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Understanding how genetic networks act in embryonic development requires a detailed and statistically significant dataset in-
tegrating diverse observational results. The fruit fly (Drosophila melanogaster) is used as a model organism for studying devel-
opmental genetics. In recent years, several laboratories have systematically gathered confocal microscopy images of patterns of
activity (expression) for genes governing earlyDrosophila development. Due to both the high variability between fruit fly embryos
and diverse sources of observational errors, some new nontrivial procedures for processing and integrating the raw observations
are required. Here we describe processing techniques based on genetic algorithms and discuss their efficacy in decreasing observa-
tional errors and illuminating the natural variability in gene expression patterns. The specific developmental problem studied is
anteroposterior specification of the body plan.
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1. INTRODUCTION

Functional genomics is an emerging field within biology
aimed at deciphering how the blueprints of the body plan en-
crypted in DNA become a living, spatially patterned organ-
ism. Key to this process is ensembles of control genes acting
in concert to govern particular events in embryonic devel-
opment. During developmental events, genes encoded in the
DNA are converted into spatial expression patterns on the
scale of the embryo. The genes, and their products, are active
players in regulating this pattern formation. In the first few
hours of fruit fly (Drosophila melanogaster) development, a
network of some 15–20 genes establishes a striped pattern of
gene expression around the embryo [1, 2] (Figure 1). These
stripes are the first manifestation of the segments which char-
acterize the anteroposterior (AP) (head-to-tail) organization
of the fly body plan. Similar segmentation events occur in
other animals, including humans. Drosophila research helps
to understand the genetics underlying such processes.

Though Drosophila may be a relatively easy organism
in which to do developmental genetics, there remain many

experimental problems to be resolved. One of these is the
processing of large set of gene expression images in order
to achieve an integrated and statistically significant detailed
view of the segmentation process.

It is not possible to observe all segmentation genes at
once in the same embryo over the duration of patterning.
Single embryos can be imaged for a maximum of three
segmentation genes. Embryos are killed in the fixing pro-
cess prior to imaging. Therefore, data sets integrated from
multiple embryos, stained for the variety of segmentation
genes, and over the patterning period, are necessary for
gaining a complete picture of segmentation dynamics. In
addition, collecting images from multiple flies (hundreds)
allows us to quantitate the level of natural variability in
segmentation and the experimental error in collecting this
data.

More and more laboratories (including those en-
gaged in the Drosophila Genome Project) are present-
ing images of embryos from confocal scanning, for ex-
ample, [3, 4] (see http://urchin.spbcas.ru/Mooshka/ and
http://www.fruitfly.org/). All workers in this area face image
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(a)
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Figure 1: An example of an expression pattern image and its 3D
reconstruction for Drosophila. These images show the first indica-
tions of body segmentation in the embryo. (a) An image of a devel-
oping fruit-fly egg under light microscope. The egg is shaped like
a prolate ellipsoid. Dark dots are nuclei located just under the egg
surface. There are about 3000 nuclei in this image. The nuclei are
scanned to visualize the amount of one of the segmentation gene
products (even-skipped or eve) at each nucleus. The darker the nu-
cleus, the greater the local concentration of eve. (b) A reconstructed
3D picture showing the arrangement of nuclei and visualizing the
eve pattern in a yellow-red-black palette.

processing challenges in reconstructing expression profiles
from the results of confocal microscopy.

In this paper, we review problems in the field of pro-
cessing confocal images of Drosophila gene expression and
present our processing techniques based on genetic algo-
rithms (GAs). We will discuss their efficacy in decreasing ob-
servational errors and visualizing natural variability in gene
expression patterns.

2. PROBLEMS AND APPROACHES FOR INTEGRATING
DATA SETS FROM RAW IMAGES

Sources of variability in our images can be roughly subdi-
vided into natural embryo variability in size and shape, nat-
ural expression pattern variability, errors of image processing
procedures, experimental errors (fixation, dyeing), observa-
tional errors (confocal scanning), and the molecular noise of
expression machinery.

