
Hunter Security Informatics 2014, 3:15
http://www.security-informatics.com/content/3/1/15

RESEARCH Open Access

Belief manipulation and message meaning for
protocol analysis
Aaron Hunter

Abstract

Agents often try to convince others to hold certain beliefs. In fact, many network security attacks can actually be
framed in terms of a dishonest that is trying to get an honest agent to believe some particular, untrue claims. While
the study of belief change is an established area of research in Artificial Intelligence, there has been comparatively
little exploration of the way one agent can explicitly manipulate the beliefs of another. In this paper, we introduce a
precise, formal notion of a belief manipulation problem. We also illustrate that the meaning of a message can be
parsed into different communicative acts, as defined in discourse analysis theory. Specifically, we suggest that each
message can be understood in terms of what it says about the world, what it says about themessage history, and what
it says about future actions. We demonstrate that this kind of dissection can actually be used to discover the goals of
an intruder in a communication session, which is important when determining how an adversary is trying to
manipulate the beliefs of an honest agent. This information will then help prevent future attacks. We frame the
discussion of belief manipulation primarily in the context of cryptographic protocol analysis.

Keywords: Belief change; Deception; Goal discovery

Introduction
In message passing systems involving two-way commu-
nication between agents, it is often the case that the
behaviour of one agent may lead to changes in the beliefs
of another agent. In fact, it is frequently the case that one
agent is explicitly interested in convincing another agent
to hold some particular beliefs. This is the case, for exam-
ple, in authentication protocols and online negotiation. In
this paper, we are interested in formalizing the manner
in which one agent may explicitly try to manipulate the
beliefs of another through the exchange of a sequence of
messages.
While the study of belief change operators has a

long history, there has been comparatively little research
exploring how these operators can be used to model the
manner in which one agent can manipulate the beliefs of
another. In this paper, we introduce a general definition
of a belief manipulation problem, which can be applied
accross a wide range of application domains. We illustrate
that belief manipulation problems can be used to model a

Correspondence: aaron_hunter@bcit.ca
British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby,
Canada

dishonest agent in protocol analysis, and we consider the
dangers and implications for widely accessed networks.
In order to address the notion of belief manipulation,

we need to be explicit about the way that an agent’s
beliefs change when a message is received. Messages
exchanged over open communication lines are frequently
encrypted in order to conceal the contents from mali-
cious intruders. However, information hiding is just one
goal that is achieved through encryption. Messages are
frequently encrypted as part of a larger cryptographic pro-
tocol to achieve higher level goals such as commitment
[1] or authentication [2]. The fact that encryption is crit-
ical to achieving higher level communicative goals is well
known, but there has been little attempt to specify the pre-
cise semantic impact of encryption. We suggest that, in
oder to understand the meaning of a message, it is often
important to consider what the sending agent is trying
to achieve. From this perspective, it can be useful to ask
questions of the following form:

• Why has the sender encrypted the given message
with the given key?

• Does the encryption tell us anything about the goals
or intentions of the sender?

© 2014 Hunter; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

mailto: aaron_hunter@bcit.ca
http://creativecommons.org/licenses/by/2.0

Hunter Security Informatics 2014, 3:15 Page 2 of 11
http://www.security-informatics.com/content/3/1/15

We use a logical framework to reason about these prob-
lems. First, following [3], we define a formal framework
to represent the perspective of all parties involved in
an exchange of messages. Second, we analyze the mean-
ing of encrypted messages in terms of speech act theory
[4,5]. Third, we consider how this information can be
used to hypothesize about the goals of the sender, thereby
improving security.

Motivation
Cryptographic protocols are sequences of encrypted mes-
sages that are exchanged to achieve communicative goals,
such as authentication or fair exchange. Since many pro-
tocols involve goals that amount to “convincing” another
agent to believe some claim, logics of knowledge and
belief have been used extensively for the verification of
cryptographic protocols [6-9]. In many cases, logics of
knowledge are used together with a formal model of a
multi-agent system and a precise definition of a message
trace [10,11]. An agent can then be said to know some fact
is true, if it is true in every possible trace. The Scyther tool
provides an illustrative example of this approach to proto-
col verification [12]. For this tool, there are three possible
outcomes of protocol verification. First, an attack may be
discovered. Second, it might be determined that no attack
exists. Third, it might be determined that no attack was
found in the search space, but the search space was not
complete.
An alternative approach to protocol analysis is to view

the traces simply as vehicles to convince the participants
that certain facts are true. This is the approach that we
have taken in our previous work, where we have encoded
the messages exchanged in a protocol in a variant of first-
order logic [13]. This approach to protocol verification can
be framed as a belief manipulation problem.
In general, a cryptographic protocol has the following

structure.

Generic protocol
1. sendM1
2. receive N1
...
2n-1. sendMn
2n. receive Nn

Suppose this is an authentication protocol for some
agent A. For an intruder, the goal is to convince the hon-
est agent B to believe that they are communicating with
some agent C �= A. In general, the way that this is accom-
plished is for A tomake B believe that A has KC , where KC
is some piece of secret information held by C.
For our purposes, what is important is that an attack on

this kind of protocol is directly concerned with manipu-

lating the beliefs of another participant. For example, one
agent might want to convince another agent to believe
that they hold a certain peice of secret information, or a
particular encryption key.
The standard assumption when analyzing this kind of

protocol is that a malicious agent is able to read, block and
re-direct any message that is sent. Therefore communica-
tion is essentially anonymous, because the recipient of a
message is never aware of the identity of the sender. Com-
munication is also unreliable in the sense that there is no
guarantee a sent message will ever be received.
We introduce a simple example, using standard notation

from the protocol verification literature. In this tradi-
tion, A and B are used to denote agents and the notation
A → B : M is used to express the fact that A sends B
the message M. A message encrypted with key K is writ-
ten {M}K . Finally, we use N (possibily with subscripts) to
denote a random number generated by an agent during
the execution of a protocol. A random number generated
in this manner is normally called a nonce, which is short
for “number used once”.

