
Structured Documents: Signatures and Deception
Aaron Hunter

Thompson Rivers University, and
British Columbia Institute of Technology

British Columbia, Canada
aaron_hunter@bcit.ca

Abstract—Much of the information exchanged between agents
over a network is encapsulated in XML documents. An XML
document has a tree structure, and the meaning of the document
can be understood in terms of a set of label-value pairs. The
content of a document is often secured through digital signatures
applied to different sections, while the document is passed
between several agents. In this paper, we illustrate that this
process is insecure in the sense that a malicious agent can deceive
an honest agent to hold beliefs that are untrue. We provide
a formal framework for analyzing the security of structured
documents, based on the implicit epistemic impact that a signed
document will have on a recipient. This kind of analysis can
provide significant insight into deception and fraud detection.

I. INTRODUCTION

Information exchanged over a network is often encapsulated
in documents, which provide structure for the information
and provide constraints over admissible utterances. In prac-
tice, these are generally XML-documents, where the internal
structure is a tree. It is possible for a malicious intruder to
exploit this tree-structure to deceive an honest agent. In this
paper, we introduce a framework for analyzing the stucture
of a document with an eye towards detecting deception, and
we illustrate that our framework can be used to automatically
identify documents that are susceptible to attack.

Our framework is based on formal methods developed for
knowledge representation and reasoning. The basic idea is
to make the beliefs of communicating agents explicit, which
allows us to consider how these beliefs can be manipulated by
a malicious intruder. In previous work, we have focused on
the manipulation of beliefs through an exchange of encrypted
messages [8]. However, the notion of a “message” is not
sufficient for analyzing most communication. Instead, we need
to consider documents in which certain elements may be
signed and manipulated in a subtle manner.

This paper makes several contributions to existing literature.
The main contribution is the development of a new application
of belief logics and action formalisms in information security.
We illustrate that the dynamics of belief play a significant
role when we consider commitments and deception in the
context of signed documents. We introduce a simple formal
representation of a digitally signed document. We present a
precise definition of a flawed document, in terms of the belief
manipulation through an iterative signing procedure. Finally,
we establish some preliminary results, illustrating the potential
utility of formal models of reasoning for analyzing deception.

II. PRELIMINARIES

A. Documents

For the present paper, a document is an XML-like tree of
label-value pairs. We are not concerned with the exact syntax
of XML, we are simply concerned with the fact that structure
is imposed on the data. We will provide a formal definition of
a document in section 3. For motivation, one important kind
of XML document is a form. Forms serve several purposes in
practice: they provide an interface for data entry, they impose a
structure on data, and they allow an agent to commit to certain
data through a signature [4]. Traditionally, the security of the
information entered on a form has been guaranteed by the
physical properties of paper. However, the expenses related to
paper forms in business have been well-documented [3], and
there has been a great deal of interest in replacing paper forms
with electronic forms. In the case of digital forms, the security
must be guaranteed through the structure of the form and the
use of digital signatures.

We use forms as the main example of an document in this
paper, because XML standards have been developed for rep-
resenting digital forms. The formal representation employed
in this paper is inspired by the XFDL standard that is used
to encode the appearance of a form in IBM’s Lotus Forms
software [5]. XML trees representing forms in this standard
have a very simple structure. Each field is a node, and the
children of the field node provide information about the field.
The children of a field node might indicate many display
options, including the location of the field on the page, the
text beside the field, or the font size to be used for the text.
The meaning of a digital signature depends on which nodes
have been signed.

B. Logic and Belief

Assume an underlying set of propositional variables F . A
state is an interpretation of F , that assigns each fluent symbol
a truth value. Informally, a state represents a possible configua-
tion of the world. We introduce some basic terminology and
notation related to epistemic logic. For a complete introduction
to the subject, we refer the reader to [7]. For representing
beliefs, we will use the basic modal logic Kn with unary
modal operators B1, . . . , Bn. A modal formula of the form
Biφ is interpreted to mean that agent i believes the formula
φ to be true.

A belief state is a set of states representing the worlds that
some agents believes to be possible. A belief change operator

2012 European Intelligence and Security Informatics Conference

978-0-7695-4782-4/12 $26.00 © 2012 IEEE

DOI 10.1109/EISIC.2012.17

274



•���������

���������•�
�

�
��

�
�
�
��•

label
FirstName

•
value
∅

•
visible

1

•�
�

�
��

�
�
�
��•

label
LastName

•
value
∅

•
visible

1

Fig. 1. A Simple Document Tree

is a function ∗ that takes a belief state κ and a formula ψ as
input, and it returns a new belief state. For example, an AGM
belief revision operator is a belief change operator [2]. A belief
manipulation problem consists of an initial belief state κ, a
belief change operator ∗, a set of formulas Φ and a goal ψ. A
solution to the problem 〈κ, ∗,Φ, ψ〉 is a seqence φ1, . . . , φn ∈
Φ such that κ ∗ φ1 ∗ · · ·φn |= ψ. If we think of the formulas
in Φ as messages, then a solution to a belief manipulation
problem is just an argument that justifies ψ.

