
Modelling Cryptographic Protocols in a Theory of Action

James P. Delgrande and Torsten Grote and Aaron Hunter
School of Computing Science,

Simon Fraser University,
Burnaby, B.C.,

Canada V5A 1S6.
{jim,tga14,hunter}@cs.sfu.ca

Abstract

This paper proposes a framework for analysing cryptographic
protocols by expressing message passing and possible attacks
as a situation calculus theory. While cryptographic protocols
are usually quite short, they are nonetheless notoriously diffi-
cult to analyse, and are subject to subtle and nonintuitive at-
tacks. Our thesis is that in previous approaches for expressing
protocols, underlying domain assumptions and capabilities of
agents are left implicit. We propose a declarative specifica-
tion of such assumptions and capabilities in the situation cal-
culus. A protocol is then compiled into a sequence of actions
to be executed by the principals. A successful attack is an ex-
ecutable plan by an intruder that compromises the stated goal
of the plan. We argue that not only is a full declarative speci-
fication necessary, it is also much more flexible than previous
approaches, permitting among other things interleaved runs
of different protocols and participants with varying abilities.

Introduction
A cryptographic protocol is a formalised sequence of mes-
sages between agents, where parts of a message are pro-
tected using cryptographic functions such as encryption.
These protocols are used for many purposes, including the
secure exchange of information, carrying out a transaction,
authenticating an agent, etc. Protocols are typically speci-
fied in the following format:
The Challenge-Response Protocol

1. A→ B : {NA}KAB

2. B → A : NA

In this protocol, the goal is for agentA to determine whether
B is alive on the network. The first step is for A to send B
the message NA encrypted with a shared key KAB . NA is a
nonce, a random number assumed to be new to the network.
The second step is for B to send A the message NA unen-
crypted. Since only A and B have KAB , and KAB is as-
sumed to be secure, it would seem that NA could only have
been decrypted by B, and so B must be alive. However, the
protocol is flawed; here is an attack:
An Attack on the Challenge-Response Protocol

1. A→ IB : {NA}KAB

1.1 IB → A : {NA}KAB

1.2 A→ IB : NA

2. IB → A : NA

An intruder I intercepts the message in line 1 and, mas-
querading as B, initiates a round of the protocol with A,
thereby obtaining the decrypted nonce.

While this example is simplistic, it illustrates the type of
problems that arise in protocol verification. Even though
protocols are usually short, they are notoriously difficult to
prove correct. As a result, many different formal approaches
have been developed for protocol verification. In these ap-
proaches, a protocol is generally specified as above, and then
one tries to develop an attack on the protocol. However, of-
ten these approaches are difficult to apply by anyone other
than the original developers (Brackin, Meadows, & Millen
1999). Part of the problem is that there is no clear agree-
ment on exactly what an attack really is (Aiello & Massacci
2001), which leaves considerable ambiguity about the status
of a protocol when no attack is found. Moreover, as we later
discuss, the language for specifying a protocol is highly am-
biguous, and much information is left implicit. Thus it is no
surprise that protocols are hard to convincingly prove secure.

Our thesis is that all aspects of a protocol need to be
explicitly specified, and moreover that protocol verification
may profitably be viewed as a problem in commonsense rea-
soning and agent communication. The main contribution of
this paper is the introduction of a declarative, commonsense
theory of message passing between agents, suitable for prov-
ing results about protocols, expressed as a situation calculus
theory. The framework makes explicit background assump-
tions, protocol goals, agent’s capabilities, and the message
passing environment. A protocol is translated into a set se-
quence of actions for agents to execute. These actions may
be interleaved with others, and the framework allows simul-
taneous runnings of multiple protocols. The aim of an in-
truder is to construct a plan such that the goal of the protocol,
in a precise sense, is thwarted. A protocol is secure when no
such plan is possible. A valid protocol then is one which is
secure, which may complete, and in which at completion the
goal is provably established. The approach is flexible, and
significantly more general than previous approaches since
we can tailor the agents and the environment to specific ap-
plications. For example, we can model intruders with differ-
ent capabilities and we can model several different protocols
running at the same time. This work is intended as the first
step towards a new automated verification system for proto-
cols based on a language such as ConGolog.

41



The next section briefly introduces work in cryptographic
protocol verification. The third section motivates our ap-
proach to the problem, while the following section presents
an axiomatisation of an instance of the approach in the sit-
uation calculus. The last section sketches contributions and
future work.