2.1. Size and shape

Early embryos of isogenic fruit flies can differ in length by
30%. Regardless of such differences in size, expression pat-
terns for segmentation remain qualitatively the same. This is
a classic case of scaling in biological pattern formation; the

(a)

(b)

Figure 2: Embryos of the same time class and the same length
have different expression patterns. Eve stripes differ in spacing and
overall domain along the anteroposterior (AP, x-) axis, and show
stripe curvature in the dorsoventral (DV, y-) direction.

final pattern is not dependent on embryo size (at least within
the limits of natural size variability). However, integration of
data from different flies requires size standardization.

Size variability was resolved by image preprocessing with
the Khoros package [5]. After a cropping procedure, each im-
age was rescaled to the same length and width. Relative units
of percent egg length are used.

2.2. Expression pattern variability

Even after cropping and rescaling, there is still variation in
the positioning and proportions of expression patterns for
the same gene at the same developmental stage (Figure 2).

To match two images such as Figures 2a and 2b (in or-
der to make integrated datasets), we use 2D elastic defor-
mations. We treat separately the dorsoventral (DV) curva-
ture differences and the AP spacing differences [6]. First,
we perform a 2D elastic deformation to straighten segmen-
tation stripes. This step minimizes the DV contribution to
the AP patterning, especially to AP variability. Next, on
a pairwise basis, we move (in 1D) the stripes into regis-
ter along the AP axis, minimizing the variability in stripe
spacing and overall expression domain. These two steps
make for a tough optimization procedure, which is probably
best solved with modern heuristic approaches such as GAs
[6].

2.3. Scanning error

After the above processing, images still have variability in flu-
orescence intensity due to experimental conditions.With im-
age processing, we can address experimental or observational
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Figure 3: An example of the systematic DV distortion of an expres-
sion surface, with the gene Krüppel.

errors which have a systematic character. Due to the ellip-
soidal geometry of the egg, nuclei in the center of the image
(along the AP axis) are closer to themicroscope objective and
look brighter than nuclei at the top and bottom of the image.
Intensity shows a DV dependence (Figure 3). The brightness
depends (roughly) quadratically on DV distance from the AP
midline. We flatten this DV bias by a procedure of expression
surface stretching.

Figure 4 summarizes the three steps of image processing
which follow the scaling: stripe straightening, stripe regis-
tration, and expression surface stretching. The details of the
processing techniques are in Section 3.

After image processing, we can generate an integrated
dataset and begin to address questions regarding the seg-
mentation patterning dynamics. We are pursuing two prob-
lems initially. First, we are visualizing the maturation of the
expression patterns for all segmentation genes over the pat-
terning period. Second, since we have removed many of the
sources of variability in the images, what remains should be
largely indicative of intrinsic, molecular scale fluctuations in
protein concentrations. We are comparing relative noise lev-
els within the segmentation signaling hierarchy. These are
some of the first tests of theoretical predictions for noise
propagation in segmentation signaling [7, 8]. In general,
both of these approaches should provide tests of existing the-
ories for segment patterning.

3. METHODS

3.1. Confocal scanning of developing Drosophila eggs

Gene expression was measured using fluorescently-tagged
antibodies as described in [9]. For each embryo, a 1024 ×
1024 pixel image with 8 bits of fluorescence data in each of 3
channels was obtained (Figure 5). To obtain the data in terms
of nuclear location, an image segmentation procedure was
applied [10].

Stripe
straightening

Registration

Stretching

Figure 4: Steps for processing large sets of images to obtain an inte-
grated dataset of segmentation pattern dynamics (a pair of images
used in this example). Stripe straightening minimizes the DV con-
tribution to the AP patterning. Stripe registration minimizes the
variability in AP stripe positioning. Expression surface stretching
minimizes systematic observational errors in the DV direction.

The segmentation procedure transforms the image into
an ASCII table containing a series of data records, one for
each nucleus. (About 2500–3500 nuclei are described for
each image.) Each nucleus is characterized by a unique iden-
tification number, the x- and y-coordinates of its centroid,
and the average fluorescence levels of three gene products.

At present, over 1000 images have been scanned and pro-
cessed. Our dataset contains data from embryos stained for
14 gene products. Each embryo was stained for eve (Figures
1 and 2) and two other genes.