Example The following describes a simple crypto-
graphic protocol. The underlying assumption is that the
key K is shared by A and B, but no other agents.

The challenge-response protocol
1. A → B : {N}K
2. B → A : N

The goal of this protocol is to convince the agent A
that the agent B is alive on the network. It turns out that
this protocol is susceptible to a mirror attack, which we
discuss later.
Note that the key K in the example is a symmetric key.

While we focus primarily on protocols involving symmet-
ric keys, our approach can be applied equally well in the
setting of public key cryptography.
Protocol verification involves searching for attacks on

protocols, or constructing proofs that no attacks exist.
This has been studied extensively using a variety of meth-
ods, including formal logics [14,15], inductive theorem
proving [16], planning formalisms [17] and process alge-
bras [18]. While we are not directly concerned with proofs
of correctness in this paper, we employ the notation and
terminology from the protocol verification community in
our discussion of encrypted communication.

Preliminaries
Belief revision
Let F be a set of propositional symbols, informally rep-
resenting different properties of the world. A state is a
propositional interpretation of F. A belief set is a finite set
of formulas over F, representing the formulas that some

Hunter Security Informatics 2014, 3:15 Page 3 of 11
http://www.security-informatics.com/content/3/1/15

particular agent believes to be true. We can assume with-
out loss of generality that a belief set includes a single
formula, due to the finiteness assumption.
In practice, the most important difference between

belief and knowledge is that beliefs can be proved false
through observations or experience. Formally, given some
initial belief set φ, it is possible for an agent to obtain
new information γ that conclusively demonstrates that
the actual state is not consistent with φ. Resolving this
kind of problem is the domain of belief revision theory.
Roughly, an agent would like to adopt a new belief set
that is “close” to the original belief set, while support-
ing the new information. The influential AGM approach
to belief revision specifies a well-known set of postu-
lates dictating the manner in which beliefs should be
revised [19]. Briefly, a belief change operator ∗ is a func-
tion that takes two inputs: a formula φ representing the
initial beliefs, and a formula γ representing some new
peice of information. A belief change operator that sat-
isfies the AGM postulates is called an AGM belief revi-
sion operator. The AGM postulates can be formulated as
follows [20]:

[R1] φ ∗ γ implies γ .
[R2] If φ ∧ γ is satisfiable, then φ ∗ γ ≡ φ ∧ γ .
[R3] If γ is satisfiable, then φ ∗ γ is satisfiable.
[R4] If φ1 ≡ φ2 and γ1 ≡ γ2, then φ1 ∗ γ1 ≡ φ2 ∗ γ2.
[R5] (φ ∗ γ) ∧ β implies φ ∗ (γ ∧ β).
[R6] If (φ ∗ γ) ∧ β is satisfiable, then φ ∗ (γ ∧ β) implies
(φ ∗ γ) ∧ β .

Several semantic characterizations of these postulates
have been given in terms of orderings over states [20-22].
Roughly, AGMbelief change operators implicitly require a
plausibility ordering over possible states; new information
is incorporated by believing the “most plausible” states
consistent with the new information.

Speech acts
In our analysis of encrypted communication, we will be
interested in determining the precise meaning of each
message sent during communication. Our analysis relies
on the theory of speech acts, as developed by Austin [4]
and Searle [5]. Briefly, the intuition behind the theory of
speech acts is that a single utterance has several kinds
of meaning. The locutionary force of an utterance is the
direct meaning of the utterance, taken at face value. The
perlocutionary force is the indirect meaning of the mes-
sage, roughly characterized by what the utterance makes
another agent believe. The illocutionary force of a mes-
sage is any change in the world that is directly caused by
the utterance itself. The notion of illocutionary force is
most easily understandable in terms of examples, such as
making a promise. The act of uttering a promise changes

the world in the sense that it creates a commitment to do
something.
Although we will be studying the speech acts implicit

in cryptographic protocols, it is easier to introduce the
subject in the traditional setting of discourse analysis.

Example Consider an air traffic controller at a small
military airport that receives the following message from
an unknown commercial plane: “I am experiencing seri-
ous engine trouble.” In terms of speech act theory, this
utterance can be understood as follows.

• Locutionary force: The controller becomes aware
that the plane is having engine trouble.

• Perlocutionary force: The controller comes to believe
that the pilot is concerned about the safety of flying,
and is in need of assistance.

• Illocutionary force: A request to land at the airport.

The exact details of the Austin-Searle tradition will not
be critical for our purposes. However, we will be interested
in partitioning the meaning of an utterance with respect
to the terms defined above.

Disjoint belief domains
The are two different domains of information involved
in anonymous communication over a network. First,
there is information about the world. This information
is obtained from the literal meaning of the messages
exchanged. We refer to this kind of information as world
information. The second kind of information is related
to the communication session. This kind of informa-
tion includes the text of each message sent, the text of
each message received, the agent that sent each mes-
sage, and the agent that received each message. We
refer to this kind of information as exchange informa-
tion. Formal symbolic approaches to cryptographic pro-
tocol verification tend to focus exclusively on exchange
information.