Related Work
The standard intruder model is of a very powerful adversary,
the so-called Dolev-Yao intruder (Dolev & Yao 1983). In-
formally, the intruder can read, block, intercept, or forward
any message sent by an honest agent. Hence, a message re-
cipient is never aware of the identity of the sender, except
possibly via encrypted messages. The first logic-based ap-
proach to protocol verification was the BAN logic of (Bur-
rows, Abadi, & Needham 1990). The logic is rather ad hoc,
as it consists of a set of rules of inference with no formal se-
mantics. However, it has been highly influential because it
illustrates the importance of knowledge in protocol verifica-
tion and also because it illustrates how protocol verification
can be reduced to reasoning in a formal logical system.

One standard formal tool for reasoning about the knowl-
edge of several agents is the multi-agent systems framework
of (Fagin et al. 1995). In protocol verification, the strand
space formalism provides a similar model of message pass-
ing between several agents (Thayer, Herzog, & Guttman
1999). A strand space is a formal representation of all pos-
sible traces corresponding to runs of a specified protocol; it
enables a protocol analyzer to show that an intruder cannot
compromise a secure protocol. It has been proven that strand
spaces are actually less expressive than multi-agent systems
(Halpern & Pucella 2003). One notable weakness is that the
framework does not provide a suitable model of knowledge.

Formal tools developed for knowledge representation and
reasoning have also been used for protocol verification. One
such tool is logic programming under the stable model se-
mantics (Gelfond & Lifschitz 1991). Cryptographic proto-
cols have been encoded as logic programs where the stable
models correspond to attacks that an intruder can perform
(Aiello & Massacci 2001). There are at least two issues
with the encodings. First, the logic program must be hand-
crafted for each protocol to be analyzed. Second, the attack
must be specified in advance; new attacks are not detected
automatically. (Wang & Zhang 2008) proposes a very sim-
ilar approach. Neither approach is elaboration tolerant, and
neither intensional.

In related work, protocols have been represented in a
multi-set rewriting formalism, and then translated into the
same logic programming paradigm used in the previous two
approaches (Armando, Compagna, & Lierler 2004). Instead
of a model checker, this translation is solved with an answer
set solver, acting as an alternative back-end to the protocol
verification tool AVISPA1. To date, this translation approach
has not proven to be practical.

Hernández and Pinto propose an approach that is simi-
lar to ours; in particular they also use the situation calculus
(Hernández-Orallo & Pinto 1997). However, they focus on

1http://avispa-project.org/

producing proofs of correctness based on the actions of hon-
est agents. In contrast, we explicitly model the actions of
an intruder, and we view protocol verification as communi-
cating while guarding against attack. Our treatment of the
communication channel is also different: while Hernández
and Pinto define an unreliable broadcast channel, we define
a direct channel that allows the intruder the first opportunity
to receive a message. As such, our approach is best under-
stood as addressing a somewhat different problem than the
Hernández-Pinto approach.

There has of course been extensive work in reasoning
about action. Due to space limitations, we assume a famil-
iarity with the situation calculus (Levesque, Pirri, & Reiter
1998), and we assume Reiter’s solution to the frame prob-
lemn without further comment. We note that other action
formalisms would have worked equally well in formalising
the approach.

Motivation
Consider the Challenge-Response protocol and the attack
described previously. Several things may be noted about the
protocol specification. First, while the intent of the proto-
col and the attack are intuitively clear, the meaning of the
exchanges in the protocol are ambiguous. Consider the first
line of the protocol: it cannot mean that A sends a message
to B, since this may not be the case, as the attack illustrates.
Nor can it mean that A intends to send a message to B, be-
cause in the attack it certainly isn’t A’s intention to send the
message to the intruder! Moreover, there is more than one
action taking place in the first line, since A sends a message
and B is involved in the (potential) receipt of a message.
Hence, the specification language is inexpressive; notions of
agent communication should be made explicit.

As well, the specification leaves important aspects of the
problem unstated. For instance, it is not stated that the goal
of the protocol is to convince A that B is alive. Nor is it
stated how this goal is to be accomplished, in this case in-
directly via the encryption and sending of messages. Meta-
level reasoning is required to determine if a protocol is se-
cure, or if an attack on the protocol is possible. So notions
of protocol goal and attack should also be made explicit.