Time classification

All embryos under study belong to cleavage cycle 14 [11].
This cycle is about an hour long and is characterized by a
rapid transition of the pair-rule gene expression patterns,
which culminates in the formation of 7 stripes. The embryos
were classified into eight time classes primarily by observa-
tion of the eve pattern. This classification was later verified
by observation of the other patterns and by membrane in-
vagination data.
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Figure 5: An example of an embryo separately dyed and scanned
for three gene products.

3.2. Deformations by polynomial series

Our three main deformations introduced above (stripe
straightening, registration, and surface stretching) are based
on polynomial series. Due to the character of segmenta-
tion pattern variability, our deformations are reminiscent of
an earlier attempt by Thompson [12] to quantitatively de-
scribe the mechanism of shape change . Stripe straightening
looks quite similar to his famous image of a puffer fish to
Mola mola fish transformation. This visually simple graphi-
cal technique was explicitly described by Bookstein [13, 14].
We have found that Drosophila segmentation patterns can
also be related by such simple transformation functions.

The stripe-straightening procedure is a transformation of
the AP, x-coordinate by the following polynomial:

x′ = Axy2 + Bx2y + Cxy3 +Dx2y2, (1)

where x = w − w0, y = −h − h0, w and h are initial spa-
tial coordinates, and w0, h0, A, B, C, and D are parameters.
The y-coordinate remains the same while the x-coordinate is
transformed as a function of both coordinates w and h (for
details, see [6, 15, 16]). The parameters w0, h0, A, B, C, and
D for each image are found by means of GAs.

Our pairwise image registration procedure is the next
step in the sequential transformation of the x-coordinate. We
use the following polynomial for x′:

x′′ = c0 + c1x
′ + c2x

′2 + c3x
′3 + c4x

′4 + c5x
′5, (2)

where c0, c1, c2, c3, c4, and c5 are parameters found by means
of GAs for each image (for details, see [6, 16]).

Complete registration is achieved by sequential applica-
tion of the polynomial transformations (1) and (2) to pairs of
images. Complete registration within each time class relative
to a starting image (the time class exemplar) gives sets of im-
ages suitable for constructing integrated datasets. If we then
compare results across time classes, we are able to visualize
detailed pattern dynamics over cell cycle 14.

The starting images in each time class, the time class ex-
emplars, were chosen using the following way: the distance
between each (stripe-straightened) image and every other
(stripe-straightened) image in a time class was calculated
using the registration cost function (see Section 3.3). These
costs were summed for each image and the image with the
lowest total cost was used as the starting image. All other im-
ages in the time class were registered to this image. The start-
ing image was unaffected by the registration transformation
[6].

We perform (fluorescence intensity) surface stretching to
decrease DV distortion using the following polynomial:

Z′ = Z+C1Y +C2Y
2 +C3XY +C4Y

3 +C5XY
2 +C6X

2Y, (3)

where Z is expression, X = w −W0, Y = h − H0, w and h
are initial spatial coordinates, andW0,H0, C0, C1, C2, C3, C4,
and C5 are parameters found by means of GAs. Note thatW0

and H0 generally differ from w0 and h0 in expression (1).
The computing time for finding parameters by opti-

mization techniques is comparable for the three polynomial
transformations (1), (2), and (3), though stripe straightening
(1) is the most time intensive [6, 15, 16].

3.3. Optimization by GAs

We tested several techniques for optimization of (1) and (2):
GAs, simplex, and a hybrid of these [6, 16]. Fitting polyno-
mial coefficients is fairly routine and can be solved with any
GA library. All we need is to define cost functions for our
three particular tasks.

We used a standard GA approach in a classic evolution-
ary strategy (ES). ES was developed by Rechenberg [17] and
Schwefel [18] for computer solution of optimization prob-
lems. ES algorithms consider the individual as the object
to be optimized. The character data of the individual is the
parameters to be optimized in an evolutionary-based pro-
cess. These parameters are arranged as vectors of real num-
bers for which operations of crossover and mutation are
defined.

In GA, the program operates on a population of floating-
point chromosomes. At each step, the program evaluates
every chromosome according to a cost function (below).
Then, according to a truncation strategy, an average score
is calculated. Copies of chromosomes with scores exceed-
ing the average replace all chromosomes with scores less
than average. After this, a predetermined proportion of
the chromosome population undergoes mutation in which
one of the coefficients gets a small increment. This whole
cycle is repeated until a desired level of optimization is
achieved.
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Figure 6: Scheme of image stripping for cost function calculation.