Example Suppose that Alice receives a message with
the text “13:00-12-13-2008” encrypted with a key that
is shared with Bob, and no one else. In terms of world
information, this might communicate a time and date for
some particular event. The relevant event may be known
to Alice through context, or it might not. In terms of
exchange information, themessage indicates that Bob sent
a message at some point including this date. Note that
Alice is not justified in concluding that Bob sent the mes-
sage recently. She is, however, justified in concluding that
the message was intended for her because no one else
shares the given key with Bob.
The preceding example highlights precisely the kind

of reasoning we would like to formalize in the analysis

Hunter Security Informatics 2014, 3:15 Page 4 of 11
http://www.security-informatics.com/content/3/1/15

of encrypted communication. The important point to
highlight is that world information and exchange informa-
tion are related, but disjoint domains. This is not always
explicit in literature on cryptographic protocol verifica-
tion. In most logical work on verification, for example,
there is no useful notion of world information. As a result,
it is difficult to formalize the actual communicative con-
tent of many messages. By contrast, in work on Zero
Knowledge Protocols [23], there is clearly a need to dis-
cuss both world information and exchange information.

Belief manipulation
Intuition
Consider a domain involving two agents, which we call
the believer and themanipulator. The believer holds some
beliefs about the state of the world, including an ini-
tial belief set as well as a mechanism for revision. The
manipulator would like to make the believer believe some
distinguished formula ψ is true. The way the manipulator
tries to bring this about is by specifying a sequence of for-
mulas to be provided to the believer as information to be
incorporated. Hence, the manipulator is trying to provide
information that causes the believer to perform a suit-
able sequence of revisions. Note that the manipulator is
not providing an argument in the sense of argumentation
theory; each piece of information is treated as an indepen-
dent item by the believer, with no justification. Informally,
we describe the manipulator to be “sending messages” to
the believer. We assume that the believer receives all mes-
sages, but the receiver is not aware of the sender or the
sender’s goals. A preliminary version of the framework
presented in this section appeared in [24].
Given this simple description of the problem, there is

an obvious solution for the manipulator: the formula ψ

should be provided as information for the believer. If the
believer uses an AGM revision operator, then the suc-
cess postulate guarantees that the believer will believe ψ

after revision. Even if the believer does not use an AGM
revision operator, any rational approach to belief revi-
sion should at least treat ψ as “evidence” that supports ψ .
However, there are important examples where it is either
impossible or undesirable to simply send ψ .

1. Secret motive: The manipulator does not want the
believer to be aware that someone is trying to
convince them to believe ψ . In this case, indirectly
convincing the believer may be more appropriate.

2. Pursuasiveness: In the case where the manipulator
stands to gain directly from the truth of ψ , it is
unlikely that the message ψ would be very
convincing evidence to the believer.

3. Restrictive medium: The communication channel for
sending messages constrains the information that
can be sent to the believer.

In the following sections, we formalize belief manipula-
tion subject to these restrictions.

Formalization
The following definition provides a model of the dynamics
of belief for the opponent that is to be manipulated.

Definition 1. A definite opponent model is a pair 〈�, ∗〉,
where � is a belief set and ∗ is a belief revision operator.

An opponent model gives the initial beliefs of the
believer, as well as the revision operator to be used. As
stated previously, however, there might be uncertainty
about this information.

Definition 2. An opponent model is a set of definite
opponent models.

Intuitively, an opponent model consists of all definite
opponent models considered possible by the manipulator.
Define a message constraint to be a finite set of propo-

sitional formulas. Message constraints will be used to
represent the set of all formulas that can be sent in a par-
ticular domain.We are now able to define the basic setting
for belief manipulation.

Definition 3. A belief manipulation problem is a triple
〈O,C,ψ〉, where O is an opponent model, C = C1, . . . ,Cn
is a finite sequence of message constraints, and ψ is a for-
mula (called the goal). The number n is the length of the
scenario.

A belief manipulation problem encodes the dynamics of
belief for some opponent, along with a set of constraints
on the messages that the opponent may be sent.
We define two kinds of solutions for belief manipulation

problems.

Definition 4. A credulous solution for 〈O,C,ψ〉, is a
sequence of formulas such that φ1, . . . ,φn such that:

1. φi ∈ Ci, for i ≤ n
2. � ∗ φ1 ∗ · · · ∗ φn |= ψ for some 〈�, ∗〉 ∈ O.

Definition 5. A skeptical solution for 〈O,C,ψ〉, is a
sequence of formulas such that φ1, . . . ,φn such that:

1. φi ∈ Ci, for i ≤ n
2. � ∗ φ1 ∗ · · · ∗ φn |= ψ for every 〈�, ∗〉 ∈ O.

The appropriate solution depends on the application
under consideration. A credulous solution means that
an individual is able to convince at least one opponent
to believe ψ , whereas a skeptical solution means that

Hunter Security Informatics 2014, 3:15 Page 5 of 11
http://www.security-informatics.com/content/3/1/15

all opponents can be convinced. In attacks exploiting a
“weak” link, the credulous solution is all that is required.
Note that the implementation of a belief manipula-

tion solver is straightforward, given an implementation
of the appropriate belief revision operators. Most systems
that automate the calculation of belief revision operators
must also be capable of checking entailments, or at least
membership of a formula in a set. As such, the implemen-
tation of a belief manipulation solver simply requires the
application of n revision operations, as well as n simple
constraint checks. This can be carried out, for exam-
ple, in the COBA system for consistency-based belief
change [25].