The protocol specification also does not state the fact that
NA is a freshly generated nonce, nor the fact that the key
KAB is only known to A and B. Moreover, the capabili-
ties of agents are not specified. For example, the intruder is
assumed to be able to intercept and redirect messages; how-
ever it can decrypt a message only if has the appropriate key.

Last, there is no recognition that a protocol execution will
take place in a broader context that includes other agent ac-
tions and other protocol executions. Nor does it take into
account the interleaving of actions with the execution of a
given instance of a protocol. For example, it is quite pos-
sible that a protocol could fail via what might be called a
“stupidity attack”. Consider the following exchange:

Another Attack on the Challenge-Response Protocol
1. A→ IB : {NA}KAB

1.1 A→ IB : NA

2. IB → A : NA

42



In this case A sends the unencrypted nonce to the intruder.
This of course is outlandish, but it nonetheless represents a
logically possible compromise of the protocol (and in fact
any other “secure” protocol). The point is that, much like
the qualification problem in planning, there is an assump-
tion that “nothing untoward happens” in a protocol execu-
tion. However, it may well be that there are “untoward hap-
penings” much more subtle than the stupidity attack; con-
sequently, it is desirable to have a framework for specifying
protocols that is general enough to take such possibilities
into account.

We argue that in order to provide a robust demonstra-
tion of the security and correctness of a protocol, all of the
above points need to be addressed. We suggest that an ex-
plicit, logical formalisation in the situation calculus provides
a suitable framework. Broadly speaking, our primary aim is
to clearly formalize exactly what is going on in a crypto-
graphic protocol in a declarative action formalism; such a
formalization will provide a more flexible model of agent
communication.

Approach
We present an outline of a formalization for cryptographic
protocols, using the Challenge-Response protocol as an ex-
ample. While we don’t completely cover all points raised
in the previous section, given space constraints, it should be
clear that any omissions are easily addressable.

Vocabulary
We formalize message passing systems in the situation cal-
culus. For our purposes, there are four main sorts of objects
(beyond actions and situations): agents, keys, messages and
nonces. In this section, we briefly describe each sort.

Agents: The term agent refers to both honest agents and to
the malicious intruder. We reserve the term principal to refer
to an honest agent. Variables a, a1, . . . range over agents.
The constant intr denotes the intruder. Unary predicates
Agent and Intruder have their obvious meanings.

Fluent Alive(a, s) indicates that a is alive in situation s.
It is a precondition for executing any action; for brevity how-
ever we omit it in action preconditions. Has(a, x, s) means
that a has access to x in situation s, where the variable x
ranges over messages, keys and nonces. This can be seen
as a kind of knowledge, but we use the epistemically neutral
term Has and interpret the meaning in terms of “access” to
information. We use Bel(a, f, s) to indicate that a believes
that the fluent f is true in situation s. The semantics of Bel
can be defined using the treatment of belief in (Scherl &
Levesque 2003) (where they use Knows for Bel).

Messages: Communication in our framework involves the
exchange of messages. Variablesm,m1, . . . range over mes-
sages. Unary predicate Msg is true of messages. Messages
are considered to be atemporal, and so are not indexed by
a situation. Messages are composed of a finite sequence
of parts, which may be nonces, agent names, or keys; each
part may be encrypted. We assume an appropriate situation

calculus axiomatization of lists, including the constructor
list(p1, . . . , pn) and selectors first(m), second(m), etc.
A useful state constraint2 is that if an agent Has a message,
then it has the message parts, for example:
Has(a,m, s) ∧Msg(m) ⊃ Has(a, first(m), s).

Keys: Variables k, k1, . . . range over keys. Predicate
Key(k) indicates that k is a key, while SymKey(k) and
AsymKey(k1, k2) have their expected meaning for sym-
metric and asymmetric keys respectively. ShKey(a1, a2, k)
indicates that k is a shared (symmetric) key for agents a1, a2.
PubKey(a, k) and PrivKey(a, k) give public and private
keys, respectively, of an agent.

Three functions are associated with keys: The value of
encKey(x) is the key which has been used to encrypt x. The
value of enc(x, k) is the result of encrypting x with k; and
dec(x, k) returns the corresponding decrypted message. The
following state constraint relates enc and encKey; others
(omitted here) relate public and private keys, etc.:
m1 = enc(m2, k) ⊃ k = encKey(m1).