3.3.1 Cost function for stripe straightening

The following procedure evaluates chromosomes during the
GA calculation for stripe straightening. Each image was sub-
divided into a series of longitudinal strips (Figure 6). Each
strip is subdivided into bins, and a mean brightness (local
fluorescence level) is calculated for each bin. Each row of
means gives a profile of local brightness along each strip.
The cost function is computed by pairwise comparison of
all profiles and summing the squares of differences between
the strips. The task of the stripe-straightening procedure is to
minimize this cost function.

3.3.2 Cost function for registration

To evaluate the similarity of a registering image to the refer-
ence image (time class exemplar), we use an approach sim-
ilar to the previous one. We take longitudinal strips from
the midlines of the registering and reference images (e.g.,
Figure 6, centre strip). The strips are subdivided into bins
and mean brightness calculated for each bin. Each row of
means gives the local brightness profile along each embryo.
The cost function is computed by comparing the profiles and
summing the squares of differences between them. Registra-
tion proceeds until this cost is minimized.

3.3.3 Cost function for surface stretching

To minimize distortion of the (fluorescence intensity) ex-
pression surface along the DV direction (y-coordinate), we
tested two cost functions based on discrete approximations
of first- and second-order derivatives in y:

F1 =
∑[(

Zj − Zj+1
)2]

,

F2 =
∑[(

2Zj − Zj+1 − Zj−1
)2]

.
(4)

Both functions were applied to a row of expression levels
at each nucleus (Z), ranked according to DV position (y-
coordinate) while the x-coordinate was ignored. Argument
Zj is a given nucleus’ fluorescence level and Zj+1 and Zj−1 are
fluorescence levels for its two nearest (DV) neighbors. Our
tests show that F1 is better for our purposes.

3.3.4 Implementation

GA-based programs for our three tasks were implemented
both in EO-0.8.5 C++ library [4] for DOS/Windows and

UNIX, and in Borland and DEC Pascal. Details of the EO-
0.8.5 C++ library implementation have been published [6,
16].

4. EFFICACY OF IMAGE PROCESSING

As discussed in the introduction, fluorescence intensity mea-
surements demonstrate high variability and are subject to di-
verse observational and experimental errors. Our aim with
the image processing is to decrease some of the observational
and experimental errors and help distinguish these from the
natural variability which we would like to study (i.e., charac-
terization of the stochastic nature of molecular processes in
this gene network). We will discuss the efficacy of the image
processing by comparison of initial and residual variability in
our data.

4.1. Stripe straightening and registration

With transformations (1) and (2), we aim at as good a match
as possible (by heuristic optimizations) between the data
within a time class. Figure 7a shows a superposition of about
hundred eve expression surfaces after stripe straightening
and registration. (The intensity data is discrete at nuclear res-
olution but we display some of our results as continuously
interpolated expression surfaces.)

Embryo-to-embryo variability of the expression pattern
for the first ten zygotic segmentation genes we are studying is
similar to that for eve. Because of the two-dimensionality of
the expression surface and the irregularity of nuclear distri-
bution, quantitative comparison of this variability is a tough
biometric task.

One way to simplify the problem is to compare repre-
sentative cross-sections through the expression surface along
the midline of an embryo in the AP direction (e.g., Figure 6,
center strip). For all nuclei with centroids located between
50% and 60% embryo width (DV position), expression lev-
els were extracted and ranked by AP coordinate. This array of
250–350 nuclei gives an AP transect through the expression
surface [19].

Using these transects, we can measure the effect on
embryo-to-embryo variability of our processing steps.
Figure 7b shows the variability after rescaling and stripe
straightening (before complete registration) for about a
hundred eve expression profiles from the 8th time class
(Figure 7c). Intensity means at each AP position are shown
with error bars (standard deviation).Minimizing stripe spac-
ing variability, by registration, reduces the error bars signif-
icantly (Figures 7d and 7e). In addition to molecular-level
fluctuations in gene expression, one of the remaining sources
of error in Figures 7d and 7e may be experimental variabil-
ity in intensity (from fixing and dying procedures, as well
as variability in microscope scanning), estimated at 10–15%
of the 0–255 intensity scale. Normalization of this variability
may require both image processing and empirical solutions.

