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Abstract

We are interested in belief revision involving conditional
statements where the antecedent is almost certainly false. To
represent such problems, we use Ordinal Conditional Func-
tions that may take infinite values. We model belief change
in this context through simple arithmetical operations that al-
low us to capture the intuition that certain antecedents can
not be validated by any number of observations. We frame
our approach as a form of finite belief improvement, and we
propose a model of conditional belief revision in which only
the “right” hypothetical levels of implausibility are revised.

Introduction
The theory of belief change is concerned with the way agents
incorporate new information. Typically, the focus is on
new information that is given as a propositional formula.
In this paper, we are concerned with situations where an
agent needs to revise by a conditional where the antecedent
is almost certainly false. More precisely, we consider an-
tecedents that will not be believed given any finite amount
of “regular” supporting evidence. We represent the degree of
belief in such formulas using Ordinal Conditional Functions
that may take infinite values, and we provide an approach to
conditional revision based on basic ordinal arithmetic.

This paper makes several contributions to existing work
on belief change.1 First, we demonstrate that a simple al-
gebra of belief change in the finite case extends naturally to
the infinite case, giving a form of belief improvement. In
the process, we demonstrate that there are natural examples
in commonsense reasoning where multiple levels of infinite
implausibility are actually useful. In particular, we introduce
a natural approach to revision by conditional statements with
little in the way of new formal machinery.

Motivating Example
Consider the following claims:

1. heavy: Your dog is overweight.

2. fly: Your dog can fly.

3. hollow|fly: If your dog can fly, then it has hollow bones.

1This paper contains results that have been published in
(Hun15) and (Hun16).

The first two claims are simple declarative statements. But
note that there is a clear difference in the amount of evi-
dence needed to convince the agent to believe each claim.
For (1), it presumably takes some finite number of reports
from a trusted source. For (2), it seems unlikely that any fi-
nite number of reports would be convincing. This statement
is almost certainly false, though it is possible to imagine a
situation that would convince an agent to believe it.

The third statement is a conditional with a highly unlikely
antecedent. Nevertheless, the perceived “impossibility” of
(2) does not mean that (3) is free of content. Revision by (3)
should change an agent’s beliefs in a counterfactual sense;
they may need to change their beliefs about hollow bones in
some hypothetical scenario. Moreover, if ever the notion of
flying dogs becomes believable, then this report will take on
significance at the level of factual beliefs. In this paper, we
refer to claims such as (3) as nearly counterfactual. We will
provide a formal characterization of such claims, as well as
a suitable approach to revision.

Preliminaries

Belief Revision

Belief revision is the belief change that occurs when new
information is presented to an agent with some prior, possi-
bly contradictory, set of beliefs. We assume an underlying
propositional signature P. An interpretation over P is called
a state, while a logically closed set of formulas over P is
called a belief set. A belief revision operator is a function
that combines the initial belief set and a formula to produce
a new belief set.

Formal approaches to belief revision typically require an
agent to have some form of ordering or ranking that gives
the relative plausibility of possible states. For example, in
the well-known AGM approach, total pre-orders over states
are used to represent the perceived likelihood of each state
(AGM85; KM92). Unfortunately, this approach does not
handle the problem of iterated belief revision. Related work
has addressed iterated revision by explicitly specifying how
the ordering changes, rather than just the belief set (DP97;
BM06; JT07).
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Ordinal Conditional Functions
An ordinal conditional function (OCF) is a function that
maps each state to an ordinal (Spo88; Wil94). In this ap-
proach, strength of belief is captured by ordinal precedence.
Hence, if r is an OCF and r(s) < r(t), then s is a more
plausible state than t. There is an obvious advantage to this
approach in that a ranking function is clearly more expres-
sive than a total pre-oder.

While the orginal definition allows the range of an OCF
to be the class of all ordinals, in existing work it is common
to restrict the range to the natural numbers, possibly with an
additional symbol∞ representing impossibility. In this pa-
per, we will actually use a slightly larger range; so we need
to briefly review ordinal arithmetic.2 For our purposes, it is
sufficient to note that ordinals are actually sets defined by
an “order type.” The finite ordinals are the natural numbers.
The order type of the natural number n is unique, because
it is the only ordinal that has exactly n − 1 preceding ordi-
nals. The first infinite ordinal is ω, the set of all natural num-
bers. Every countably infinite subset of the natural numbers
is order-isomorphic to ω.

