
On the Representation and Verification of
Cryptographic Protocols
in a Theory of Action

James P. Delgrande and Aaron Hunter
School of Computing Science,

Simon Fraser University,
Burnaby, B.C.,

Canada V5A 1S6.
{jim,hunter}@cs.sfu.ca

Torsten Grote
Institut für Informatik,
Universität Potsdam,

D–14482 Potsdam, Germany
Torsten.Grote@uni-potsdam.de

Abstract—Cryptographic protocols are usually specified in an
informal, ad hoc language, with crucial elements, such as the
protocol goal, left implicit. We suggest that this is one reason that
such protocols are difficult to analyse, and are subject to subtle
and nonintuitive attacks. We present an approach for formalising
and analysing cryptographic protocols in a theory of action,
specifically the situation calculus. Our thesis is that all aspects of
a protocol must be explicitly specified. We provide a declarative
specification of underlying assumptions and capabilities in the
situation calculus. A protocol is translated into a sequence
of actions to be executed by the principals, and a successful
attack is an executable plan by an intruder that compromises
the specified goal. Our prototype verification software takes a
protocol specification, translates it into a high-level situation
calculus (Golog) program, and outputs any attacks that can be
found. We describe the structure and operation of our prototype
software, and discuss performance issues.

I. INTRODUCTION

A cryptographic protocol is a formalised sequence of mes-
sages exchanged between agents, where parts of the messages
are protected using cryptographic functions such as encryption.
These protocols are used for many purposes, including the
secure exchange of information, carrying out a transaction,
authenticating an agent, etc. Protocols are typically specified
in a quasi-formal language, as illustrated in the following
example:

The Challenge-Response Protocol
1. A→ B : {NA}KAB

2. B → A : NA

The goal is for agent A to determine whether B is alive on
the network. The first step is for A to send B the message NA

encrypted with a shared key KAB . NA is a nonce, a random
number assumed to be new to the network. The second step is
for B to send A the message NA unencrypted. The claim is
that since only A and B have KAB , and assuming that KAB

is indeed secure, then NA could only have been decrypted by
B, and so B must be alive. However, the protocol is flawed;
here is an attack in which an intruder I masquerades as B and

initiates a round of the protocol with A, thereby obtaining the
decrypted nonce:
An Attack on the Challenge-Response Protocol

1. A→ IB : {NA}KAB

1.1 IB → A : {NA}KAB

1.2 A→ IB : NA

2. IB → A : NA

This example is simplistic, but it illustrates the type of prob-
lems that arise in protocol verification. Even though protocols
are generally short, they are notoriously difficult to prove
correct. As a result, many different formal approaches have
been developed for protocol verification. However, often these
approaches are difficult to apply for anyone other than the
original developers [1]. Part of the problem is that there is
no clear agreement on what exactly constitutes an attack [2],
which leaves one with considerable ambiguity about the status
of a protocol when no attack is found. Moreover, as we
later discuss, the language for specifying a protocol is highly
ambiguous, and much information is left implicit.

Our thesis is that all aspects of a protocol need to be
explicitly specified. The main contribution of this paper is the
introduction of a declarative theory for protocol specification,
including message passing between agents on a possibly com-
promised network, expressed in terms of a situation calculus
(SitCalc) theory. The framework makes explicit background
assumptions, protocol goals, agent’s capabilities, and the mes-
sage passing environment. A protocol is compiled into a set
sequence of actions for agents to execute. These actions may
be interleaved with others, and indeed the framework allows
simultaneous runnings of multiple protocols. The intention
of an intruder is to construct a plan such that the goal of
the protocol, in a precise sense, is thwarted. A protocol is
secure when no such plan is possible. The approach is flexible,
and significantly more general than previous approaches. We
have used this approach to implement a verification tool that
finds attacks by translating protocol specifications into Golog
programs.

2010 Eighth Annual International Conference on Privacy, Security and Trust

978-1-4244-7550-6/10/$26.00 ©2010 IEEE 39

The next section motivates our approach, while the fol-
lowing section presents an axiomatisation of an instance of
the approach in the situation calculus. We then provide an
outline of our prototype software for protocol verification. We
conclude by comparing our approach with related work, and
discussing future directions.