The notion of authentication refers to the process in which
an agent convinces another to hold certain beliefs about
identity [9]. An authentication protocol is secure if every
solution to the underlying belief manipulation problem entails
that the manipulator has a certain identity. It is well known
that this can be analyzed through a formal analysis of changing
beliefs of protocol participants [1], [6]. We will see that belief
manipulation becomes more subtle to detect in the case of
signed documents.

III. FORMAL FRAMEWORK

A. Abstract Document Trees

We are concerned with documents that can be logically
parsed into a tree of label-value pairs. However, to simplify
the discussion, we restrict attention to a very simple class of
trees. Let O be a distinguished set of option types, and let V
be a function that maps each O ∈ O to a set V(O) of option
values. A pair 〈O,V〉 is called a document scenario. Recall
that a rooted tree T is a connected graph with no cycles, and
a designated root vertex rT . In the following definition, we let
T (k) denote the set of nodes in T that are connected to the
root by a path of length k.

Definition 1: A document tree is a pair 〈T,Φ〉 satisfying
the following conditions:

1) T is a rooted tree of height 2.
2) For each v ∈ T (2), Φ(v) = (O, V ) for some O ∈
O, V ∈ V(O).

3) If Φ(v1) = (O1, V1) and Φ(v2) = (O2, V2), then O1 =
O2 iff v1 = v2.

We call the nodes in T (1) field nodes and for node n we
write n ∈ field(F ). We call the nodes in T (2) option nodes.
According to Definition 1, a tree consists of a set of fields
which each has an associated set of options. Every option has
a type and a value; fields can only have one value for each

option type. This is a very restricted class of trees, but it is
sufficient to represent simple documents such as XML forms.

Example Let Σ denote a finite alphabet of atomic symbols.
The standard form scenario with bound k is the pair 〈Ok,Vk〉
defined as follows:

• Ok = {label, value, visible}.
• Vk(label) = Σk

1 (the set of non-empty strings of length
less than k over Σ).

• Vk(value) = Σk
0 (the set of finite strings of length less

than k over Σ).
• Vk(v isible) = {0, 1}.

We remark that the bound k represents the maximum length
of labels and variables. This bound is included simply to
guarantee that the vocabulary is finite.

We conclude this section with some useful definitions and
results. In the following definition and for the rest of this paper,
we let ε denote the empty string.

Definition 2: A field node is empty if it has a child v such
that Φ(v) = (value, ε). A document tree is empty if every
field node is empty.

We can now define the notion of an instance of a empty
document. An empty document is a document with labels, but
no values. Informally, this is a document in where there are
fields or sections to hold data, but no data has been entered.

Definition 3: Let F = 〈T,Φ〉 be an empty document tree.
An instance of F is a document tree F1 = 〈T,Φ1〉 such that:

• If Φ(v) = (O, V ) and Φ1(v) = (O1, V1), then O = O1.
• Φ �= Φ1.

Hence, an instance of an empty document tree is a document
tree where the node labels are identical, but some node has a
non-empty value. We write F ⇒ F1 to indicate that F1 is an
instance of F . If F ⇒ F1 and F ⇒ F2, we write F1 ⇔ F2.

Proposition 1: Each document F is an instance of exactly
one empty document.

Proposition 2: The relation⇔ is an equivalence relation on
document trees.

B. Signed documents

Let A denote a fixed set of agents. We would like to extend
our definition of a document in a manner that allows us to
represent documents that have been signed by some agent.

275



Intuitively, signing a document commits the signer to the
information in the document. A signature also prevents further
modification. An important feature of digital signatures is that
they need not apply to a whole document.

Definition 4: A section in a document F = 〈T,Φ〉 is a
subgraph of T .

Let PF denote the collection of all sections of F . We
can now define the most basic kind of signature, which is
a signature applied to a section in an arbitrary document.

Definition 5: An unsigned unit is a pair [F, p] where F is
a document tree and p ∈ PF .

The most important feature of unsigned units is that they
can be signed by agents.

Definition 6: A signed unit is a pair consisting of an
unsigned unit and an agent A. We write [F, p]A to indicate
that the section p in F has been signed by agent A.

Definition 7: A partially signed document is a tuple
〈x1, . . . , xk〉 such that for some m ≤ k:

1) xi is a signed unit for all i ≤ m.
2) xi is an unsigned unit for all i > m.

For partially signed documents, we use the shorthand
〈FS , FU 〉 where FS is a complete signed document of length
m and FU is an unsigned document of length k−m. If m = 0,
it is an unsigned document. If m = k, it is a complete signed
document.

