delgrande 2007). It
is based on the intuition that a plausibility ordering for an
agent’s beliefs will be based on how “easy” it is to move
from one state to another, and that this in turn will be based
on the number of actions required to move from one state to
another. Given a transition system T = 〈S, R〉, for s, s′ ∈ S,
define d(s, s′) to be the length of the shortest path between
s and s′ in S (and a suitably large number if there is no such
path).

Definition 3 Let T = 〈S, R〉 be a transition system and let
d be the topological distance function defined above. The
topological revision function ∗ : 2S × 2S → 2S is defined
as follows

κ∗α = {w ∈ α | ∃v1 ∈ κ such that for all v2 ∈ α, v3 ∈ κ

we have d(w, v1) ≤ d(v2, v3)}.
We obtain the following result.

Theorem 1 The operator given in Definition 3 satisfies the
AGM belief revision postulates.

Belief Evolution

Protocol verification involves a combination of belief up-
date and belief revision. When an agent sends a message,
the state of the world changes in a predictable manner. As
such, sending a message causes an agent to perform belief
update. On the other hand, received messages need not be
the result of a change in the state of the world. An agent
that receives a message may simply be receiving new infor-
mation that must be incorporated in the current belief state.
Hence, receiving messages may cause an agent to perform
belief revision.3 Thus, in order to reason about the iterated
sequences of messages exchanged in a cryptographic pro-
tocol, one needs to reason about alternating sequences of
revisions and updates.

There are plausible examples where it is clear that se-
quences of revisions and updates can not be interpreted by
simply applying the operators iteratively; belief evolution
operators have been proposed to combine an update oper-
ator and a revision operator (Hunter & Delgrande 2005).
The problem is that many AGM belief revision operators are
Markovian, in the sense that the new belief set is completely

3There is a subtlety here: if an agent receives a message, then
arguably this is the result of some earlier send action. However,
the same message may come from different send actions, or action
sequences. Topological revision reflects this fact.
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determined by the current belief set and the formula for re-
vision. However, even simple protocols like the Challenge-
Response Protocol require an agent to consider the history
of messages sent in order to interpret incoming messages.
As such, we need to use a non-Markovian belief change op-
erator suitable for reasoning about iterated belief change. In
this section, we briefly present a simplified version of belief
evolution.

A belief evolution operator is defined with respect to fixed
update and revision operators. As such, assume that ∗ is an
AGM revision operator (defined on sets of states), and let
� be an update operator. The basic intuition behind belief
evolution operators is that an agent should trace back new
observations to conditions on the initial belief state.

We need to introduce some notation. In particular, let
s−1(A) denote the set of all states s′ such that (s′, A, s) ∈
R. We call s−1(A) the pre-image of s with respect to
A. The next definition generalizes this idea to give the
pre-image of a set of states with respect to a sequence of
actions. In the definition, given any sequence of actions
Ā = 〈A1, . . . , An〉, we write s �Ā s′ to indicate that there
is a path from s to s′ that follows the edges labeled by the
actions A1, . . . , An.
Definition 4 Let T be a transition system, let Ā =
〈A1, . . . , An〉 and let α be an observation. Define
α−1(Ā) = {s | s �Ā s′ for some s′ ∈ α}.
Hence, if the actual world is an element of α following the
action sequence Ā, then the initial state of the world must be
in α−1(Ā).

We have the following definition for belief evolution, ◦.
In the definition, if i ≤ n then we let Āi denote the subse-
quence of actions 〈A1, . . . , Ai〉.
Definition 5 Let κ be a belief state, let Ā be a sequence of
actions of length n and let ᾱ be a sequence of observations
of length n. Assume that Ā and ᾱ are mutually consistent in
that each observation αi is possible, given that the actions
(Āj)j≤i have been executed. Define

κ ◦ 〈Ā, ᾱ〉 = 〈κ0, . . . , κn〉
where
1. κ0 = κ ∗ ⋂

i α−1
i (Āi)

2. for i ≥ 1, κi = κi−1 � A1 � · · · � Ai.
We refer the reader to (Hunter & Delgrande 2005) for the
details.

Belief Change in Protocol Verification
We can think of cryptographic protocols as constraints on
the sequences of messages that are exchanged in a message
passing system. In this section, we introduce message pass-
ing systems, and we give specific revision and update oper-
ators that are suitable for reasoning about the belief change
that occurs when messages are sent and received. We then
formalize cryptographic protocol verification in terms of be-
lief change operators. We remark that our intention is not to
define a sophisticated protocol logic that could serve as an
alternative to existing logics; instead, our goal is simply to
illustrate how a formal approach to belief change can inform
logical approaches to protocol verification.