II. BACKGROUND AND MOTIVATION

The standard intruder model used in cryptographic protocol
verification is the so-called Dolev-Yao intruder [3]. Informally,
the intruder can read, block, intercept, or forward any message
sent by an honest agent. Verification consists of encoding the
structure of a protocol in an appropriate formalism, and then
finding attacks that a Dolev-Yao intruder is able to perform.
Many different formalisms have been explored, including
epistemic logics [4], multi-agent systems [5], strand spaces
[6], [7], multi-set re-writing formalisms [8] and logic programs
under the stable model semantics [2].

Most existing work in protocol verification relies on the
same semi-formal specification of protocols that we used in
the introduction. Consider the Challenge-Response protocol
and the attack described previously. Several points may be
noted about the protocol specification. First, while the intent of
the protocol and the attack are intuitively clear, the meaning of
the exchanges in the protocol are ambiguous. Consider the first
line of the protocol: it cannot mean that A sends a message to
B, since this may not be the case, as the attack illustrates. Nor
can it mean that A intends to send a message to B, because in
the attack it certainly isn’t A’s intention to send the message
to the intruder! As well, in the first line of the protocol there is
more than one action taking place, since in some fashion A is
involved in sending a message and B is involved in the receipt
of a message. Hence, the specification language is imprecise
and ambiguous; notions of agent communication should be
made explicit.

The specification leaves crucial notions unstated, including:
the goal of the protocol, the fact that NA is a freshly generated
nonce, and the capabilities of the intruder. Moreover, the
specification does not take into account the broader context
in which the protocol is to be executed. This context might
contain other agents, interleaved protocol runs, and even
constraints on appropriate behaviour for honest agents. For
example, it is quite possible that a protocol could fail via what
might be called a “stupidity attack”. Consider the following
exchange:
Another Attack on the Challenge-Response Protocol

1. A→ IB : {NA}KAB

1.1 A→ IB : {NA}
2. IB → A : {NA}

In this case A sends the unencrypted nonce to the intruder.
This of course is outlandish, but it does represent a logically
possible compromise of the protocol. The problem is that,
much like the qualification problem in planning, there is an
assumption that “nothing untoward happens” in a protocol
execution. However, it may well be that there are “untoward
happenings” significantly more subtle than the stupidity attack;

consequently, it is desirable to have a framework for specifying
protocols in a general enough fashion in which such possibil-
ities may be explicitly taken into account.

We argue that in order to provide a robust demonstration of
the security and correctness of a protocol, all of the above
points need to be addressed. We suggest that an explicit,
logical formalisation in the SitCalc provides a suitable frame-
work. Our primary aim is to clearly formalize exactly what is
going on in a cryptographic protocol in a declarative action
formalism; such a formalization will provide a more nuanced
and flexible model of agent communication.

A. The Situation Calculus

In this section, we briefly introduce the situation calculus
(SitCalc). We provide only a superficial introduction here;
see [9] for details. The situation calculus is a multi-sortal
language that contains, in addition to the usual connectives and
quantifiers of first-order logic, at least the following elements.

1) A sort action for actions, with variables a, a′, etc.
2) A sort situation for situations, with variables s, s′, etc.
3) A sort objects for everything else.
4) A function do : action× situation→ situation.
5) A distinguished constant S0 ∈ situation.
6) A binary predicate Poss : action × situation, where

Poss(a, s) is intended to indicate that action a is pos-
sible in situation s.

Thus, the terms in a SitCalc action theory range over a
domain that includes situations and actions. A fluent is a
predicate that takes a situation as the final argument. A SitCalc
action theory includes an action precondition axiom for each
action symbol, a successor state axiom for each fluent symbol,
as well as the foundational axioms of the SitCalc. Informally,
a situation represents the state of the world, along with a
complete history of actions that have been executed. The
distinguished constant S0 represents the initial situation, and
the distinguished function symbol do represents the execution
of an action. Every situation can be written as follows:

do(An, do(An−1, . . . , do(A1, S0) . . .).