It is easy to construct a countably infinite set that is not
order isomorphic to ω: just add another symbol ∞ at the
end that is larger than every natural number. The ordinal that
defines the order type of this set is written ω + 1. Similarly,
there exists a distinct ordinal ω + n for any natural number
n. And if we add a complete copy of the natural numbers,
then we have the ordinal ω+ω which is normally written as
ω · 2. We can procede in this manner indefinitely to define
a countably infinite sequence of ordinals. By taking powers,
we can get even more order types; we will not delve further
into this topic.

Ordinal addition can be understood in terms of the infor-
mal discussion above. Given ordinals α and β, the ordinal
α+ β has the order type obtained by taking a set with order
type α and then appending a set with order type β where all
the elements of β follow the elements of α in the underlying
ordering. For finite ordinals, this coincides with the usual
notion of addition. For infinite valued ordinals it does not.
Note for example that 1 +ω = ω; adding a number that pre-
cedes 0 does not change the order type, because the resulting
structure is isomorphic to the natural numbers. On the other
hand ω + 1 6= ω. So ordinal addition is not commutative.
It is also worth noting that ordinal subtraction is, in general,
not well defined. In particular, it is not possible to define
subtraction by ω.

Belief Change as Ordinal Arithmetic
Although our goal is to address revision by conditionals, we
first introduce a simple approach to belief change based on
the addition of ordinals. This will allow us to precisely de-
fine the notion of a nearly counterfactual statement, which is

2 It is beyond the scope of this paper to give a complete treat-
ment of infinite ordinals, and ordinal arithmetic. In the discussion
here, we skip over fundamental set theory, and the fact that order-
types are defined in terms of set-containment. We refer the reader
to (Dev93) for an excellent introduction.

Figure 1: Visualizing ω2

important for the class of conditionals that we wish to con-
sider.

Restricted Domains
The following definition allows us to define conditional
functions over any set of ordinals.

Definition 1 Let S be a non-empty set of states and let Γ be
a collection of ordinals. A Γ-CF ( Γ conditional function)
over S is a function r : S → Γ such that r(s) = 0 for some
state s.

Note that the definition of Γ-CFs does not actually specify
that Γ is a set, because we do not wish to specify the under-
lying set theory in detail.

Several special cases are immediate:

• Spohn’s ordinal conditional functions are Ω-CFs, where
Ω is the collection of all ordinals.

• The class of ω-CFs coincides with the finite valued rank-
ing functions common in the literature.

• The class of (ω + 1)-CFs is the set of ranking functions
that can take finite values, as well as the single “impossi-
ble” plausiblity value∞. This is essentially equivalent to
the possibilistic logic framework of (DP04), that uses the
“necessity measure” of 0.

In this paper, we are primarily interested in the class of ω2-
CFs. Note that ω2 can be specified as follows:

ω2 =
⋃
{ω · k + c | k, c ∈ ω}.

Hence, every element of ω2 can be written as ω · k + c for
some k and c. We think of these conditional functions as
having countably many infinite levels of implausibility. A
picture of ω2 is shown in Figure 1.

If r is a Γ-CF, we write

Bel(r) = {x | r(x) = 0}.

The degree of strength of a conditional function r is the least
n such that n = r(v) for some v 6∈ Bel(r). Hence, the
degree of strength is a measure of how difficult it would be
for an agent to abandon the currently believed set of states.

Finite Arithmetic on Conditional Functions
In the finite case, belief change can be captured through ad-
dition on ranking functions. Some variant of the following
definition has appeared previously in published work by sev-
eral authors; it is restated here and translated to our termi-
nology.



Definition 2 Let r1 and r2 be ω-CFs over S, and let m be
the minimum value of r1 + r2. Then r1+̄r2 is the function
on S defined as follows:

r1+̄r2(x) = r1(x) + r2(x)−m.

It is easy to check that this operation is associative, commu-
tative, and that every element is invertible in the sense that,
for each r there is an r′ such that r+̄r′ = 0. Therefore, in
terms of algebra, we say that the class of ω-CFs is an abelian
group under +̄.