Message Passing Systems

In order to reason about cryptographic protocols, we first
need to introduce a propositional language for describing
message passing systems. We assume a finite set M of mes-
sages, a finite set K of keys, and a finite set P of partici-
pants. Moreover, we assume that the set of keys contains
a distinguished null key λ which will be used to represent
unencrypted messages.

The set F of propositional symbols describing the state of
the world is the following set:

{HasKey(P,K) | P ∈ P,K ∈ K}
∪ {HasMessage(P,M,K) | P ∈ P,M ∈ M,K ∈ K}
The set F consists of all possible propositional statements4

asserting that a participant has a certain key or a certain en-
crypted message. Such statements are the only assertions
that are included in our message passing framework. The
set A of actions is the following:

{SendMessage(P,M,K) | P ∈ P,M ∈ M,K ∈ K}
Informally, SendMessage(P,M,K) represents the action
where agent P sends the message {M}K . Note that no re-
cipient is specified; this reflects the fact that every sent mes-
sage can be intercepted. We can think of sent messages in
terms of a white board system. Every time a message is sent,
it is simply placed on a public posting board, and it can be
viewed or erased by any participant. Hence, the effect of
the action SendMessage(P,M,K) is that it causes some
agent other than P to have the message {M}K .

Formally, the effects of the actions in A are given by a
transition system 〈S, R〉. The set of states S consists of all
s ∈ 2F such that HasKey(P, λ) ∈ s for every P . In-
tuitively, the relation R will describe which messages are
transferred between agents. For example, the act of sending
a message M should be represented by including edges from
each state s to every state s′ that differs from s in that some
other agent now has the message M . Formally, R consists
of all triples

(s, SendMessage(P0,M0,K0), s′)

where s |= HasMessage(P0,M0,K0) and s′ satisfies the
following conditions.

1. For all P,K,

s′ |= HasKey(P,K) ⇐⇒ s |= HasKey(P,K)

2. There is some Q0 �= P0 such that

s′ |= HasMessage(Q0,M0,K0)

and, if s′ |= HasKey(Q0,K0), then

s′ |= HasMessage(Q0,M0, λ)

3. For all (P,M,K) �∈ {(Q0,M0,K0), (Q0,M0, λ)},

s′ |= HasMessage(P,M,K)
⇐⇒ s |= HasMessage(P,M,K)

4That is, to be clear, we use a pseudo-first-order notation to
represent propositional atoms.
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As stated previously, the action SendMessage(P,M,K)
causes some agent other than P to have the message {M}K .
In the third condition, we are actually making the simpli-
fying assumption that exactly one other agent receives the
message. In the whiteboard analogy, this is tantamount to
assuming that agents erase the whiteboard immediately af-
ter reading the contents. Note that, if the agent receiving
{M}K happens to have the key K, then that agent also re-
ceives M . We remark that the sending agent need not have
the key K; this allows messages to be redirected without
being understood.

Example In the Challenge-Response protocol, we have the
following messages, keys and partipants:
• M = {N}
• K = {K, λ}
• P = {P,Q, IQ}
We have omitted the subscripts on Np and Kpq, since there
is only one nonce and one non-null key. The atomic for-
mulas in this domain include the following: HasKey(x, y)
and HasMessage(x,N, y) for x ∈ {P,Q, IQ} and y ∈
{K, λ}, giving a total of 12 atomic formulas.

The initial state in the Challenge-Response protocol is the
state s given by the following set of atoms

{HasKey(P, λ),HasKey(Q,λ),HasKey(IQ, λ),
HasKey(P,K),HasKey(Q,K),
HasMessage(P,N, λ),HasMessage(P,N,K)}.

Hence, P is the only agent with the message N , and P,Q
are the only agents that have K.

Define s1 to be the interpretation satisfying the following
conditions.
• s1 |= HasMessage(Q,N,K)
• s1 |= HasMessage(Q,N, λ)
• For all other atomic formulas φ: s1 |= φ ⇐⇒ s |= φ

Similary, define s2 to be the interpretation satisfying the fol-
lowing conditions.
• s2 |= HasMessage(IQ, N, K)
• For all other atomic formulas φ: s2 |= φ ⇐⇒ s |= φ

Hence, s1 represents the state that results if Q receives the
message {N}K and s2 represents the state that results if
IQ receives the message {N}K . It is easy to verify that
(s, SendMessage(P,N, K), s′) ∈ R if and only if s′ is s1

or s2.