Nonces: Variables n, n1, . . . range over nonces. The most
important feature of nonces is that they must be freshly
generated during the current protocol run. The fluent
IsFresh(n, s) is intended to be true if and only if the nonce
n has been generated “recently” with respect to the situa-
tion s. To this end, the functional fluent fresh(s) is used to
model the generation of new nonces during a protocol run
using the axiom fresh(s) = fresh(s′) ⊃ s = s′.

Actions: There are two classes of action terms. The class
of basic actions is comprised of actions for encryption and
decryption, sending and receiving messages, and compos-
ing messages. These actions are described next. Protocol-
specific actions are described later, in the section on repre-
senting a protocol in an action theory.

To ease readability we omit sort predicates. The variable
conventions given above implicitly specify the sort of each
variable. As usual, free variables are implicitly universally
quantified.

1. encrypt(a, x, k) – Agent a encrypts nonce or message x
using key k.
Precondition:
Poss(encrypt(a, x, k), s) ≡ (Has(a, x, s) ∧

(Has(a, k, s) ∨ ∃a′PublicKey(a′, k)))
Effect:
Has(a, enc(x, k), do(encrypt(a, x, k), s))

2. decrypt(a, x, k) – Agent a decrypts x using key k.
Precondition:
Poss(decrypt(a, x, k), s) ≡ (Has(a, x, s) ∧
Has(a, k, s) ∧ [(SymKey(k) ∧ k = encKey(x))∨
(AsymKey(k, k′) ∧ k′ = encKey(x))])

2State constraints can be problematic, and are not part of a ba-
sic action theory (Reiter 2001). Nonetheless they are useful in a
representational context, in initially specifying a theory.

43



Effect:
Has(a, dec(x, k), do(decrypt(a, x, k), s))

3. send(a1, a2,m) – Agent a1 sendsm intended for a2. The
intruder can masquerade as the sender. Fluent Sent indi-
cates that a message is in some fashion “posted”, that is
can be received by an agent.
Precondition:
Poss(send(a1, a2,m), s) ≡

((Has(a1,m, s) ∧ a1 6= a2) ∨ Has(intr,m, s))
Effect:
Sent(a1, a2,m, do(send(a1, a2,m), s))

4. receive(a1, a2,m) – a1 receives message m from a2.
The intruder can intercept messages. ¬Sent indicates that
the message is no longer available to be received.
Precondition:
Poss(receive(a1, a2,m), s) ≡ (Sent(a2, a1,m, s) ∨

(a1 = intr ∧ ∃a′ Sent(a2, a
′,m, s)))

Effect:
Has(a1,m, do(receive(a1, a2,m), s)) ∧
¬Sent(a2, a1,m, do(receive(a1, a2,m), s)) ∧
Recd(a1, a2,m, do(receive(a1, a2,m), s))

5. compose(a,m, x) – Agent a composes message m hav-
ing body x.
Precondition:
Poss(compose(a,m, list(x1, . . . xn)), s) ≡

(Has(a, x1, s) ∧ . . . Has(a, xn, s))
Effect:
Has(a,m, do(compose(a,m, list(x1, . . . xn)), s)) ∧
Msg(m) ∧ first(m) = x1 ∧ second(m) = x2 ∧ . . .

Since messages in a protocol always have fixed length,
an alternative is to have compose take message parts as
arguments. Thus there would be a set of compose actions,
one for each possible message length.

State Constraints
Some state constraints have already been mentioned. For
proving properties about protocols, some epistemic con-
straints are useful, for example, an agent knows what ac-
tions it carried out. In the Challenge-Response protocol we
use the following:

Sent(a1, a2,m, s) ⊃ Bel(a1, Sent(a1, a2,m), s)
Recd(a1, a2,m, s) ⊃ Bel(a1, Recd(a1, a2,m), s)

We can then state that if an agent a1 sends a fresh nonce en-
crypted in the key it shares with a2, and gets the unencrypted
nonce back, then a1 believes that a2 is alive:

(Bel(a1, Sent(a1, a2, en), s) ∧ en = enc(n, k) ∧
Fresh(n) ∧ ShKey(a1, a2, k) ∧
Bel(a1, Recd(a1, x, n), s)) ⊃ Bel(a1, Alive(a2), s)

Initial Situation
The initial situation contains information about the number
of agents, their keys, etc. Since the details are straightfor-
ward, we just outline what is required. For example, using
the Agent predicate, a finite set of principals is specified,
along with the intruder, intr. For each agent, we specify a
combination of private, public, and shared keys. Typically,
this is all we need to specify in the initial situation.