To simplify the notation, we will abbreviate this situation as
do([A1, . . . , An], S0). Hence, to state that it is possible to
break an object in a situation iff it is fragile, and that the result
of breaking an object is that it is broken, can be expressed as
follows:

Poss(break(x), s) ≡ Fragile(x, s)

Broken(x, do(break(x), s))

III. APPROACH

We present a formalization for cryptographic protocols,
using the Challenge-Response protocol as an example. While
we don’t cover all points raised in the previous section, given
space constraints, it should be clear that omissions are easily
addressable.

40

A. Vocabulary

There are four main sorts of objects (beyond actions and
situations): agents, keys, messages and nonces.

Agents: The term agent refers to both honest agents and to the
malicious intruder. Variables a, a1, . . . range over agents. The
constant intr denotes the intruder. Unary predicates Agent
and Intruder have their obvious meanings.

Fluent Alive(a, s) indicates that a is alive in situation s. It
is a precondition for executing any action; for brevity however
we omit it in action preconditions. Has(a, x, s) means that a
has access to x in situation s, where the variable x ranges
over messages, keys and nonces. This is can be seen as a kind
of knowledge, but we use an epistemically neutral term and
interpret the meaning in terms of “access” to information. We
use Bel(a, f, s) to indicate that a believes that f is true in
situation s. The semantics of Bel can be defined using the
treatment of belief in [10] (where they use epistemic fluent
Knows for Bel).

Messages: Communication in our framework involves the
exchange of messages. Variables m, m1, . . . range over mes-
sages. Unary predicate Msg is true of messages. Messages
are considered to be atemporal, and so are not indexed by
a situation. Messages are composed of a finite sequence of
parts, which may be nonces, agent names, or keys; each
part may be encrypted. We assume an appropriate situation
calculus axiomatization of lists, including the constructor
list(p1, . . . , pn) and selectors first(m), second(m), etc. A
useful axiom is that if an agent Has a message, then it has
the message parts, for example:

Has(a,m, S0) ∧Msg(m) ⊃ Has(a, first(m), S0).

Keys: Variables k, k1, . . . range over keys. Predicate
Key(k) indicates that k is a key, while SymKey(k) and
AsymKey(k1, k2) have their expected meaning for sym-
metric and asymmetric keys respectively. ShKey(a1, a2, k)
indicates that k is a shared (symmetric) key for agents a1,
a2. PubKey(a, k) and PrivKey(a, k) give public and private
keys, respectively, of an agent.

Three functions are associated with keys: encKey(x) is the
key which has been used to encrypt x. The value of enc(x, k)
is the message that results when x is encrypted with k, and
the value of dec(x, k) is the corresponding decrypted message.
We have the following relation between enc and encKey:

m1 = enc(m2, k) ⊃ k = encKey(m1).

Nonces: Variables n, n1, . . . range over nonces. Nonces must
be freshly generated during the current protocol run. The fluent
IsFresh(n, s) is intended to be true if and only if the nonce
n has been generated “recently” with respect to the situation
s. To this end, the functional fluent fresh(s) is used to model
the generation of new nonces during a protocol run using the
axiom:

fresh(s) = fresh(s′) ⊃ s = s′.

Actions: We complete our description of the vocabulary by
specifying the set of action terms. These include actions for
encryption and decryption, sending and receiving messages,
and composing messages. To ease readability we omit sort
predicates; instead we use the variable conventions given
above to specify the sort of each variable. Free variables are
implicitly universally quantified.

1) encrypt(a,m, k) – Agent a encrypts m using key k.
Precondition:
Poss(encrypt(a,m, k), s) ≡ (Has(a,m, s) ∧

(Has(a, k, s) ∨ ∃a′PublicKey(a′, k)))
Effect: Has(a, enc(m, k), do(encrypt(a,m, k), s))

2) decrypt(a,m, k) – Agent a decrypts m using key k.
Precondition:
Poss(decrypt(a,m, k), s) ≡ (Has(a,m, s) ∧
Has(a, k, s) ∧ [(SymKey(k) ∧ k = encKey(m))∨
(AsymKey(k, k′) ∧ k′ = encKey(m))])

Effect: Has(a, dec(m, k), do(decrypt(a,m, k), s))
3) send(a1, a2,m) – Agent a1 sends m intended for a2.