Belief Change in Message Passing Systems

In the previous section, we presented a transition system
framework for reasoning about the effects of actions in a
message passing system. We also illustrated that we can de-
scribe the messages sent in a cryptographic protocol using
our framework. However, as noted previously, many cryp-
tographic protocols have epistemic goals. As such, before
we can actually prove the correctness of a protocol, we need

to address belief change in message passing systems. In a
message passing system, sending a message causes an agent
to update their beliefs, whereas receiving messages causes
an agent to revise their beliefs. Hence, the belief change
following a sequence of sent and received messages can be
captured by a belief evolution operator. In this section, we
illustrate how to define a belief evolution operator in our
framework.

In order to define a belief evolution operator for message
passing systems, we need a belief update operator and a be-
lief revision operator. We already have a belief update op-
erator defined with respect to a transition system. As well,
arguably a topological revision operator is suitable as a spe-
cific revision operator to employ here.

Consequently, for a transition system 〈S, R〉 giving the
effects of actions for a message passing system, we let �
be the update operator given in Definition 2 and ∗ be the
corresponding topological revision operator of Definition 3.
Let ◦ be the belief evolution operator defined with respect to
� and ∗. In the next section, we illustrate that this operator
provides a model of belief change that is useful for reasoning
about protocol verification.

Verifying Authentication Protocols

A complete treatment of cryptographic protocols requires
multiple agents with nested beliefs. In BAN logic, for ex-
ample, the goals of a protocol typically involve beliefs about
the beliefs of protocol participants. Dealing with nested be-
liefs is beyond the scope of this paper; reasoning about the
revision of nested beliefs is a difficult problem on its own.
However, it is possible to give a simple treatment of authen-
tication tests in terms of belief evolution operators on the
propositional beliefs of a single agent.

In BAN logic there are four steps in a protocol analysis
(Syverson & van Oorschot 1996):

1. Idealize the protocol.

2. Give assumptions about the initial state

3. Annotate the protocol. So express the protocol using BAN
assertions.

4. Use the logic to derive the beliefs held by the protocol
participants.

By contrast, for the proposed approach we have the follow-
ing steps:

1. Idealize the protocol. In this case, express the protocol by
means of send actions defined by a transition system.

2. Give assumptions about the initial state

3. Use belief evolution with respect to the transition system
to derive the beliefs of a protocol participant.

As indicated in the preceding section, the set of actions
that we consider consists of all possible message-sending
actions. Messages received, on the other hand, are treated as
observations. From the perspective of a single agent, crypto-
graphic protocols generally have the following form, where
each Ai is an action and each αi is an observation.
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Generic Protocol
1. A1

2. α1

...
2n-1. An

2n. αn

In protocol verification, we typically assume that the princi-
pal agent has some initial belief state κ, and we are interested
in proving that some property holds after every protocol run.
Suppose that the goal of a given protocol can be expressed as
a propositional formula φ. Suppose that an agent executes
the sequence of actions A1, . . . , An, interspersed with the
observations α1, . . . , αn. So the actions and observations of
the agent together form the following sequence:

A1, α1, . . . , Anαn.

The basic problem of protocol verification consists in an-
swering the following question.

If A1, . . . , An is a subsequence of a larger sequence of
actions ACT = 〈ACT1, . . . , ACTm〉 and α1, . . . , αn

is a subsequence of a larger sequence of observations
OBS = 〈OBS1, . . . , OBSm〉 does it follow that

κ ◦ 〈ACT,OBS〉 |= φ?

From the perspective of a single agent, this is equivalent to
asking if the action-observation sequence

A1, α1, . . . , Anαn

guarantees that the agent will believe φ.
Note that this approach to protocol verification does not

require any ad hoc rules describing belief change. Instead
we have framed the problem as a simple application of belief
evolution. We illustrate how this procedure can be applied
in the case of the Challenge-Response protocol.

Example The Challenge-Response protocol consists of a
single outgoing authentication test. The intuition behind an
outgoing authentication test is that the interpretation of a re-
ceived message is dependent upon the messages that have
been sent previously. In particular, if an agent P receives
a message M , then P should believe that the actual his-
tory of the world is one in which it is possible to receive
the message M . In the Challenge-Response protocol, when
P receives the response Np, it is not reasonable to conclude
that Q decrypted {Np}Kpq

. The strongest conclusion that P
should draw is that either Q decrypted {Np}Kpq or else P
decrypted it unknowingly.