Note that Spohn’s conditionalization can be seen as a spe-
cial case of this algebra on ranking functions. Let r1 be a
finite plausibility function representing the initial beliefs of
an agent. Let φ be a formula, let d be a positive integer, and
let r2 be the ranking function defined as follows:

r2(s) =

{
0 if s |= φ
d otherwise

Then r1+̄r2 is equivalent to Spohn’s conditionalization of r1

by φ with strength d. Similarly, if r2 takes only two values
and the degree of strength of r2 is strictly larger than the
degree of strength of r1, then r1+̄r2 is AGM revision.

This approach does not extend to larger classes of ordi-
nals.

Proposition 1 Let β be an ordinal such that ω ∈ β. Then +̄
is not well-defined over the class of β-CFs.

The problem is that subtraction is not defined for all pairs of
(infinite) ordinals.

Example Consider the motivating example. We can define
the following (ω + 1)− CFs:

r1(s) =

{
0 if s |= {fly}
ω otherwise

r2(s) =

{
ω if s |= {fly}
0 otherwise.

Normalized addition of r1 and r2 requires us to calculate
ω− ω. But this subtraction is not defined, so the calculation
can not be completed.

This problem could be avoided by removing the normal-
ization, but the result would no longer be an OCF. If we want
to work with ranking functions that are closed under some
form of addition, then we must either modify the definition,
or we must relax the constraint that the pre-image of 0 is
non-empty. We opt for the former.

Finite Zeroing
We define an algebra over ω2-CFs based on finite zeroing.
The following relation will be useful in proving results. In
the definition, and in some future results, it is useful to con-
sider functions over ordinals that do not necessarily take the
value 0 for any argument. We use the general term Γ ranking
to refer to an arbitrary function from S to Γ.3

3Konieczny refers to this kind of OCF as a free OCF.(Kon09)

Definition 3 For Γ rankings r1 and r2, we write r1 ∼ r2

just in case the following condition holds for every pair of
states s, t

r1(s) < r1(t) ⇐⇒ r2(s) < r2(t).

Clearly, ∼ is an equivalence relation.
The intuition behind finite zeroing is that each conditional

function can be categorized by its minimum value, in a man-
ner that is useful for revision. Given any ω2 ranking r, let
min(r) denote the minimum value r(s). Note that a min-
imum is guaranteed by the fact that the ordinals are well-
ordered.

Definition 4 Let r be an ω2 ranking with min(r) = ω ·k+c.
Then k is the degree of r and c is the finite shift, written
deg(r) and fin(r) respectively.

We can use the degree and the finite shift to define the fol-
lowing operation.

Definition 5 Let r be an ω2 ranking with deg(r) = k and
fin(r) = c. Define r̄ as follows. Let s be a state with
r(s) = ω ·m+ p.

1. If m > k, then r̄(s) = ω · (m− k) + c.
2. If m = k, then r̄(s) = (p− c).

We call r̄ the finite zeroing of r. Intuitively, elements at the
“lowest level” are normalized to zero and elements at higher
levels are shifted down by the degree of r. The following
result is easy to prove.

Proposition 2 If r is an ω2 ranking, then r̄ is a ω2-CF and
r ∼ r̄.

Hence, the finite zeroing of any ranking is an equivalent ω2-
CF. We can now extend the definition of ∗ to ω2-CFs.

Definition 6 Let r1, r2 be ω2-CFs. Then

r1 ∗ r2 = r1 + r2.

Using this definition, ∗ is consistent with +̄ for ω-CFs.
Hence, ∗ can capture standard belief revision operators (e.g.,
AGM, DP) by restricting to finite values and setting the de-
gree of strength of each function appropriately. This is the
natural extension of revision, therefore, to the case that al-
lows infinite plausibility values.

Example The motivating example over {heavy, fly} can
be captured by the following function:

r(s) =

{
ω if s |= fly
10 if s |= heavy ∧ ¬fly
0 otherwise

We let ∗n to denote a finite iteration of the ∗ operator. Sup-
pose that, for each V ∈ {heavy, fly}, rV is an OCF such
that rV (s) = 2 if and only if s 6|= V . The following are
immediate:

• r ∗n rheavy(s) = 0 iff n ≥ 5.

• r ∗n rfly(s) 6= 0 for any n.



Hence, it takes 5 reports to convince the owner that their
dog is overweight. No finite number of reports will convince
them that the dog can fly.