4.2. Expression surface stretching

The true expression of eve in early cycle 14 is uniform.
Due to systematic distortions in intensity data, however, the
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Figure 7: Superposition of about a hundred images for eve gene expression from time class 8 (late cycle 14). (a) Superposition of all
eve expression surfaces after the stripe straightening and registration. (b) Variability of expression profiles for gene eve after the stripe-
straightening procedure. (c) Mean intensity at each AP position, with standard deviation error bars for the expression profiles from (b). (d)
Residual variability for the same dataset after stripe straightening and registration. (e) Mean intensity with standard deviation error bars for
the expression profiles from (d). These have decreased significantly with stripe registration. Data for the 1D profiles is extracted from 10%
(DV) longitudinal strips (e.g., Figure 6, center strip). Cubic spline interpolation was used to display discrete data.

expression surface for such an embryo looks like a half ellip-
soid (Figures 8a and 8b). The fluorescence level at the edges
of the image is about 20 arbitrary units, while in the center it

is about 60 units. (The expression surface follows the geome-
try of the embryo as illustrated in Figure 1b.) Even in eve null
mutants, background fluorescence shows this distortion.
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Figure 8: Surface stretching transformation. (a) and (b) Experimental expression surface and scatter plot, for a truly uniform distribution
of the eve gene product. (c) and (d) Expression surface and scatter plot after surface stretching, minimizing the systematic errors in intensity
data.

The stretching procedure transforms the expression sur-
face along the DV, y-axis (Figures 8c and 8d). Minimizing
the systematic observational error in this direction gives us a
chance to directly observe nucleus-to-nucleus variability in a
single embryo (Figure 8c).

5. RESULTS ANDDISCUSSION

We have found heuristic optimization procedures (transfor-
mations (1), (2), and (3)) to be a simple and effective way to
reduce observational errors in embryo images. This reduc-
tion of variability allows us to focus on the variability intrin-

sic to gene expression and the dynamics of patterning over
cycle 14. Here, we give an overview of some of our results
with processed datasets.

5.1. Integrated dataset
As mentioned in the introduction, dataset integration from
multiple scanned embryos is necessary due to the impossi-
bility of simultaneously staining embryos for all segmenta-
tion genes at once (the current limit is triple staining). Other
work [19, 20] have begun to address the processing nec-
essary to standardize images for dataset integration. Myas-
nikova et al. [19] have used transects, as in Figures 7b and
7c, and have done stripe registration of the profiles (with
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Figure 9: Part of an integrated dataset of gene expression in time
class 8 (late cycle 14) for the gap genes hunchback (hb), giant (gt),
Krüppel, and knirps(kni) and the pair-rule gene eve. Each surface
is the gene expression for a time class exemplar (as discussed in
Section 3).

a different method than ours). Our work adds the steps
of stripe straightening and surface stretching, allowing for
the construction of 2D expression surfaces and integrated
datasets (Figure 9). These steps also minimize contributions
to AP variability from DV sources, clarifying the task of
studying molecular sources of intensity variability.

More such processed segmentation patterns are posted
and updated on the website HOX Pro (http://www.iephb.
nw.ru/hoxpro, [21]) and the web-resource DroAtlas (http://
www.iephb.nw.ru/∼spirov/atlas/atlas.html).

5.2. Dynamics of profilematuration

Any analysis of the formation of gene expression patterns
must address the striking dynamics over cycle 14. Especially
in early cycle 14, these patterns are quite transient, only set-
tling down aroundmid-cycle 14 to the segmentation pattern.
Comparative analysis of pattern dynamics for the pair-rule
genes is particularly important. Essential questions on the
mechanisms underlying these striped patterns are still open
[22, 23].

The only way to trace the patterning in sufficient detail
to address these questions is to integrate large sets of em-
bryo images over these developmental stages. (Time rank-
ing within cycle 14 is not a simple task. Presently, it takes an
expert to rank images into time classes. We are developing
automated software for ranking, to be published elsewhere.)
AP profiles which have been registered can be integrated into
composite pictures like Figure 10, which plots AP distance
horizontally against time (at the 8 time class resolution) ver-
tically, with intensity in the outward direction.