Adding Control Constraints
Parallelism is simulated by allowing concurrent interleav-
ing of actions. We model a Dolev-Yao intruder through the
following scheme, which allows the intruder to perform an
arbitrary number of actions before an honest agent can act:

loop {
Intruder executes some actions;
A principal executes one action

}

This can be implemented in our action theory as follows;
assume that fluent OkP isn’t used in the theory. Informally
OkP states that it is ok for a principal to execute an action.
Basic actions are modified as follows:

• For a principal: Each precondition Poss(a, s) ≡ φ
is modified to Poss(a, s) ≡ (φ ∧ OkP (s)). Each ef-
fect axiom ψ(do(a, s)) is replaced by ψ(do(a, s)) ∧
¬OkP (do(a, s)).

• Only the intruder can make OkP (s) true. A
new action onOkP is introduced with precondition
Poss(onOkP (a), s) ≡ (a = intr) and effect
OkP (do(onOkP, s)).

An advantages of this framework is that other models of
concurrency can be easily expressed. For example, it is
straightforward to specify that the intruder may carry out
one action, followed by some agent carrying out an action.
In this case, the intruder is limited in that it may not be able
to compromise all protocol runs. On the other hand, there
are some principal actions that an intruder cannot compro-
mise, such as encryptions and decryptions. So from an effi-
ciency standpoint it would make sense to allow an agent to
execute a full sequence of such “uncompromisable” actions.
To this end, a full implementation could make use of higher-
level imperative constructs, such as a sequence of actions as
given in Golog’s Do (Levesque et al. 1997).

Representing a Protocol in an Action Theory
The goal of the preceding framework is to completely and
explicitly specify a theory of agent communication involv-
ing encryption, freshly generated nonces, and a hostile in-
truder. In this setting, a protocol is regarded as a high-level
description of prescribed agent actions, designed to achieve
some goal in a dynamic, unpredictable, hostile environment.
Hence there are two things that remain to be specified:

1. how the protocol corresponds to sets of agent actions, and

2. the goal of the protocol.

44



Compiling a Protocol into an Action Theory Our goal is
to express a protocol such as the Challenge-Response proto-
col in terms of our action theory. Our ultimate goal is to
automate this process, so that any protocol can be translated
and integrated with our situation calculus theory. Hence the
ultimate goal is to provide a compiler for protocols into ac-
tion theories. At present we hand code a translation, giving
the Challenge-Response protocol as an example below. We
suggest via this example that a specification of a translator
presents no great technical difficulty.

There are two general methodologies for translating a pro-
tocol specification into our action theory, corresponding to
two levels of granularity:

1. Compile lines of a protocol into new, protocol-specific ac-
tions.

2. Compile each line of a protocol into two sequences of
previously-defined, basic actions. The first sequence cap-
tures the implicit composition and sending of a message;
while the second captures the implicit receipt and decrypt-
ing of a message.

We are currently implementing the first approach. Each line
of a protocol is implicitly made up of two parts, the first in-
volving the composition and sending of a message, and the
second involving the receiving and decrypting of the mes-
sage. Thus in the first line of the Challenge-Response pro-
tocol, the intent is that A compose a message and send it,
followed by B receiving it and decrypting it. However, note
that for every pair of successive lines in a protocol, the im-
plicit receive of one line can be combined with the send
of the next. Thus in the Challenge-Response protocol, B’s
receiving of a message fromA can be combined with a send-
ing of an unencrypted nonce back to A. Hence a n-line pro-
tocol can compile into n+ 1 protocol-specific actions – one
for the first line of the protocol, one for the last line, and
one for each of the n − 1 successive pair of lines. Thus the
Challenge-Response protocol would compile into three new
protocol-specific actions:

CR.1.send: Agent a1 composes a message with a fresh
nonce, encrypted in the key shared with a2, and sends it
to a2.

CR.1.rec.2.send:3 a2 receives the message, decrypts it,
and sends a message with the nonce to a1.

CR.2.rec: a1 receives the unencrypted nonce from a2.