In the ω2 case, the algebra obtained is not identical to the
finite case.

Proposition 3 The class of ω2-CFs is a non-abelian group
under ∗. (i.e. it is closed, associative, and every element has
an inverse, but it is not commutative).

The fact that ∗ is not commutative has interesting conse-
quences, as illustrated in the following example.

Example Assume again that the vocabulary contains the
predicates {heavy, fly}. Define

r1(s) =

{
ω if s |= fly
0 otherwise

r2(s) =

{
0 if s |= ¬heavy ∧ fly
1 if s |= heavy ∧ fly
2 otherwise.

Hence, r1 says that an agent believes dogs can not fly; more-
over the agent essentially believes that a flying dog is an im-
possibility. On the other hand, r2 says that an agent believes
that light dogs can fly - although the the strength of belief in
this claim is only finite. Moreover, r2 gives an ordering over
less plausible states as well. Note that both r1 and r2 can be
either an initial belief state or an observation. The following
calculations are immediate.

r1 ∗ r2(s) =

{
ω if s |= ¬heavy ∧ fly
ω + 1 if s |= heavy ∧ fly
0 otherwise.

r2 ∗ r1(s) =

{
ω if s = {fly}
0 otherwise.

What is the significance of this example? It shows that
conditional beliefs from an observation can be maintained
at higher plausibility levels. In both cases, the underlying
agent will not believe dogs can fly following revision. But
the first revision allows the ordering of states to be refined
somewhat at the conditional level. The second revision, on
the other hand, washes away the finite level distinctions in
the original belief set. This is similar to AGM revision in the
sense that recent information seems to carry some particular
weight. However, the infinite jumps in plausibility outweigh
the preference for recency.

Nearly Counterfactual Reasoning
Motivation
In this section, we demonstrate how infinite-valued ordinal
conditional functions can be useful for reasoning about con-
ditional statements.

Example We return to the flying-dog example. Suppose
that we initially believe ¬fly and ¬hollow; in other words,

we believe that dogs do not fly and that dogs do not have hol-
low bones. Now suppose we are told that flying dogs have
hollow bones. Informaly, we want to revise by the condi-
tional statement (hollow|fly).

Note that (hollow|fly) actually does not give any new
information about dogs. This revision should not change
the relative ordering of any worlds with a finite strength of
belief. However, it does result in a change of belief. If one is
later convinced of the existence of flying dogs, then the fact
about hollow bones should be incorporated.

We refer to the reasoning in the preceding example as
nearly-counterfactual revision. It is essentially a form of
counterfactual reasoning, in which hypothetical worlds are
considered in isolation. At the same time, however, we keep
a form of conditional memory at higher ordinal levels. This
is not only useful for perspective altering revelations, but we
argue it can also be useful for analogical reasoning.

One important feature that is typically taken as a require-
ment for conditional reasoning is the Ramsey Test. In the
context of revision by conditional statements, Kern-Isberner
formulates the Ramsey Test as follows: when revising by a
conditional, one would like to ensure that revision by (ψ|φ)
followed by a revision by φ should guarantee belief in ψ
(Ker99). We suggest that this formulation needs to be re-
fined in order to be used in the case where infinite ranks are
possible.

In the case of the flying dog, one is quite likely to accept
the conditional (hollow|fly) based on a single report with
finite strength. However, a single report of fly with finite
strength will not be believed. If the antecedent of the con-
ditional is “very hard” to believe, then we should not expect
the Ramsey Test to hold without some additional condition
on the strength of the subsequent report. The problem, in a
sense, is that the notion of believing a conditional is quite
different than the notion of believing a fact. In order to be-
lieve (hollow|fly), we simply need to keep some kind of
record of this fact for the unlikely case where we discover
that flying dogs happen to exist. On the other hand, in order
to believe fly, we really need to make a significant change
in our current world view.

Levels of Implausibility
Approaches to counterfactual reasoning are typically in-
spired to some degree by Lewis, who indicates that the truth
of a counterfactual sentence is determined by its truth in al-
ternative worlds (Lew73). We can represent this idea with
ω2-CFs. At each limit ordinal ω · k, we essentially have
an entirely new plausibility ordering. As k increases, each
such ordering represents an increasingly implausible world.
However, a sufficiently strong observation can force our be-
liefs to jump to any of these unlikely worlds. As such, these
are not truly counterfactual worlds, because we admit the
possibility that they may eventually be believed.