C. Document Content

Define the propositional signature P as follows:

P = {a(L,V ) | L ∈ Vs(label), V ∈ Vs(value)}.
Hence, P consists of propositional variables corresponding to
label-value pairs. Intuitively, a(L,V ) will be true just in case
L = V is true.

Let F = 〈T,Φ〉 be a document tree, let p ∈ PF and let
n ∈ field(F )∩ p. If n has children n1, n2 such that Φ(n1) =
(label, L) and Φ(n2) = (value, V ), then define content(n) =
a(L,V ). If n does not have such children, define content(n) =
⊥.

Definition 8: The complete content of a section p in a
document F is the following formula:

content(F, p) =
∧
{content(n) | n ∈ field(F ) ∩ p}.

The complete content of a document is not always visible
to a signing agent. For any n ∈ field(F ) ∩ p, n is invisible
if n has a child n1 ∈ p such that Φ(n1) = (v isible, 0). We
write n ∈ visible(F, p) if n is not invisible.

Definition 9: The visible content of a section p in a docu-
ment F , is the following formula:

viscontent(F, p) =
∧
{content(n) | n ∈ visible(F, p)}.

Informally, an agent is only able to see the visible content
of a document. We will see that some security violations are
related to confusion about the visible content, as opposed to
the complete content.

D. Incorporating Beliefs

We introduce a belief operator BA for each agent A.
Intuitively, BA(φ) is true if and only if agent A believes that
φ is true.

Definition 10: If [F, p]A is a signed unit, define
Bel([F, p]A) = BA(viscontent(F, p)).

This definition is easily extended to signed documents in
general.

Definition 11: Let FS = 〈[F1, p1]A1 , . . . [Fk, pk]Ak
〉

be a complete signed document. Then Bel(FS) =
BAk

(viscontent(Fk, pkn) ∧Bel(FS , pk−1)).
Note that this formula involves nested belief operators with

depth k. The following simple example illustrates the basic
idea.

Example Let F be the form from the previous example,
with the values “John” and “Smith” as values for the first
and last name fields. Let FS = 〈[F, p1]A, [F, ∅]B〉. In order
to simplify the notation, let john = aFirstName,John and let
smith = aLastName,Smith. By Definition 11:

Bel(FS) = BBBA(john ∧ smith).
Intuitively, this formula simply states that B believes that A
believes his first name is John and his last name is Smith.

Definition 12: For any set A of agents, an initial belief state
for A is a function β that maps every agent in A to a set of
interpretations over the set of formulas of the document AL,V .

Informally, we write BA(φ) if φ is true in every interpreta-
tion in β(A). We think of the interpretations in β(A) as the set
of states that A is willing to sign. This set of states can also
be interpreted as an abstract representation of a proposition
that stands for the information that the agent is committing to
in signing the document.

IV. SECURITY OF SIGNED DOCUMENTS

A. Actions

Documents are signed through an iterative process in which
an empty document is passed among potential signers. Each
signer modifies the document, then signs the document, then
gives it to another agent. In practice, agents can modify the
document by filling in values or adding new fields. This idea
is captured in the following definition.

Definition 13: Let A ∈ A. Let 〈FS , FU 〉 = 〈x1, . . . xk〉 be
a partially signed document, where xm is the last signed unit
in the sequence. Then 〈x′1, . . . x′k〉 is a valid transformation of
〈FS , FU 〉 if and only if:

1) For i �= m, xi = x′i.
2) For i = m, x′m = [F, p]A for some F such that PF

contains each pj contained in xj , for j < m.
Intuitively, a valid transformation is a partially signed doc-

ument that extends all of the signed units that have preceded
the current signature.

Let D be a distinguished agent called the designer. Let
A = {D,E1, . . . , Ek}, where each Ei is an agent called a
signer. An m-round signing procedure is executed as follows.

276



The General Signing Procedure
1. D chooses an unsigned document 〈FU , FS〉

and a recipient A ∈ A.
2. A does one of the following:

(a)Creates a valid transformation
〈F ′U , F ′S〉 and a recipient A′ ∈ A.

(b) Abort the game and halt.
3. If 〈F ′U , F ′S〉 is completely signed, halt.
4. Otherwise, return to step 2 with

inputs 〈F ′U , F ′S〉 and A′.

B. Defining Attacks

Several kinds of attacks can be defined. For example,
a meaning change attack cccurs when the meaning of a
document is changed, following signature. By contrast, a
meaning deception attack occurs when the actual meaning of a
document is different from the apparent meaning. In this paper,
we are interested primarily in meaning deception attacks.