The intruder can masquerade as a principal. Fluent Sent
indicates that a message is in some fashion “posted”, that
is can be received by an agent.
Precondition:
Poss(send(a1, a2,m), s) ≡

((Has(a1,m, s) ∧ a1 6= a2) ∨ Has(intr,m, s))
Effect: Sent(m, a1, a2, do(send(a1, a2,m), s))

4) receive(a1, a2,m) – a1 receives message m from a2.
The intruder can intercept messages. ¬Sent indicates
that the message is no longer available to be received.
Recd records information concerning receipt of the
message.
Precondition:
Poss(receive(a1, a2,m), s) ≡ (Sent(m, a2, a1, s) ∨

(a1 = intr ∧ ∃a′ Sent(m, a2, a
′, s)))

Effect:
Has(a,m, do(receive(a1, a2,m), s)) ∧
¬Sent(a2, a1,m, do(receive(a1, a2,m), s)) ∧
Recd(a1, a2,m, do(receive(a1, a2,m), s))

5) compose(a,m, x1, x2, . . .) – Agent a composes mes-
sage m having parts x1, x2, Thus, compose is in
fact a set of actions, one for each possible number of
arguments. This presents no issues, since any protocol
will have fixed, known, message lengths.
Precondition:
Poss(compose(a,m, list(x1, . . . xn), s) ≡

(Has(a, x1, s) ∧ . . . Has(a, xn, s))
Effect:
Has(a, i, do(compose(a,m, list(x1, . . . xn), s))) ∧
Msg(m) ∧ first(m) = x1 ∧ second(m) = x2 ∧ . . .

B. Initial Situation

The initial situation contains information about the number
of agents, their keys, etc. Since the details are straightforward,
we just outline what is required. For example, using the Agent
fluent, a finite set of principals is specified. This set includes
the individual intr, whom we have called the intruder. As

41

well, for each agent, we specify a combination of private,
public, and shared keys. For brevity we consider just shared
(symmetric) keys here.

As well, in the initial situation we specify additional con-
straints; these are propagated, as usual in a basic action theory,
to successor situations. For proving properties about protocols,
some epistemic constraints are useful, for example, an agent
will know what actions it carried out. In the Challenge-
Response protocol we use the following:

Sent(a1, a2,m, S0) ⊃ Bel(a1, Sent(a1, a2,m), S0)
Recd(a1, a2,m, S0) ⊃ Bel(a1, Recd(a1, a2,m), S0)

We can then state that if an agent a1 sends a fresh nonce
encrypted in the key it shares with a2, and gets the unencrypted
nonce back, then a1 believes that a2 is alive:

(Bel(a1, Sent(a1, a2, en), S0) ∧ en = enc(n, k) ∧
Fresh(n) ∧ ShKey(a1, a2, k) ∧
Recd(a1, x, n, S0)) ⊃ Bel(a1, Alive(a2), S0)

C. Adding Control
Parallelism is effected by allowing (concurrent) interleaving

of actions. We model a Dolev-Yao intruder through the follow-
ing scheme, which allows the intruder to perform an arbitrary
number of actions before an honest agent can act:

loop {
Intruder executes some actions;
A principal executes one action

}

This is implemented in our action theory as follows. A new
fluent OkP is introduced to state that a principal may execute
an action. Basic actions are modified as follows:
• For a principal: Each precondition of the form
Poss(a, s) ≡ φ is modified to Poss(a, s) ≡ (φ ∧
OkP (s)). Each effect axiom ψ(do(a, s)) is replaced by
ψ(do(a, s)) ∧ ¬OkP (do(a, s)).

• The intruder can make OkP (s) true. A new
action onOkP is introduced with precondition
Poss(onOkP (a), s) ≡ a = intr and effect
OkP (do(onOkP, s)).

An advantage of this framework is that other models of agent
concurrency can be easily expressed. For example, in some
applications it might be reasonable to limit the intruder to
perform one action following each principal action, whereas
in other applications this might be too restrictive. At present,
we are interested in modelling a Dolev-Yao intruder, but we
stress that our underlying framework is flexible enough to
allow other options.