The important property that we can capture with ω2-CFs
is the following: there are some formulas that may be true,
yet we can not be convinced to believe them based on any
finite number of pieces of “weak evidence.” This allows us



to give the following formal definition of the term nearly
counterfactual.
Definition 7 Let r be an OCF. A formula φ is nearly coun-
terfactual with respect to r just in case there is no ω-CF r′

such that Bel(r ∗ r′) |= φ.
The following is an immediate consequence of this defini-
tion.
Proposition 4 If φ is nearly counterfactual with respect to
r, then there is no finite sequence r1, . . . , rn of ω-CFs such
that Bel(r ∗ r1 ∗ · · · ∗ rn) |= φ.
We introduce some useful notation.
Definition 8 Let φ be a formula. An OCF r is a φ-
strengthening iff Bel(r) = {s | s |= φ}.
So, a φ-strengthening is just a ranking function where the
minimal states are exactly the models of φ. For any formula
φ, let (φ, n) be the φ-strengthening of φ where models of φ
have plausibility 0 and every other state has plausibility n.

Definition 9 Let r be an ω2-CF. For any limit ordinal ω · k,
let rk be the following partial function:

rk(s) =

{
r(s), if r(s) = ω · k + c for some c
undefined otherwise

Hence, rk is just the restriction of r to those states with plau-
sibility values at level k. We say that φ is believed at level
k if {s | s ∈ min(rk)} |= φ. Let poss(φ) denote the set of
natural numbers k such that s |= φ for some s in the domain
of rk.

We can now introduce a form of strengthening with nearly
counterfactual conditionals. In the definition, given an ω2-
CF r, we let deg(s) denote the value k such that r(s) =
ω · k + c.
Definition 10 Let r be an ω2-CF and let ψ, φ be formulas
where φ is nearly counterfactual with respect to r. Let n ∈
ω.

r ∗ (n, ψ|φ)(s) =

{
r(s), if deg(s) 6∈ poss(φ)
r ∗ (ψ, n)(s) otherwise

We call this function the n-stengthening of ψ conditioned on
φ. This function finds all levels of r where φ is possible, and
then strengthens ψ at only those levels.

Example Let r again be the plausibility function

r(s) =

{
ω if s |= fly
10 if s |= heavy ∧ ¬fly
0 otherwise

It is easy to verify that fly is nearly counterfactual with re-
spect to r. Now suppose that we extend the vocabulary to
include the predicate symbol hollow. Define a new function
r′ as follows:

r′(s) =

{
r(s), if s 6|= hollow
r(s) + 1, if s |= hollow

This just says that we initally believe our dog does not have
hollow bones; however, it is not particularly implausible. It
follows that:

• r′(s) = ω if s |= fly ∧ ¬hollow.
• r′(s) = ω + 1 if s |= fly ∧ hollow.
From these results, it follows that:
• r′ ∗ (2, hollow|fly)(s) = r′(s), if s 6|= fly.
• r′ ∗ (2, hollow|fly)(s) = ω, if s |= fly ∧ hollow.
• r′ ∗ (2, hollow|fly)(s) = ω + 1, s |= fly ∧ ¬hollow.
So, roughly speaking, after strengthening by (hollow|fly),
we now believe that hollow bones are more plausible in all
hypothetical situations where we believe flying dogs are pos-
sible.

Note that plausibility of a state is only changed at levels
where φ is considered possible. Since the definition is only
applied to nearly counterfactual conditions, this means that
only hypothetical states are affected by the strengthening.

It remains to move from conditional strengthening to con-
ditional revision. Recall that, for any ω2-CF with min(r) =
ω · k + c, we write fin(r) = c.
Definition 11 Let r be an ω2-CF and let ψ, φ be formulas
where φ is nearly counterfactual with respect to r.

r ∗ (ψ|φ)(s) =

{
r(s), if deg(s) 6∈ poss(φ)
r ∗ (ψ, fin(rk))(s) if r(s) = ω · k + c

Hence, for revision, we strengthen belief in ψ by the least
value that will ensure ψ is believed at level k.