Let the initial belief state κ be the set of states s satisfying
the following conditions.
1. for all X ∈ P, s |= HasKey(X, λ)
2. for all X ∈ P, Y ∈ M, if s |= HasMessage(X, M, K)

then s |= HasMessage(X, M, λ)
3. s |= HasKey(P,K)
4. s |= HasKey(Q,K)
5. s |= HasMessage(P,N, λ)

Now suppose that the agent P initiates a run of the protocol
by sending the message {N}K and the run eventually ter-
minates when P receives the message N . The receipt of the
message N indicates that some agent involved in the proto-
col has the message N . Since N contains random informa-
tion that cannot be guessed, P assumes that the only way
an agent can have message N is by decrypting the message
{N}K during this protocol run. Since Q and P are the only
agents that have the key K, we can identify the receipt of N
with the observation α defined as follows:

α = HasMessage(Q,N, λ) ∨ HasMessage(P,N, λ).

So α consists of all states where either P or Q has re-
ceived the first message. The goal of the protocol is to es-
tablish that Q received the first message; hence, the goal
of the protocol is to guarantee that P correctly believes
HasMessage(Q,N, λ) in the final state.

According to our approach, proving that the protocol is
correct amounts to proving that, for any alternating sequence
of the form

A1, α1, . . . , An, αn

containing the subsequence

SendMessage(P,N, K),HasMessage(P,N, λ),

it follows that HasMessage(Q,N, λ) is true in

κ ◦ 〈〈A1, . . . , An〉, 〈α1, . . . , αn〉〉.
The attack on the Challenge-Response protocol is given

by the sequence

A1 = SendMessage(P,N, K)
α1 = HasMessage(P,N, K)
A2 = SendMessage(P,N, λ)
α2 = HasMessage(P,N, λ).

Regardless of the underlying revision operator, the final be-
lief state following this sequence will contain the state s0

that satisfies only the following atomic formulas:

HasMessage(P,N,K),HasMessage(P,N, λ).

Clearly s0 is not a model of HasMessage(Q,N, λ), so the
protocol fails to establish the goal.

The problem with the Challenge-Response Protocol is
that a single agent can play both the P role and the Q role
in interweaved runs of the protocol. Our analysis makes this
fact clear, because we have explicitly indicated that the re-
ceipt of {N}K causes P to believe that either P or Q has
the message N . If P only uses the protocol to check for the
aliveness of another agent, then the given attack is no longer
a problem.

To demonstrate that a protocol fails to establish an epis-
temic goal, one needs to prove that there is a correspond-
ing sequence of updates and revisions where an agent will
not believe that the goal is true. To show that a protocol
does establish a goal, one needs to show that the goal is be-
lieved following all sequences of updates and revisions sat-
isfying constraints given by the protocol. While there can
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be infinitely many update/revision sequences for a given (fi-
nite) transition system, nonetheless it is easily shown that an
update/revision sequence that corresponds to a cycle in the
transition system is equivalent to one that incorporates no
cycles. Hence to determine whether a protocol establishes a
goal, one needs check all paths in the transition system, of
which there are only finitely many.

Discussion

The fundamental insight underlying BAN-like logics is that
cryptographic protocols have epistemic goals. As such, the
logical approach to protocol verification employs epistemic
logics to represent the beliefs of each agent following a run
of a given protocol. However, the logics use monotonic rules
of inference to reason about changing beliefs. It is well-
known that belief change is often a non-monotonic process
in which beliefs need to be retracted in response to new in-
formation. As such, we have proposed that it is more appro-
priate to model epistemic change in protocol verification by
introducing non-monotonic belief change operators.

In this paper, we have used belief evolution operators to
reason about a specific protocol. The details of this partic-
ular approach are not important for our overall suggestion.
The basic problem that arises in reasoning about protocols
is that agents may have incorrect beliefs, and we need to be
able to resolve such beliefs without lapsing into inconsis-
tency. AGM belief revision operators provide a simple tool
for handling this kind of problem, but we can not simply use
AGM operators because we need to incorporate some notion
of state change. Although we have focused on authentica-
tion protocols, we could easily apply the same methods to
more complex protocol goals, such as non-repudiation and
anonymity.

At the most basic level, our goal in this paper is simply
to connect two communities. The logical approach to pro-
tocol verification is explicitly concerned with belief change,
yet standard approaches have not been informed by formal
work on belief change. Similarly, there is a long history of
studying formal properties of belief change, but there are rel-
atively few practical applications. Connecting existing work
in protocol verification with existing work in belief change
is beneficial for both communities.
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