Figure 10 allows us to examine a number of features of
cycle 14 expression dynamics. Gap genes tend to establish
sharp spatial boundaries earlier than the pair-rule genes.
Pair-rule genes are initially expressed in broad domains,
which later partition into seven stripes. The regularity of the

gt

hb

kni

eve

1 2 3 4 5 6 7

hairy

1 2 3 4 5 6 7

Figure 10: Three-dimensional diagrams representing dynamics of
AP profiles of expression for the gap genes gt, hb, kni, and pair-
rule genes eve and hairy (h). Horizontal coordinate is spatial AP
axis (from left to right); vertical coordinate is time axis (from up
to down); expression axis is perpendicular to the plane of the dia-
grams. White numbers marks individual stripes of eve and hairy.

late cycle pattern is well covered in the literature, but the de-
tails of the early dynamics are not so well characterized.

All five genes show a movement towards the middle of
the embryo, with anterior expression domains moving pos-
teriorly and posterior domains moving anteriorly. In more
detail, the small anterior domain of knirps (white arrowhead)
appears to move posteriorly at the same speed as eve stripe 1
(also marked by white arrowhead). It appears that we can see
interactions between hb and gt in the posterior: a posterior
gt peak forms first, but as posterior hb forms, the gt peak
moves anteriorly. This interaction appears to be reflected in
the movement of stripe 7 of eve and h (black arrowheads).

We hope that further study of the correlation between ex-
pression domains over cycle 14 and observation of the fine
gene-specific details of domain dynamics will serve to test
theories of pattern formation in Drosophila segmentation.

http://www.iephb.nw.ru/hoxpro
http://www.iephb.nw.ru/hoxpro
http://www.iephb.nw.ru/~spirov/atlas/atlas.html
http://www.iephb.nw.ru/~spirov/atlas/atlas.html
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Figure 11: Eve and bcd fluorescence scatterplots and profiles (early
cycle 14, time class 1), sampled from a 50% DV longitudinal strip.
(a) Scatterplots after stripe straightening and surface stretching.
Each dot is the intensity for a single nucleus. (b) Curves of mean
intensity at each AP position, with standard deviation error bars.

5.3. Nucleus-to-nucleus variability

Pictures like Figure 7c give us glimpses into the molecular-
level fluctuations existing in this gene network. However,
such data still displays variability in scanning between em-
bryos and over time with the experimental procedure.
With stripe straightening and surface stretching, we have a
chance to look at nucleus-to-nucleus variability in single em-
bryos, eliminating many sources of experimental error. (The
drawback is that we are limited to triple-stained embryos.)
Figure 11a shows the maternal protein bicoid (bcd) (expo-
nential) and expression of eve (single peak, the future eve
stripe 1) for a single embryo in early cycle 14. This image was
made from a 50% DV longitudinal strip so that the observed
variation at any AP position is that in the DV direction (e.g.,
along a stripe). Each dot is the intensity for a single nucleus.
The variation in this plot is largely due to natural, molecular-
level fluctuations in gene expression. At this developmental

stage, we can see that overall noise is comparable between
the genes, but the anterior edge of the eve stripe is relatively
well controlled. Figure 11b shows means and standard devi-
ations at each AP position. We are using this type of data to
address how noise is propagated and filtered in the segmen-
tation network (to appear elsewhere).

To conclude, we have applied image processing steps to
minimize particular sources of experimental and observa-
tional error in the scanned images of segmentation gene ex-
pression. Cropping and scaling addresses embryo size vari-
ability. Stripe straightening eliminates variable DV contribu-
tions to the AP pattern. Registrationminimizes differences in
expression domains and spacing for pair-rule genes. Expres-
sion surface stretching minimizes systematic observational
error along the y-axis. The combination of these procedures
allows us to create composite 2D expression surfaces for the
segmentation genes, allowing us to investigate pattern dy-
namics over cycle 14. Also, these procedures allow us to do
single-embryo statistics, eliminating many sources of exper-
imental variability in order to address molecular-level noise
in the genetic machinery.
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