Protocol verification
Finding an attack on a cryptographic protocol can now
be formulated as a belief manipulation problem. Consider,
for example, the Challenge Response protocol from the
introduction. This can be formalized as 〈O,C,ψ〉, defined
as follows:

• O consists of a set of key assignments believed by B,
as well as a conservative revision operator ∗.

• C is a sequence of constraints on the format of each
message, which follows the protocol structure.

• ψ is a suitable logical formulation of the statement A
has KC .

We remark that formulating the verification problem
in this manner has several advantages. First of all, by
specifying an opponent model, we are able to make the
assumptions about the beliefs of B explicit. This is not
always the case in existing approaches to protocol verifica-
tion, despite that fact that most attacks on communication
protocols rely on exploiting faulty assumptions.
The second advantage of this formulation is the fact

that we focus on the intruder goals as opposed to the
protocol goals. In logic-based approaches to verification,
proofs are typically produced in an abstract message pass-
ing environment. As such, given a proof of correctness for
a logical representation, it is difficult to conclude that the
“actual” protocol is correct. Given this state of affairs, it
is not clear what can be concluded from existing proofs
of correctness. By contrast, it is normally easy to trans-
late a logical formalization of an attack into an actual
attack.

Formalizing belief in message passing systems
Thus far, we have only considered belief manipulation in
the very general setting of propositional logic. We remark,
however, that this approach can be greatly improved in the
context of a message passing system. When information
is exchanged through encrypted messages, the believer
will not just have simple factual beliefs about the state of

the world. In addition, the believer will also have beliefs
about the messages that have been exchanged and the
current state of any relevant communication protocol. In
this section, we set up a formal framework for represent-
ing and reasoning about these different kinds of beliefs. In
the next section, we demonstrate how to dissect themean-
ing of an encrypted message, following our approach in
[26].

Vocabulary
We introduce a formal, logical framework that is suit-
able for analyzing the meaning of encrypted messages.
Our framework is essentially an extension of the mes-
sage passing systems of [3], but we explicitly focus
on the representation of sequences of messages that
may involve encryption. We require the following non-
empty sets of primitive symbols to describe messages
exchanged:

• A is a set of agents
• T is a set of texts
• K is a set of encryption keys

We remark that we have not taken the notion of a “mes-
sage” as a primitive concept. Instead, we define messages
in terms of texts and keys. Specifically, we define the set of
messagesM to be the smallest set satisfying:

T ⊆ M.
Ifm ∈ M then {m}k ∈ M for all k ∈ K

By using a separate domain for encrypted messages,
we essentially rule out the possibility of guessing the
encrypted value of a number. This kind of assump-
tion is common in logical work on protocol verifica-
tion. The significance of such assumptions is discussed
in [27].
We require a set F of propositional symbols to describe

the state of the world. Each element of F describes
some aspect of the world, and takes the value true or
false. For example, a propositional symbol Raining might
be used to specify if it is raining or not. An inter-
pretation is a function that assigns a value to every
element of F. Interpretations are understood to repre-
sent possible states of the world, and sets of interpreta-
tions are frequently used to represent the beliefs of an
agent.
Finally, we require a set of action terms designating

the activities that agents may perform. For our purposes,
the only action terms are of the form send(A,m,B) and
receive(A,m). We let E denote the set of all such action
terms, and we give the semantics of these actions below.
The following example illustrates how these sets of

primitive symbols are used.

Hunter Security Informatics 2014, 3:15 Page 6 of 11
http://www.security-informatics.com/content/3/1/15

Example We define a message passing system suitable
for discussing the Challenge-Response Protocol. Define
the set of agents and the set of messages as follows:

A = {A,B,P}
T = N (the set of natural numbers)
K = N.

Note that we are following a convention in which A and
B represent honest agents, and P is the perpetrator, which
is a dishonest intruder.We will use this notation each time
we return to this example. Note also that we will often say
that P receives a message from A or B, which really means
that P has intercepted the message. An honest agent will
not send a message to a dishonest agent in the framework
we are currently developing. The set F consists of propo-
sitional variables of the form HasKey(i, k) where i ∈ A
and k ∈ K. Informally, HasKey(i, k) is true if agent i has
key k. Note that the set of texts is typically larger than the
set of keys, but in this example we make the simplifying
assumption that the set of natural numbers serves both
roles.

Message passing
In this section, we give a series of formal definitions that
are useful for describing message passing systems with
cryptographic functions. First, we need to define a mes-
sage exchange, which is the analogue of an utterance in
discourse analysis.

Definition 6. An exchange is a triple 〈A1,m,A2〉, where
A1,A2 ∈ A and m ∈ M.

We call p1 the sender of the message m and we call p2
the recipient. A sequence of message exchanges defines a
history.

Definition 7. An exchange history (of length n) is an n-
tuple of message exchanges.

LetH denote the set of all exchange histories.
An agent is typically not aware of the messages that are

exchanged privately between other agents. Therefore we
need to introduce a formal notion of a believed history for
a particular agent.

Definition 8. A believed history is a set of exchange
histories.

Informally, a believed history is the set of all global
histories that some agent believes to be possible. There
is always some uncertainty about such histories, since
senders and recipients are anonymous.

We are now interested in defining an appropriate notion
of the local state of an agent in a message passing system.
Roughly, the local state should include three things: an
assignment of values to all propositional symbols, a his-
tory of messages exchanged, and a queue of actions to be
executed. Formally, we have the following definition.