Definition 14: Let A be a set of agents. An unsigned
document of length m is susceptible to a deception attack
relative to the initial belief state β if there is a complete run
of the signing procedure such that the outcome 〈FU , FS〉 has
the following properties:

• FU = ∅
• β(A) �|= Bel(FS), where A is the last agent to sign FS

Hence, a document is susceptible to an attack just in case
the last agent to sign is committing to a set of visible values
that are not believed to be true.

We remark that Definition 14 defines susceptibility to an
attack with respect to a given initial belief state. In general,
we will say that a document is susceptible to attack if it is
susceptible to a deception attack for some initial state β.

C. Basic Results

In order to find attacks on a specific document, it is
necessary to produce the corresponding document tree and
then search for sequences of signatures that constitute an attack
on the document. In order to facilitate the discussion, we
assume that the set of agents is {D,A}.

In the case of paper documents, we use an informal rule that
states that a signature applies to all fields that occur above the
signature on a page. In digital documents, the section p to be
signed must typically be specified by the document designer.

Proposition 3: Let [F, p] be an unsigned unit. There is an
initial belief state β, an agent A and a section p1 such that
Bel([F, p]) �= Bel([F, p1]).

Informally, this proposition states that [F, p] is susceptible
to an attack if A does not know the section p to be signed. This
is difficult to address in practice, because many documents do
not provide a clear visual representation of the nodes being
signed. Another result that should be clear is the following.

Proposition 4: If two option nodes have the same label, the
document is susceptible to a deception attack.

Formally, two option nodes with the same label is not
a problem in our framework provided that the values are
different. However, using the same label for two nodes will

make it possible for a user to commit to inconsistent values
which trivially leads to attacks.

Proposition 5: Suppose p1 is a subtree of p2. If [F, p2] is
susceptible to an attack, then [F, p1] is susceptible to attack.

This result states that security flaws are, in a sense, mono-
tonic. If a flaw exists for some given section, then the
same flaw exists for every sub-section. For this reason, it is
intuitively safer to specify a larger section to be signed.

V. CONCLUSION

We have provided a formal framework for the analysis of
digitally signed documents. Documents are represented by
trees and signatures are represented symbolically. Security
flaws are defined in terms of deception with respect to the
commitments that an agent makes when a document is signed.

One direction for future work is to implement our approach
to experiment with real XML documents. We have imple-
mented a viewer that defines filters that essentially translate a
document created by Lotus forms designer into a tree that is
suitable for formal analysis. This is helpful when searching for
attacks by hand. However, such proofs are difficult to produce
when a document is large. This can be accomplished by
treating documents as a special kind of message, then finding
attacks my analysing traces in a message passing system.

The development of automated tools is not the only direc-
tion for future research. We have made the assumption that
document signing is a linear process, but this is too restrictive
in some cases. For example, there are cases when two agents
are intended to sign a document simultaneously (for example
in a joint loan application). In such cases, we would need a
partial ordering over signatures, or even a more general graph
structure. Such a generalised signing structure seems to offer
no significant problems in principle; we leave this extended
case for future work.

REFERENCES

[1] Agray, N.; van der Hoek, W.; and de Vink, E. 2002. On BAN logics
for industrial security protocols. In Dunin-Keplicz, B., and Nawarecki, E.,
eds., Proceedings of CEEMAS 2001, 29–36.

[2] Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On the logic of
theory change: Partial meet functions for contraction and revision. Journal
of Symbolic Logic 50(2):510–530.

[3] Bertrand, R.; Hearn, J.; and Lett, B. 1995. The North American Pre- and
Post-Processing Equipment Market: Capturing the Benefits and Avoiding
the Pitfalls. Strategic Analysis Report, Gartner Group.

[4] Blair, B. and Boyer, J. 1999. XFDL: Creating Electronic Commerce
Transaction Records Using XML. Proceedings of the Eighth International
World Wide Web Conference.

[5] Boyer, J. 2005. Enterprise-level Web Form Applications with XFDL and
XForms. Proceedings of XML 2005 Conference and Exposition.

[6] Burrows, M.; Abadi, M.; and Needham, R. 1990. A logic of authentica-
tion. ACM Transactions on Computer Systems 8(1):18–36.

[7] Chellas, B. 1980. Modal Logic: An Introduction. Cambridge University
Press.

[8] Delgrande, J.P.; Hunter, A.; and Grote, T 2009. Modelling Cryptographic
Protocols in a Theory of Action. The Ninth International Symposium on
Logical Formalizations of Commonsense Reasoning.

[9] Guttman, J., and Thayer, J. 2000. Authentication tests. In Proceedings
2000 IEEE Symposium on Security and Privacy.

[10] Syverson, P., and Cervesato, I. 2001. The logic of authentication
protocols. In Focardi, R., and Gorrieri, R., eds., Foundations of Security
Analysis and Design, volume 2171 of Lecture Notes in Computer Science.
Springer-Verlag. 63–136.

277