D. Representing a Protocol in an Action Theory

Our goal is to completely and explicitly specify a theory of
agent communication involving encryption, freshly generated
nonces, and a hostile intruder. A protocol then is regarded as
a high-level description of prescribed agent actions designed
to achieve some end, or goal, in a dynamic, unpredicatable,
hostile environment. There are two things that remain to be
specified:

1) how the protocol corresponds to sets of agent actions,
and

2) the goal of the protocol.

Encoding the Actions: In the approach, lines of a protocol are
compiled into new, protocol-specific actions. (The alternative
is to compile lines of a protocol into a sequence of our
already-defined primitive actions. While more perspicuous, we
don’t take this option, as it proved to be much less efficient
in the implementation.) Each line of a protocol is implicitly
made up of two complex actions, the first corresponding to
the composition and sending of a message, and the second
corresponding to the receiving and decrypting of the message.
Thus in the first line of the Challenge-Response protocol, the
intent is that A compose a message and send it, followed by
B receiving it and decrypting it. However, note that for every
line in a protocol except the last, the implicit receive of that
line can be combined with the send of the next. Hence a n-
line protocol can compile into n+1 protocol-specific actions.
For the Challenge-Response protocol, the protocol compiles
into three new protocol-specific actions:
CR.1.send:

Agent a1 composes a message with a fresh nonce,
encrypts it in the key shared with a2, and sends it to
a2.

CR.1.rec.2.send:
a2 receives the message, decrypts it, and sends a
message with the nonce to a1.

CR.2.rec:
a1 receives the unencrypted nonce from a2.

We introduce the following constants and fluents: 〈pid〉 is an
identifier inserted by the compiler giving the protocol type
and instance of the run. (We also use pid without angle
brackets as a variable.) Predicate Type extracts the protocol
type from its argument; here Type(pid) = “CR”. Fluent
Expect expresses control knowledge, for instance that after
initiating the protocol, a1 expects at some later point to receive
a message from a2 comprising the second step in this instance
of the protocol. In this way, multiple instances of multiple
protocols may concurrently be executed. Fluent Completed
with argument pid indicates that as far as the first agent is
concerned, the protocol has completed.

We have the following action preconditions and effects:
CR.1.send:
Precondition:
Poss(CR.1.send(a1, a2,m, k, n), s) ≡
ShKey(a1, a2, k) ∧ n = fresh(s) ∧
m = list(〈pid〉, enc(n, k))

Effect: Let s′ = do(CR.1.send(a1, a2,m, k, n), s).
Sent(a1, a2,m, s

′) ∧ Has(a1, n, s
′) ∧

Has(a1, enc(n, k), s′) ∧ Expect(a1, a2, pid, 2, s′)
CR.1.rec.2.send:
Precondition:
Poss(CR.1.rec.2.send(a2, a1,m,m

′), s) ≡
Sent(a1, a2,m, s) ∧ Type(first(m)) = “CR” ∧
Has(a2, encKey(m), s) ∧ first(m′) = first(m) ∧

42

second(m′) = dec(second(m), encKey(m)) ∧
Has(a2, encKey(m), s)

The precondition is cumbersome, reflecting the fact that two
composite actions (a receive and send) are combined here into
one protocol-specific action.
Effect: Let s′ = do(CR.1.rec.2.send(a2, a1,m,m

′), s).
Recd(a2, a1,m, s

′) ∧ Has(a2,m, s
′) ∧

Has(a2, first(m), s′) ∧ Has(a2, second(m), s′) ∧
Has(a2, dec(second(m), encKey(m)), s′) ∧
¬Sent(a1, a2,m, s

′) ∧ Sent(a2, a1,m
′, s′) ∧

first(m′) = pid ∧ second(m′) = dec(second(m)))
The effect is likewise cumbersome: a2 has the message and
all its parts; the original message is marked as unavailable;
and a new message is sent to a1.

CR.2.rec:
Precondition:
Poss(CR.2.rec(a1, a2,m), s) ≡
Sent(a2, a1,m, s) ∧ Type(first(m)) = “CR” ∧
Expect(a1, a2, first(m), 2, s)

Effect: Let s′ = do(CR.2.rec(a1, a2,m), s).
Recd(a1, a2,m, s

′) ∧ Has(a1,m, s
′) ∧

Has(a1, first(m), s′) ∧ Has(a1, second(m), s′) ∧
Completed(first(m), s′)

E. Expressing the Goal of a Protocol

The goal of a protocol will often have epistemic compo-
nents. For the Challenge-Response protocol, the overall goal
is that the initiating agent will know the responding agent is
alive following a successful run. That is, the initiating agent
will not believe that the responding agent is alive unless it is
in fact alive.