Definition 9. A local state is a triple 〈s, h, e〉 where s is
an interpretation of F, h ∈ H and e is an action symbol
(representing the next action to be executed).

Again, since agents typically do not have complete infor-
mation, we define a believed local state as follows.

Definition 10. A local belief state is a triple 〈S,H ,E〉
where S is a set of interpretations, H is a set of histories,
and E is a set of action symbols.

We are now in a position to say something about action
effects. Following the tradition of [28], we give the effects
of actions by specifying a transition system over local
states. Formally, a transition system is just a directed
graph where the nodes are labelled with local states and
the edges are labelled with action symbols. If 〈s, h, e〉 is
a local state for some agent A, then the outcome of exe-
cuting send(A,m,B) is a state of the form 〈s, h · X, e〉,
where h · X is the result of appending 〈A,m,X〉 to the
exchange history h. Hence, the effects of a send action
are non-deterministic, but straightforward in the sense
that the exchange history is the only thing that changes.
The effects of a receive action are more difficult to spec-
ify, as an agent needs to dissect the meaning of the
message.

Dissecting themeaning of an encrypted utterance
Everymessage exchanged in a cryptographic protocol may
serve three related purposes, roughly corresponding to
the three kinds of speech act:

1. The content of the message may contain a statement
about the world. (locutionary act)

2. The message may convince the recipient to hold
some new beliefs. (perlocutionary act)

3. The message may satisfy a step in a protocol, and
simultaneously request an action from the recipient.
(illocutionary act)

We suggest that, in order to understand the meaning
of an encrypted message, one must consider all three
dimensions.
In order to provide a more comprehensive understand-

ing of meaning in cryptographic protocol analysis, we
introduce three force functions: �L, �P , and �I . Each
function takes a message M as an argument, and it

Hunter Security Informatics 2014, 3:15 Page 7 of 11
http://www.security-informatics.com/content/3/1/15

returns the "meaning" of M in terms of locutionary force,
perlocutionary force, and illocutionary force. Specifically,
we have the following:

�L(M) ⊆ 2F

�P(M) ⊆ 2H

�I(M) ⊆ 2E

Here we are using the standard logical notation in which
2X denotes the set of subsets of X. Hence, �L mapsM to a
set of interpretations of F, �P mapsM to a set of histories
and �I mapsM to a set of actions.
Let 〈S,H ,E〉 be a local belief state. When a message is

received, each component might need to change. There-
fore, we will need three revision operators ∗L, ∗P and ∗I in
order to incorporate all of the information contained in a
single message. Suppressing subscripts on these operators
for readability, receiving a message M should lead to the
new local belief state 〈S′,H ′,E′〉, where:

S′ = S ∗ �L(M)

H ′ = H ∗ �P(M)

E′ = E ∗ �IM

In the next sections, we describe the three force func-
tions individually. We then briefly discuss the associated
revision operators.

Locutionary force
The locutionary force of a message M is the unencrypted
contents ofM.

Definition 11. For M ∈ M:

1. IfM ∈ T, then �L(M) = �L(M).
2. IfM = {N}k , then �L(M) = �L(N).

For some cases, we need to translate the message M
into a meaningful proposition in the appropriate vocabu-
lary. In other cases, the message M really does not have
a locutionary force. This is the case, for example, in the
Challenge Response Protocol: a message consisting of
a single random number does not make any statement
about the configuration of the world.

Perlocutionary force
The perlocutionary force of a message is anything that the
message makes a recipient believe related to the exchange
history. Hence, the perlocutionary force of a message is
the collection of implicit inferences that we make regard-
ing the identity of the sender, based on the structure of the
message.
Before defining �P , we make a couple of remarks about

the nature of our revision operator.Wewould like to revise
by a set of possible histories, so �P(M) should be the set

of histories that are possible given that someone sent the
message M. Therefore, a message that gives no indication
of the sender would correspond to the set of all histories
where that message was sent. By contrast, a message that
could only be sent by a particular individual would cor-
resond to a smaller set of histories. For any message M,
let HM denote the set of histories where the messageM is
sent at some point.

Definition 12. For M ∈ M:

1. IfM ∈ T, �P(M) = HM .
2. If the previous history H ∈ HM , then �P(M) = HM .
3. If the previous history H �∈ HM :

• IfM = {N}k1 and {N}k2 was previously sent,
then �P(M) = H ′ where H ′ is the set of
histories where some agent A holding k1
previously received {N}k2 and then sent M.

Condition (3) is a more general version of the so-called
message meaning postulate of BAN logic [14]. Basically,
our version of the postulate deals with sequences where A
sends {N}k1 and then A receives {N}k2 . If neither of these
messages occurs elsewhere in the history, we are justified
in concluding that some agent holding both k1 and k2 has
seen the messageN. Of course this may not always be cor-
rect; we may have been incorrect about the assignment
of keys and the honesty of other agents. Nevertheless,
the conclusion is the intended conclusion under “normal”
circumstances.

Illocutionary force
The illocutionary force of a message is defined in terms of
what it makes the recipient do. In our framework, there
are two kinds of actions that an agent can perform: send
actions and receive actions. We make the assumption that
a receiving action is never a security risk, as receiving a
message simply amounts to obtaining information. Cer-
tainly this assumption is not true in some applications,
such as computer networks where messages might con-
tain executable code. In such a context, it is important to
be aware if an adversary is trying to get an honest agent
to perform a receive action. However, this is not the tar-
get domain that we have in mind. We are concerned with
agents communicating text messages. As such, the only
kind of action with which we are concerned is a send
action.
The following definition gives a straightforward proce-

dure for determining the illocutionary force of a message.