Under this definition, we satisfy a modified form of the
Ramsey Test.
Proposition 5 Let r be an ω2-CF and let s be a state with
r(s) = ω · k + c. If r′ is an ω2-CF with degree of strength
larger than k and Bel(r′) |= φ, then

Bel((r ∗ (ψ|φ)) ∗ r′) |= ψ.

Hence, if we revise by (ψ|φ) followed by an OCF with “suf-
ficiently strong” belief in φ, then ψ will be believed.

Relation to Existing Work
Infinite Plausibility Values
There has been related work on the use of infinite valued
ordinals in OCFs. In particular, Konieczny defines the no-
tion of a level of belief explicitly in terms of limit ordi-
nals(Kon09). In this work, different “levels” are used to rep-
resent beliefs that are independent in a precise sense. The
lowest level is used for representing an agents actual beliefs
about the world, whereas higher levels are used to represent
integrity constraints. Our approach here is different in that
we explicitly use the ordering on limit ordinals to represent
infinite leaps in plausibility. This work is also distinguished
by the fact that we use ordinal arithmetic on a small class of
ordinals to define a simple algebra of belief change.

Belief Improvement
The success postulate (K ∗φ ` φ) of the AGM framework is
clearly incorrect in cases where evidence is additive. That is
to say, there are situations where a single observation is not
sufficient to convince an agent to believe a particular fact.



Improvement operators (KP08) are belief change operators
that address this issue by introducing a new set of postulates.
The most important postulate states that an improvement op-
erator ◦ must have the property that:

(I1) There exists n ∈ N such that B(Ψ ◦n φ) ` φ.

Here Ψ is an epistemic state, and B(·) maps an epistemic
state to the minimal elements of the underlying ordering.
Hence, an improvement operator has the property that an
agent will be convinced to believe φ after a finite number
of improvements. The remaining postulates for a weak im-
provement operator are essentially the DP postulates applied
to the operation ◦n obtained from (I1). We refer the reader
to (KP08) for the complete list of postulates.

We define an analog of (I1) as follows. If rφ denotes a
φ-strengthening, we can express the condition as follows.

(I∗) There exists n ∈ N such that Bel(r ∗n rφ) |= φ.

The truth of this property depends on the degrees of strength
of the functions.

Proposition 6 If r is an ω-CF and rφ is a φ-strengthening
with finite strength, then I∗ holds.

For an epistemic state Ψ defined by≺Ψ, let rΨ be the canon-
ical representation of Ψ.4 Define ◦n such that Ψ ◦ φ is ob-
tained by taking the ordering induced by rΨ ∗ r(φ, n).

Proposition 7 For any n ∈ N, the operator ◦n is a weak
improvement operator.

We call ◦n a finite improvement operator, because the de-
gree of strength is finite. This result is essentially a corollary
of Proposition 6, and it suggests that our ∗ operation based
on normalized addition is actually the natural extension of
improvement to the setting of ω-CFs.

The advantage of infinite plausibility values is that they
give us greater flexibility in modelling improvement.

Proposition 8 If r is an ω2-CF and rφ is a φ-strengthening
with finite strength, then I∗ does not hold.

This result essentially states that (I1) is not a sound property
for ∗ if we allow infinite plausibility values. This distinction
can be seen in our running example. There is no finite num-
ber of improvements that will force the agent to believe that
dogs can fly.

It is actually difficult to express the analog of Proposition
7 in the context of ω2-CFs, because a total pre-order over
states can not capture the “infinite jumps” in plausibility en-
coded by ω2 ordinal ranks. But it is possible to define a cor-
respondence between sequences of orderings and ordinals in
ω2.

Definition 12 Let r be an ω2-CF where max(r) = ω · d+ b
for some d, b. For i ≤ d, let ri denote the function defined
as follows:

1. domain(ri) = {s | r(s) = ω · i+ c}.
2. If r(s) = ω · i+ c, then ri(s) = c.

The following propositions are immediate.

4If s is in the nth level of Ψ , then rΨ(s) = n

Proposition 9 Each ri is a ω ranking, and there exists an
ω-CF such that r′i ∼ ri
Proposition 10 For any ω2-CF r over a vocabulary P with
deg(r) = d, there is an extended vocabulary P1 and a se-
quence r0, . . . , rd of ω-CFs such that, for each i ≤ d, the
ri is equivalent (i.e. ∼) to the restriction of r to ordinals of
degree i.