(Completed(pid′, s) ∧ pid′ = 〈pid〉) ⊃
(Bel(a1, Alive(a2), s) ≡ Alive(a2, s))

One may want to prove further protocol properties as well.
For instance, if the intruder carries out no actions, then the
protocol should be guaranteed to succeed. At a more basic
level, one might want to prove that there is a successful run:

∃s,m. (Completed(pid′, s) ∧ pid′ = 〈pid〉)

That is, a protocol that can never complete will vacuously
never be compromised, but is of no use.

F. The Attack on the CR Protocol

We illustrate the approach by describing the attack on the
Challenge-Response protocol:1

1) Agent a1 initiates a round of the protocol:
CR.1.send(a1, a2, (“CR”, enc(n, k)), k, n)

One effect is Sent(a1, a2, (“CR”, enc(n, k)))
2) The intruder intercepts the sent message:

receive(intr, a2, (“CR”, enc(n, k)))
3) The intruder sends a message to a1, masquerading as

a2:
send(a1, a2, (“CR”, enc(n, k)))

1We suppress situation arguments in fluents for readability.

4) The message is received by a1 who understands it as an
initiation of a new round of the CR protocol by a2:
CR.1.rec.2.send(a1, a2, (“CR”, enc(n, k)), (“CR”, n))

This has effect Sent(a1, a2, (“CR”, n)).
5) The intruder intercepts this message:

receive(intr, a1, (“CR”, n)).
This has effects Has(intr, (“CR”, n)) and
Has(intr, n).

6) The intruder sends the nonce to a1, masquerading as a2:
send(a2, a1, (“CR”, n))

7) The message is received by a1:
CR.2.rec(a1, a2, (“CR”, n))

a1 understands it as the completion of the original
protocol; thus a1 believes a2 alive in the resulting
situation.

Thus a1 executes appropriate steps in the protocol, while the
intruder executes a plan to compromise the protocol’s goal.

IV. IMPLEMENTATION

In order to automatically find attacks on a protocol, we
encode the SitCalc representation as a Golog program. In this
section, we sketch the details of our implementation.2

The basic actions in our Golog program are specified in the
following format:

primitive_action(encrypt(A,M,K)).

In addition to all of the actions in the SitCalc vocabulary,
two additional actions are also required: makeNonce and
makePID.

Translating successor state axioms into Golog is straightfor-
ward. For example, for the fluent sent, we have expressions
of the following form:

sent(A,B,M, do(ACT,S)) :- ACT=send(A,B,M).

Action preconditions are easy to express in Golog, as is the
initial state:

agent(intr,s0).
intruder(intr,s0).
key(k-bob,s0).

Our implementation makes particular use of a special func-
tional fluent next that starts with a value of 1 in S0 and
increases whenever a new object (message, nonce, or PID)
is constructed. For instance, if the intruder makes a new
nonce, the current value of next becomes a nonce and next
is incremented. In this way, next offers an infinite supply
of objects. Note that our usage of next essentially makes
it impossible for the value of a nonce to be guessed; this
is consistent with the standard “symbolic” approach to the
verification of cryptographic protocols.

Finding Attacks
We represent the notion that a fluent F is believed to be true

by introducing a fluent belF. For example, the following code
is used to indicate when an agent believes a given message
has been sent in the Challenge-Response protocol.

2Available at http://www.cs.sfu.ca/˜cl/software/software.htm.

43

belSent(A,B,M, do(ACT,S)) :-
(ACT = send(A,B,M));
(ACT = cr1s(A,B), next(M,S));
(ACT = cr1r2s(A,B,_), next(M,S));
belSent(A,B,M,S).

The goal of the entire protocol is that, once the protocol is
complete, A will believe B is alive if and only if B is actually
alive. This is coded as follows.

goal(S) :- belAlive(A,B,S), alive(B,S).