Definition 13. Let PROT be the set of protocols available
on the network. For a received message M, �I(M) is the
determined by following this procedure:

Hunter Security Informatics 2014, 3:15 Page 8 of 11
http://www.security-informatics.com/content/3/1/15

1. For each p ∈ PROT , check if M matches step n in
some protocol for which steps 1 up to n−1 have been
performed. If not,�I(M) = ∅. If so, proceed to step 2.

2. If the sender of M in every possible history matches
the sender from steps 1 up to n − 1 and step n + 1 is
a send action for A, then �I(M) is the next send
action in the protocol. Otherwise, �I(M) = ∅.

Revision operators
The force functions specify precisely what an encrypted
message asserts, but the force functions alone do not indi-
cate how an agent should interpret the new information.
We also need to specify the behavior of the three revision
operators ∗L, ∗P and ∗I . Giving a complete specification of
these operators is beyond the scope of this paper, because
it is highly dependent on the application. However, in this
section, we give a basic idea.
The locutionary revision operator ∗L is basically a “stan-

dard” belief revision operator, in the sense that it deals
with incorporating new information about the world. In
order to define such an operator, it is both necessary
and sufficient to define a total pre-order over interpre-
tations of F that represents the relative plausibility of
each possible state of the world. Given such an order-
ing, new information is incorporated by believing the
most plausible states that are consistent with the new
information.
The perlocutionary revision operator ∗P is also a stan-

dard belief revision operator, but it operates on histories.
Therefore, we can define ∗P by specifying an ordering over
histories. One suitable ordering can be defined as follows.
Let A be a fixed agent with local history HA. We define a
total pre-order< overH that partitions the set of histories
into four disjoint classes:

• MIN: The set HA.
• BACK: The set of histories obtained by extending

elements of HA with message exchanges that do not
involve A.

• PERMUTE: The set of histories obtained from BACK
by changing senders or recipients on some messages.

• INIT: The set of histories initially differing from the
initial beliefs of A.

We can define < according to the following coarse
ordering:

MIN < BACK < PERMUTE < INIT .

Within each subclass, the ordering< can be refined fur-
ther. For example, histories that postulate very few new
message exchanges might be preferred over those that
postulate a large number of message exchanges. There
are many ways to fill out this ordering, we have just
provided one plausible initial construction. The levels in

this ordering are intuitively plausible because each higher
level requires an agent to abandon beliefs with stronger
empirical support.
Finally, we need to define the illocutionary revision

operator ∗I . We are referring to this operator as a revi-
sion operator, but this is not a true revision operator in
the sense of the AGM revision theory because there is no
clear notion of “inconsistency” for sets of actions. How-
ever, the function ∗I is used to modify the set of actions to
be executed in response to messages received. This can be
done by simply adding all elements of �I(M) to the queue
of actions to be executed.

Goal discovery
Basic algorithm
Dissecting the meaning of a message in terms of speech
acts is useful for analyzing the goals of an adversary. In this
section, we present an algorithm for automating the goal
discovery process. The basic algorithm takes three inputs:

• An exchange history H.
• An agent A trying to uncover the goals of an

adversary.
• An agent P representing a believed adversary.

The output of the algorithm is a pair (Gdone,Gout). The
first component of the output is a list of messages that A
has already sent in response to the adversary’s requests.
The second component is a list of messages that the
adversary is trying to get A to send, but A has not yet sent.
Let H be an exchange history of length n. For i ≤ n,

let H(i) denote the ith message exchanged in this history.
The following algorithm can be used for automated goal
discovery.

GOAL DISCOVERY
Set Perf = ∅.
Set Queue = ∅.

1. Set i = 1.
2. Let H(i) = 〈A1,M,A2〉.
3. If A1 = A, then addM to Perf.
4. If A1 = B and A2 = A,
then add �I(M) to Queue.
5. If i < n, set i = i + 1 and goto 2.
6. Return (Queue ∩ Perf ,Queue − Perf).

This goal discovery algorithm requires a complete
exchange history as input, which is not generally a plau-
sible assumption. Instead, the agent A is more likely to
have a set of possible exchange histories as input. In this
case, the goal discovery algorithm can be run on each
exchange history in pointwise fashion, giving a set of
(Gdone,Gout) pairs. We can then describe the goals of the
adversary in terms of skeptical and credulous reasoning.

Hunter Security Informatics 2014, 3:15 Page 9 of 11
http://www.security-informatics.com/content/3/1/15

A skeptical approach to achieved goals (resp. outstand-
ing goals) would identify a message as a goal if it is in
every Gdone set (resp. Gout set). By contrast, a credulous
approach identifies a goal if it is in any Gdone (resp. Gout)
set.
Note that the purpose of the goal discovery algorithm

is really to identify what the intruder is trying to make
another agent belief. Hence, we can perform the goal
discovery algorithm to identify the belief manipulation
problem the intruder is trying to solve. Once this problem
is identified, we can then try to determine if it has a solu-
tion; this would correspond to an attack on the protocol
that must be prevented.

A concrete example
In this section, we present a concrete example of our
approach. Consider the following brief exchange history
on a network where the Challenge-Response Protocol is
used to check for liveness. Recall that K is a key shared by
A and B.