This result is proved by just extending the vocabulary appro-
priately with propositional variables that make each infinite
jump in the ordinal value definable. By breaking r into a set
of ω-CFs, it follows that (I∗) holds at level d when rφ has
degree of strength ω · d. Therefore, belief change by nor-
malized addition on ω2-CFs can really just be seen as a fi-
nite collection of improvements as each level. The important
point, however, is that no finite sequence of improvements
at level d will ever impact the actual beliefs at lower levels.

Conditional Belief Revision
Conditional belief revision was previously addressed by
Kern-Isberner, who proposes a set of rationality postulates
for conditional revision (Ker99). A concrete approach to
conditional revision is also proposed, through the following
ω-CF :

r ∗ (ψ|φ)(s) =

{
r(s)− r(ψ|φ), if s |= φ ∧ ψ
r(s) + α+ 1, if s |= φ ∧ ¬ψ
r(s), if s |= ¬φ

where α = −1 if r({φ, ψ}) < r({φ}), and α = 0 other-
wise. This operation satisfies all of the postulates for con-
ditional revision, as well as the Ramsey Test. We remark,
however, that this approach is not well-defined if we allow
infinite plausibility values because of the ordinal subtraction
on the right hand side. We suggest that this is not just a
formal artefact of the theory; conditionals that are ”almost
certainly” false actually must be treated slightly differently.

In our approach, we essentially require the evidence for
φ to be substantially stronger than the evidence for the con-
ditional. We suggest that our beliefs following conditional
revision should be changed in sort of an infinitesimally small
way. While our beliefs about the actual world do not change,
our beliefs about some (nearly) impossible world do, in fact,
change.

Note that it is actually possible to reconcile our approach
with Kern-Isberner’s approach, by using the conditional re-
vision above on each level rk of the initial OCF r. At
present, we are using a simple strengthening on each level,
which actually flattens the plausibility structure after ordi-
nal addition. A combined approach could respect the infi-
nite jumps in plausibility, while satisfying the postulates for
conditional revision at each level. We leave an investigation
of this combined approach for future work.

Discussion
Conclusion
In this paper, we have explored the use of infinite ordinals
for reasoning about belief change and conditional reasoning.
We have shown that allowing plausibility values to range



over ω2 results in a belief algebra that is only slightly more
complicated, and we gain an expressive advantage. In par-
ticular, we can represent situations where stubbornly held
beliefs are resistant to evidence to the contrary. We have
demonstrated that this results in a slightly more expressive
class of improvement operators where evidence increases
relative belief, but no finite number of improvements will
actually lead to a change in the belief state. Finally, we
addressed so-called “nearly counterfactual” revision, where
we incorporate information that is conditional on a highly
unlikely statement.

Future Work
This paper is a preliminary exploration into different appli-
cations and formal properties of infinite valued ordinal con-
ditional functions. It remains to move beyond ω2-CFs, to
completely characterize the relationship with improvement
operators, and to consider further practical applications.

In the present framework, we have discussed nearly coun-
terfactual reasoning as a tool for keeping a sort of “memory”
about unlikely situations, in order to incorporate this infor-
mation later if necessary. But there is also a natural kind of
reasoning that would allow us to use conditionals to reason
by analogy about the actual state of the world. Consider the
following well-known ambiguity from (Lew73), and origi-
nally attributed to Quine:

1. If Caesar was president, he would use nuclear weapons.

2. If Caesar was president, he would use catapults.

As a conditional, we could write both as (W |C), where W
stands for a weapon that would be used and C is the condi-
tion “Caesar is president.” But (1) suggests that we condi-
tion by imagining Caesar alive in the current world. So this
is a conditional statement interpreted in the current state of
the world. On the other hand, (2) suggests that we consider
what would happen in some past world where Caesar exists.

Now suppose that we believe a certain politician is actu-
ally very similar to Caesar. If we believe that Caesar would
use nuclear weapons, then we may conclude that this “real”
politician would also use nuclear weapons. Formally, we
could proceed as follows: if some hypothetical world is iso-
morphic to the current state of the world when we restrict
the vocabulary (to not include Caesar), then we can use in-
ferences about the hypothetical world to draw conclusions
about the actual world. This is a form of ampliative rea-
soning that we intend to explore through ω2-CFs in future
work.
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