We introduce the following constants and fluents: 〈pid〉
is an identifier inserted by the compiler giving the protocol
type and instance of the run. (We also use pid without angle
brackets as a variable.) Predicate Type extracts the protocol
type from its argument; here Type(pid) = “CR”. Fluent
Expect expresses control knowledge, that after initiating a
run of the protocol, a1 expects at some point to receive a
message from a2 comprising the second step in this instance
of the protocol. In this way, multiple instances of multiple

3The naming here is awkward, but is intended to be mnemonic
for the protocol name (CR), along with the receive part of one line
(1.rec) and the send part of the next (2.send).

protocols may be concurrently executed. Fluent Completed
indicates that the protocol has completed successfully.

We have the following action preconditions and effects:
CR.1.send:
Precondition:
Poss(CR.1.send(a1, a2,m, k, n), s) ≡
ShKey(a1, a2, k) ∧ n = fresh(s) ∧
m = list(〈pid〉, enc(n, k))

Effect: Let s′ = do(CR.1.send(a1, a2,m, k, n), s).
Sent(a1, a2,m, s

′) ∧Has(a1,m, s
′) ∧Has(a1, n, s

′)∧
Has(a1, enc(n, k), s′) ∧ Expect(a1, a2, 〈pid〉, 2, s′)

CR.1.rec.2.send:
Precondition:
Poss(CR.1.rec.2.send(a2, a1,m,m

′), s) ≡
Sent(a1, a2,m, s) ∧ Type(first(m)) = “CR” ∧
Has(a2, encKey(m), s) ∧
m′ = list(first(m), dec(second(m), encKey(m)))

The precondition is cumbersome, reflecting the fact that
several actions (including a receive and send) are combined
into one protocol-specific action.
Effect: Let s′ = do(CR.1.rec.2.send(a2, a1,m,m

′), s).
Recd(a2, a1,m, s

′) ∧ Has(a2,m, s
′) ∧

Has(a2, first(m), s′) ∧ Has(a2, second(m), s′) ∧
Has(a2, dec(second(m), encKey(m)), s′) ∧
¬Sent(a1, a2,m, s

′) ∧ Sent(a2, a1,m
′, s′)

The effect is likewise cumbersome: a2 has the message
and all its parts; the original message is marked as unavail-
able; and a new message is sent to a1.
CR.2.rec:
Precondition:
Poss(CR.2.rec(a1, a2,m), s) ≡
Sent(a2, a1,m, s) ∧ Type(first(m)) = “CR” ∧
Expect(a1, a2, first(m), 2, s)

Effect: Let s′ = do(CR.2.rec(a1, a2,m), s).
Recd(a1, a2,m, s

′) ∧ Has(a1,m, s
′) ∧

Has(a1, first(m), s′) ∧ Has(a1, second(m), s′) ∧
¬Sent(a2, a1,m, s

′)∧Completed(a1, a2, first(m), s′)

Expressing the Goal of a Protocol The goal of a protocol
will often have epistemic components. For the Challenge-
Response protocol, the overall goal is that if a protocol run
successfully completes, then the initiating agent will be-
lieve that the responding agent is alive; and moreover, it is
not possible that the initiating agent believe that the second
agent is alive when in fact it is not. (That is, the initiating
agent’s belief is indeed knowledge.)

(Completed(a1, a2, x, s) ∧ Type(x) = “CR”) ⊃
(Bel(a1, Alive(a2), s) ≡ Alive(a2, s))

This assumes that principals are alive or dead on the net-
work, independent of the situation. A more nuanced rep-
resentation would take into account the possibility that an
agent may become not Alive.

There are other parts to a successful protocol specification
that need to be specified. First, it must be possible for there
to be a successful run:
∃s. Completed(a1, a2, x, s) ∧ Type(x) = “CR”

That is, a protocol that can never complete will vacuously

45



never be compromised, but is of no use. Second, it would be
desirable to prove that if the intruder carries out no actions,
then the protocol is guaranteed to succeed.

The Attack on the CR Protocol
We now illustrate the approach by describing the attack on
the Challenge-Response protocol:4

1. Agent a1 initiates a round of the protocol with action:
CR.1.send(a1, a2, (“CR”, enc(n, k)), k, n)

One effect is Sent(a1, a2, (“CR”, enc(n, k)))
2. The intruder intercepts the sent message:

receive(intr, a2, (“CR”, enc(n, k)))
3. The intruder sends a message to a1, masquerading as a2:

send(a2, a1, (“CR”, enc(n, k)))
4. The message is received by a1 who understands it as an

initiation of a new round of the CR protocol by a2, and so
responds with:
CR.1.rec.2.send(a1, a2, (“CR”, enc(n, k)), (“CR”, n))

This action has an effect Sent(a1, a2, (“CR”, n)).
5. The intruder intercepts this message:

receive(intr, a1, (“CR”, n)).
This has effects Has(intr, (“CR”, n)), Has(intr, n).