1. 〈A, {21312}K ,P〉
2. 〈P, {21312}K ,A〉

The initial local belief state for A is 〈S,∅,∅〉 where S is
the set of states where no other agent has the message
21312. Hence, there are no actions in the initial action
queue for A. After step one of the algorithm, we add
send(A, {21312}K ,B) to Perf and we do not changeQueue.
In step two of the algorithm, we see that A has received
{21312}K and the illocutionary force of this message is a
request to send 21312. Hence, send(A, 21312) is added to
Queue. The algorithm now terminates, and we can see
that the adversary is trying to get A to send the message
21312.
What is the significance of this result? Basically, we do

not want to provide the adversary with any information
that the adversary is trying to get. This is the point of the
goal discovery algorithm: if we can find a message that the
adversary wants us to send, we can then avoid sending it.
Hence, an automated system could simply specify that the
message 21312 must not be sent by A for the remainder
of the session. In this example, we can also hypothesize
about the intentions of the adversary. For example, we can
hypothesize that the adversary would like to receive the
message 21312 in order to send it back to someone else.
Furthermore, by looking at the perlocutionary force of the
message, we can see that receiving 21312 would convince
A that the agent B is alive on the network. This analy-
sis leads us to conclude that the adversary is requesting
21312, because the adversary wants to impersonate B.
This example is far more simple than the situations

encountered in practice, but it illustrates the basic idea. By
monitoring the goals of an adversary in terms of message

requests, we are able to block an adversary from receiving
those messages.

Conclusion
In this paper, we have discussed the notion of a belief
manipulation problem, specifically in the context of cryp-
tographic protocol verification. Formally, a belief manip-
ulation attack can occur in any environment where
intelligent agents have fallible, dynamic beliefs. In order
to manipulate the beliefs of an agent, you must respect
certain constraints and you must understand the way that
your opponent’s beliefs change. In this paper, we have
represented the constraints as sets of propositional for-
mulas and we have represented the belief change process
in terms of AGM belief revision operators. The result
is a simple, concrete formulation of a belief manipula-
tion problem that can be applied accross a wide range of
applications.
In order to understand how beliefs can be manipu-

lated in a message passing system, we have also pre-
sented a high-level approach to specifying the meaning
of encrypted utterances in terms of speech act theory.
We have presented a formal framework that dissects the
content of a message into three distinct communicative
components. We have argued that dissecting the mean-
ing of encrypted messages in this manner can be useful
in the analysis of encrypted communication over anony-
mous networks. In particular, we have shown that this
kind of analysis can be used to uncover the goals of an
adversary. In many cases, this corresponds to identify-
ing the belief manipulation problem that the adversary is
trying to solve.
By explicitly uncovering the goals of an adversary, we are

able to improve security in two different ways. First, we
are able to avoid sending the messages that the adversary
wants to receive. Second, we are able to analyze potential
uses for this information.

Future work
This has been primarily an expository paper, as we are
introducing a new form of attack to be considered in a
message passing system. But this kind of attack is common
in practice; particularly in the domain of protocol verifi-
cation discussed in this paper. There are several different
directions for future research.
One direction to consider is theoretical: exploring the

properties of belief change operators that are suitable for
modelling belief manipulation effectively. For example,
we have recently explored the relationship between belief
revision and trust [29], and it is clear that the manner in
which trust is modelled will impact the way that beliefs
can be manipulated. We are currently exploring a vari-
ety of formal belief change operators that incorporate a
general model of trust.

Hunter Security Informatics 2014, 3:15 Page 10 of 11
http://www.security-informatics.com/content/3/1/15

The second direction to consider is directly related to
cryptographic communication over message passing sys-
tems. We illustrated that many attacks on cryptographic
protocols can be formulated as belief manipulation prob-
lems. As there are many tools available for finding attacks
on protocols, it is possible that some of these tools could
be extended to solve belief manipulation problems in a
more general context. We suggest, for example, that this is
the case for our own protocol verification tool presented
in [13].
The third direction for future research is to explore fur-

ther applications of belief manipulation. Our particular
interest is the use of belief manipulation to model com-
munication on the Smart Grid. It is well-known that the
Smart Grid introduces a number of new security issues
that must be addressed [30]. In this domain, agents need
to communicate and make decisions about how to use,
store, and trade electrical power. As such, an agent must
have two pieces of information for each point in time:
the amount of power needed, and the price of power.
In order to define specific belief manipulation attacks on
the Smart Grid, we need to use propositional variables to
encode both historical records of power usage as well as
future predictions. In this general setting, there are sev-
eral obvious cases where belief manipulation would be a
risk.

• An opponent might convince an honest agent to
believe that prices will be inflated/deflated at a later
time.

• An opponent might convince an honest agent to
believe certain amounts of power will be
needed/available later.

These examples are relatively mundane, in that the risk
is primarily an economic risk to an agent on the Smart
Grid. However, analyzing this kind of attack is impor-
tant for several reasons. First, analyzing this kind of attack
forces us to formalize the way that beliefs change due
to message passing. Second, these attacks make us con-
sider the perspective of an adversary. When we look at
the actions of an adversary in terms of their effects on our
beliefs, then it becomes more evident where the risks are.
Third, from a bargaining perspective, an intelligent Smart
Grid user will want to exploit strategies based on belief
manipulation to their own economic gain. We are not
aware of any work that focuses on Smart Grid violations
and attacks that are based explicitly on the manipulation
of the beliefs of other agents. In future work, we intend to
address this problem more precisely, following our exist-
ing approach to modelling and verifying communication
protocols.

Competing interests
The author declares that he has no competing interests.

Acknowledgements
The author would like to acknowledge the support of NSERC and the VP
Research Seed Fund at BCIT. The author would also like to thank the reviewers
from both Security Informatics and the Pacific Asia Workshop on Intelligence
and Security Informatics for helpful suggestions on earlier versions of this
manuscript.