Given the Golog protocol specification and goal, we use
Reiter’s iterative deepener to find attacks on protocols.3 The
iterative deepener is started by calling the planbf goal with a
maximum depth:

?- planbf(10).

Our implementation discovered all attacks that we are aware
of, including those that appear in the literature, and the
aforementioned “stupidity attack”.

Performance Considerations

The Golog implementation of a protocol is easily defined,
and it is human readable. Much of the encoding is a direct
translation of the SitCalc action theory. Unfortunately, the
system suffers from relatively slow performance. For the
Challenge-Response protocol, the known attack is discovered
in under a day running on a standard desktop computer.
However, to find the attack on the well-known Needham
Schroeder protocol it would take much longer on the same
platform. For this reason, we are currently developing a second
implementation using the Scheme encoding of the SitCalc.
Initial experiments suggest that the search times improve by
two orders of magnitude.

V. AUTOMATIC TRANSLATION

The overall goal of the project is to find attacks on protocols
based solely on a simple specification, without requiring
the user to have specialised knowledge about our SitCalc
encoding. In our software, we use the following grammar as
a protocol specification language:

protocol = {transaction}
transaction = agent, “− >”, agent, “:”, message
message = basic-message, {“,”, basic-message}
basic-message = enc-message | agent | nonce | key
enc-message = “{”, message, “}”, key
agent = STRING NOT STARTING WITH ‘N’ OR ‘K’
nonce = STRING STARTING WITH ‘N’
key = sym-key | public-key | private-key
sym-key = “K-”, agent, “/”, agent
public-key = “K-”, agent
private-key = “KP-”, agent

Our software automatically translates protocols specified in
this grammar into Golog programs. The translator is a recur-
sive descent parser for the input grammar, written in Java.

3Available at http://www.cs.toronto.edu/cogrobo/kia/wspbf.

Note that our protocol grammar is based on the typical
“arrows and colons” specification, and it therefore does not
include the goal of the protocol. At present, we still need to
hand-code the goal of a protocol and add it to the output before
we can search for attacks.

VI. RELATED WORK

Most logic-based approaches to protocol verification are
influenced to some degree by the pioneering BAN logic of [4].
This approach has been highly influential because it reduces
protocol verification to reasoning about knowledge in a formal
logic. However, BAN logic itself consists of an ad hoc set of
rules of inference with no formal semantics. In this respect,
our approach differs from the BAN tradition. Rather than
specifying an ad hoc protocol logic, we encode protocols in a
flexible, general-purpose action formalism.

Hernández and Pinto propose an approach similar to ours,
notably due to the fact that they also use the SitCalc [11].
However, they focus on producing proofs of correctness based
on the actions of honest agents. By contrast, we explicitly
model the actions of an intruder, and we view protocol veri-
fication as the process of “planning an attack.” Our treatment
of communication is also different: while Hernández and
Pinto define an unreliable broadcast channel, we define a
direct channel that allows the intruder the first opportunity
to receive a message. As such, our approach is best viewed as
an alternative to the Hernández-Pinto approach, rather than a
continuation.

VII. DISCUSSION

This paper has introduced a declarative, logical approach
for the representation and analysis of cryptographic protocols.
Our thesis is that all aspects of a protocol need to be explic-
itly specified. That is, aspects of message passing, intruder
capabilities, agent actions (along with their preconditions and
effects) all need to be specified in a declarative, readable form.
Thus for example, the fact that the intruder may intercept or
redirect a message is explicitly stated as part of the problem
specification. There are several advantages of such an explicit
form: It is perspicuous, in that all information that is relevant
is explicitly stated. As well, having all aspects of a protocol
given in a declarative specification means that one can reason
about all aspects of a protocol, and so ideally there are no
“hidden assumptions” masked by the representation. The goal
is that, ideally, a software engineer will be able to read off
all aspects of a protocol given such a logical specification.
The downside to this level of generality is that computational
issues are a significant challenge. Indeed, while our software
is still at the prototype stage, we are able to handle only the
simplest of protocols in a reasonable amount of time.