6. The intruder sends the nonce to a1, masquerading as a2:
send(a2, a1, (“CR”, n))

7. The message is received by a1:
CR.2.rec(a1, a2, (“CR”, n))

a1 understands it as the completion of the original proto-
col; thus a1 believes a2 alive in the resulting situation.

Discussion
Thus far our focus has been on the development of an appro-
priate situation calculus formalization of cryptographic pro-
tocols. Our formalism is highly elaboration tolerant, in the
sense that it is easy to axiomatize agents and intruders with
different capabilities. For example, if we had information
about the topology of a particular network, it would be easy
to restrict an intruder to only intercept messages between
particular principals. In most existing logical approaches
to protocol verification, it is not straightforward to modify
agent capabilities for a specific application.

In many cases, proofs of protocol correctness rely on the
assumption that honest agents do not perform actions that
compromise secret information; however, it is not always
clear which actions are safe in this sense. In our framework,
we can discover these undesirable actions and we can for-
mally specify axioms that restrict honest agents from per-
forming them. To the best of our knowledge, this problem
has not been addressed in related formalisms.

There are two natural directions for future work on our
framework. First, as noted previously, we would like to be
able to directly compile protocol specifications into situation
calculus theories. At present, we perform this encoding by

4We suppress situation arguments in fluents for readability.

hand; it would be desirable to automate this process, thereby
facilitating the analysis of a wider range of protocols. The
second direction is to implement a system for automatically
finding attacks based on our situation calculus formalization.
Our intention is to implement the system using ConGolog.

References
Aiello, L., and Massacci, F. 2001. Verifying security proto-
cols as planning in logic programming. ACM Transactions
on Computational Logic 2(4):542–580.
Armando, A.; Compagna, L.; and Lierler, Y. 2004. Au-
tomatic compilation of protocol insecurity problems into
logic programming. In Alferes, J., and Leite, J., eds.,
JELIA’04, volume 3239 of LNAI, 617–627.
Brackin, S.; Meadows, C.; and Millen, J. 1999. CAPSL
interface for the NRL protocol analyzer. In Proceedings of
ASSET 99. IEEE Computer Society Press.
Burrows, M.; Abadi, M.; and Needham, R. 1990. A logic
of authentication. ACM TOCS 8(1):18–36.
Dolev, D., and Yao, A. 1983. On the security of public
key protocols. IEEE Transactions on Information Theory
2(29):198–208.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. Cambridge, MA: The MIT
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and deductive databases. New Generation
Computing 9:365–385.
Halpern, J., and Pucella, R. 2003. On the relationship
between strand spaces and multi-agent systems. CoRR
cs.CR/0306107.
Hernández-Orallo, J., and Pinto, J. 1997. Formal modelling
of cryptographic protocols in situation calculus. (Published
in Spanish as: Especificación formal de protocolos crip-
tográficos en Cálculo de Situaciones, Novatica, 143, pp.
57-63, 2000).
Levesque, H.; Reiter, R.; Lin, F.; and Scherl, R. 1997.
Golog: A logic programming language for dynamic do-
mains. Journal of Logic Programming 31.
Levesque, H.; Pirri, F.; and Reiter, R. 1998. Foundations
for the situation calculus. Linköping Electronic Articles in
Computer and Information Science 3(18).
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: The MIT Press.
Scherl, R., and Levesque, H. 2003. Knowledge, action, and
the frame problem. Artificial Intelligence 144(1-2):1–39.
Thayer, F.; Herzog, J.; and Guttman, J. 1999. Strand
spaces: Proving security protocols correct. JCS 7(1).
Wang, S., and Zhang, Y. 2008. A logic programming based
framework for security protocol verification. In Proc. IS-
MIS 2008, volume 4994 of LNAI, 638–643. Springer.

46


	front.pdf
	zbody
	ba
	bb
	bc
	bd
	be
	be2
	bf
	bg
	bh
	bi
	bj
	bk
	bl
	bm
	bn
	bo
	bp
	bq
	br
	bs
	bt
	bu
	bv