Received: 17 January 2014 Accepted: 29 September 2014

References
1. G Brassard, D Chaum, C Crepeau, Minimum disclosure proofs of

knowledge. J. Comput. Syst. Sci. 37, 156–189 (1988)
2. R Needham, M Schroeder, Using encryption for authentication in large

networks of computers. Commun. ACM. 21(12), 993–999 (1978)
3. R Fagin, J Halpern, Y Moses, M Vardi, Reasoning About Knowledge (MIT

Press, Menlo Park, California, 1995)
4. J Austin, How To Do ThingsWithWords (Harvard University Press,

Cambridge, Mass, 1962)
5. J Searle, Speech Acts (Cambridge University Press, Cambridge, England,

1969)
6. L Aiello, F Massacci, Planning attacks to security protocols: case studies in

logic programming, in Computational Logic: Logic Programming and
Beyond, Essays in Honour of Robert A. Kowalski, ed. by A Kakas, F Sadri, vol. 1,
(2001)

7. A Armando, L Compagna, Y Lierler, Automatic compilation of protocol
insecurity problems into logic programming, in Proceedings of JELIA,
(2004), pp. 617–627

8. M Burrows, M Abadi, R Needham, A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

9. A Hunter, JP Delgrande, Belief change and cryptographic protocol
verification, in Proceedings of AAAI, (2007), pp. 427–433

10. J Halpern, R Pucella, On the relationship between strand spaces and
multi-agent systems. CoRR. cs.CR/0306107 (2003)

11. J Thayer, J Herzog, J Guttman, Strand spaces: Proving security protocols
correct. J. Comput. Secur. 7(2–3), 191–230 (1999)

12. C Cremers, The Scyther Tool: Verification, falsification, and analysis of
security protocols, in Computer Aided Verification, 20th International
Conference. (2008), pp. 1–30

13. A Hunter, JP Delgrande, R McBride, Protocol verification in a theory of
action, in Proceedings of the Canadian Conference on Artificial Intelligence.
(2013), pp. 52–63

14. M Burrows, M Abadi, R Needham, A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

15. P Syverson, P van Oorschot, A unified cryptographic protocol logic.
Technical Report 5540-227, Naval Research Lab (1996)

16. L Paulson, The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6, 85–128 (1998)

17. L Aiello, F Massacci, Verifying security protocols as planning in
logic programming. ACM Trans. Comput. Logic. 2(4), 542–580 (2001)

18. F Crazzolara, G Winskel, Events in security protocols, in Proceedings of the
8th ACM Conference on Computer and Communication Security. (2001),
pp. 96–105

19. C Alchourron, P Gardenfors, D Makinson, On the logic of theory change:
Partial meet functions for contraction and revision. J. Symbolic Logic.
50(2), 510–530 (1985)

20. H Katsuno, AO Mendelzon, On the difference between updating a
knowledge base and revising it, in Belief Revision, ed. by P Gardenfors.
(Cambridge University Press, 1992), pp. 183–203

21. A Grove, Two modellings for theory change. J. Philos. Logic. 17, 157–170
(1988)

22. W Spohn, Ordinal conditional functions: a dynamic theory of epistemic
states, in Causation in Decision, Belief Change, and Statistics, vol. 2, (1988),
pp. 105–134

23. O Goldreich, S Micali, A Wigderson, Proofs that yield nothing but their
validity. J. ACM. 38(3), 690–728 (1991)

24. A Hunter, Belief manipulation: a formal model of deceit in message
passing systems, in Proceedings of the Pacific AsiaWorkshop on Intelligence
and Security Informatics. (2013)

Hunter Security Informatics 2014, 3:15 Page 11 of 11
http://www.security-informatics.com/content/3/1/15

25. JP Delgrande, A Hunter, T Schaub, COBA: A consistency-based belief
revision system, in Proceedings of the 8th European Conference on Logics in
Artificial Intelligence (JELIA-02). (2002), pp. 509–512

26. A Hunter, Dissecting the meaning of an encrypted message: An approach
to discovering the goals of an adversary, in Proceedings of the European
Conference on Intelligence and Security Informatics. (2008)

27. M Abadi, P Rogaway, Reconciling two views of cryptography
(the computational soundness of formal encryption). J. Cryptology. 15(2),
103–127 (2002)

28. M Gelfond, V Lifschitz, Action languages. Linkoping Electron. Articles
Comput. Inf. Sci. 3(16), 1–16 (1998)

29. A Hunter, Belief revision and trust, in Proceedings of the International
Workshop on Nonmonotonic Reasoning. (2014)

30. P McDaniel, S McLaughlin, Security and privacy challenges in the smart
grid. Secur. Privacy. 7(3), 75–77 (2009)

doi:10.1186/s13388-014-0015-3
Cite this article as: Hunter: Belief manipulation and message meaning for
protocol analysis. Security Informatics 2014 3:15.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Motivation
	Preliminaries
	Belief revision
	Speech acts
	Disjoint belief domains

	Belief manipulation
	Intuition
	Formalization
	Protocol verification

	Formalizing belief in message passing systems
	Vocabulary
	Message passing

	Dissecting the meaning of an encrypted utterance
	Locutionary force
	Perlocutionary force
	Illocutionary force
	Revision operators

	Goal discovery
	Basic algorithm
	A concrete example

	Conclusion
	Future work

	Competing interests
	Acknowledgements
	References