Our theory for protocol specification is expressed in terms
of a situation calculus theory. The framework makes explicit
background assumptions, protocol goals, agent’s capabilities,
and the message passing environment. In alternative logic-
based approaches to protocol verification, such features are
often hard-coded or implicit in the definition of a fixed

44

logic. In the approach, a protocol is first compiled into a set
sequence of actions for agents to execute. These actions may
be interleaved with others, and indeed the framework allows
simultaneous runnings of multiple protocols. The intention
of an intruder is to construct a plan such that the goal of
the protocol, in a precise sense, is thwarted. A protocol is
secure when no such plan is possible. A valid protocol then
is one which is secure, which may complete, and in which
at completion the goal is provably established. The approach
is flexible, and significantly more general than previous ap-
proaches. As well, it is elaboration tolerant, in that in principle
it is straightforward to modify a specification. For example, it
would be easy to encode the topology of a particular network
or modify agent capabilities in our framework. In contrast,
in extant logical approaches to protocol verification, it is not
straightforward to modify the model for a specific application.

In the development of our approach, we observed that many
proofs of protocol correctness rely on the assumption that
honest agents do not perform actions that compromise secret
information; however, it is not always clear which actions
are likely to do so. In our framework, we can discover these
undesirable actions and we can formally specify axioms that
restrict honest agents from performing them. To the best of
our knowledge, this problem has not been addressed in related
formalisms. Similarly, ours is the first approach to encode a
declarative specification of the goals of a protocol; such a
specification gives new insight into the precise meaning of
protocol correctness.

In addition to the theoretical advantages gained by using
the situation calculus for encoding protocols, we also gain the
practical advantage that it is relatively easy to implement a
prototype verification system in Golog. Our software uses a
formal grammar to represent the structure of a protocol, and
translates expressions in the grammar into Golog programs
that encode situation calculus action theories. In principle,
this means that users of our software need not have specific
knowledge of the situation calculus in order to analyse the
security of a protocol.

There are several directions for future work. First, it would
be interesting to explore a wider range of protocols, such
as non-repudiation and fair exchange. Towards this end, we
are currently using the situation calculus to design a formal
approach to analyse the secure exchange of digitally signed
forms. One desirable improvement is to include the goals of a
protocol in the input specification, thereby eliminating the need
for a user to know the situation calculus. Another direction is
to improve the performance of the existing implementation. in
order to address longer and more complex protocols. We are
currently working on these improvements.

REFERENCES

[1] S. Brackin, C. Meadows, and J. Millen, “CAPSL interface for the NRL
protocol analyzer,” in Proceedings of ASSET 99. IEEE Computer
Society Press, March 1999.

[2] L. Aiello and F. Massacci, “Verifying security protocols as planning in
logic programming,” ACM Transactions on Computational Logic, vol. 2,
no. 4, pp. 542–580, 2001.

[3] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Trans. on Inf. Theory, vol. 2, no. 29, pp. 198–208, 1983.

[4] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,”
ACM Trans. on Computer Systems, vol. 8, no. 1, pp. 18–36, 1990.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about
Knowledge. Cambridge, Massachusetts: The MIT Press, 1995.

[6] F. J. Thayer, J. C. Herzog, and J. D. Guttman, “Strand spaces: Proving
security protocols correct,” Journal of Computer Security, vol. 7, no. 1,
1999.

[7] J. Y. Halpern and R. Pucella, “On the relationship between strand spaces
and multi-agent systems,” CoRR, vol. cs.CR/0306107, 2003.

[8] A. Armando, L. Compagna, and Y. Lierler, “Automatic compilation of
protocol insecurity problems into logic programming,” in Proceedings
of JELIA, 2004, pp. 617–627.

[9] H. Levesque, F. Pirri, and R. Reiter, “Foundations for the situation
calculus,” Linköping Electronic Articles in Computer and Information
Science, vol. 3, no. 18, 1998.

[10] R. Scherl and H. Levesque, “Knowledge, action, and the frame problem,”
Artificial Intelligence, vol. 144, no. 1-2, pp. 1–39, 2003.

[11] J. Hernández-Orallo and J. Pinto, “Formal modelling of cryptographic
protocols in situation calculus,” 1997, (Published in Spanish as: Especi-
ficación formal de protocolos criptográficos en Cálculo de Situaciones,
Novatica, 143, pp. 57-63, 2000).

45

