
 Procedia Computer Science   9  ( 2012 )  373 – 382 

1877-0509 © 2012 Published by Elsevier Ltd. 
doi: 10.1016/j.procs.2012.04.040 

International Conference on Computational Science, ICCS 2012 

Measuring gene expression noise in early Drosophila embryos: 
nucleus-to-nucleus variability 

Nina E. Golyandinaa, David M. Hollowayb, Francisco J.P. Lopesc, Alexander V. 
Spirovd,e,*, Ekaterina N. Spirovaf, Konstantin D. Usevicha,**, 

aDepartment of Mathematics and Mechanics, St.-Petersburg State University, St.-Petersburg, Russia 
bMathematics Department, British Columbia Institute of Technology, Burnaby, B.C., Canada 

cInstituto de Biofisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 
dComputer Science and CEWIT, SUNY Stony Brook, Stony Brook, New York, USA 

eThe Sechenov Institute of Evolutionary Physiology & Biochemistry, St.-Petersburg, Russia 
fAMS, SUNY Stony Brook, Stony Brook, New York, USA 

*Corresponding author: Alexander.Spirov@sunysb.edu 
**Current address: School of Electronics and Computer Science, University of Southampton, Southampton, UK 

The authors are listed in alphabetical order 

 

Abstract 

In recent years the analysis of noise in gene expression has widely attracted the attention of experimentalists and theoreticians. 
Experimentally, the approaches based on in vivo fluorescent reporters in single cells appear to be straightforward and effective 
tools for bacteria and yeast. However, transferring these approaches to multicellular organisms presents many methodological 
problems. Here we describe our approach to measure between-nucleus variability (noise) in the primary morphogenetic gradient 
of Bicoid (Bcd) in the precellular blastoderm stage of fruit fly (Drosophila) embryos. The approach is based on the comparison 
of results for fixed immunostained embryos with observations of live embryos carrying fluorescent Bcd (Bcd-GFP). We measure 
the noise using two-dimensional Singular Spectrum Analysis (2D SSA). We have found that the nucleus-to-nucleus noise in Bcd 
intensity, both for live (Bcd-GFP) and for fixed immunstained embryos, tends to be signal-independent. In addition, the character 
of the noise is sensitive to the nuclear masking technique used to extract quantitative intensities. Further, the method of 
decomposing the raw quantitative expression data into a signal (expression surface) and residual noise affects the character of the 
residual noise. We find that careful masking of confocal images and use of appropriate computational tools to decompose raw 
expression data into trend and noise makes it possible to extract and study the biological noise of gene expression. 
 

Keywords: fluorescence imaging; image segmentation; measuring gene expression; gene expression noise; noise filtration; noise analysis; 
Singular Spectrum Analysis (SSA); 2D SSA 

1. Introduction 

In recent years the analysis of noise in gene expression has widely attracted the attention of both experimentalists 
and theoreticians. Observations on live bacterial and yeast cells are a straightforward way to do this. The approach is 
based on genetically engineered fluorescent proteins and fluorescence imaging. Particularly, the dual-reporter 
method was firstly applied to bacteria [1,2], and a little later to yeast cells [3,4]. Noise is present in some of the 
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critical processes in living systems and robustness to noise should be one of the main design principles of the 
associated gene regulatory networks [5]. 

Noise in gene expression arises not only from the inherent randomness of biochemical processes such as 
transcription and translation (intrinsic noise), but also from fluctuations in cellular components that lead indirectly to 
variation in the expression of a particular gene (extrinsic noise) [e.g. 6]. Extrinsic noise arises from fluctuations in 
cellular components such as regulatory proteins and polymerases, and has a global effect [1]. Intrinsic noise arises 
from the stochastic nature of the biochemical process of gene expression and causes identical copies of a gene to 
express at different levels [1]. Early noise projects found that intrinsic noise in bacteria and yeast tended to be well-
fit by Poisson birth and death processes [4,7]. 

Detailed consideration of the unicellular experiments raises some crucial questions as to what extent the 
measured noise is chiefly the molecular noise of gene transcription and translation. Even ignoring the observational 
noise (e.g. in fluorescence measurements), we still have to pay attention to biological noise sources such as active 
molecular transport, compartmentalization, and the mechanics of cell division etc. [e.g. 8]. We might expect that 
these noise sources are relatively low and controllable in bacterial and yeast populations, but this assumption 
becomes far less appropriate in the case of whole embryo observations (tissues of many thousands of cells). 

The ideas and approaches for transcription/translation noise in simple single cells has started to be transferred to 
higher multicellular organisms, primarily the early Drosophila embryo [9-12], with tempting parallels between 
fluorescence of separate nuclei in Drosophila blastoderm images and fluorescent reporters in separate cells in 
bacteria and yeast experiments. In both cases we can mask the sources of fluorescence (bacteria / yeast cells vs. 
nuclei in the blastoderm), measure their intensity, and estimate noise. The problem is to what extent the nucleus-to-
nucleus variability corresponds to the intrinsic noise of gene expression: in bacteria and yeast, observed fluctuations 
are likely to be more directly due to intrinsic transcription/translation noise; in embryos, tissue-level effects such as 
molecular transport and compartmentalization begin to contribute more strongly to the observed fluctuations. 

Serious observational limitations in confocal scanning of whole Drosophila embryos have been raised by several 
authors (e.g. Myasnikova et al. ([10,11], cf [12]). We find, by comparing fluorescence intensity noise in confocal 
scanning of live Bcd-GFP embryos (unpublished) with fixed immunostained embryos [13,14], that the nature of the 
noise is quite far from the simple poissonian birth and death processes applied to single cells. In particular, we have 
noticed that noise in the mRNA signal (FISH technique) can be practically independent of trend (Supplementary 
Text S3 & Supplementary Figure S12 [14]). These preliminary observations inspired us to apply the approach to 
protein data and to analyse the noise trends in detail. We believe the single-celled view of nuclear fluorescence 
directly resulting from point transcription and translation (using traditional chemical kinetic approaches) does not 
conform to the biological reality in embryos.  

In complex multicellular tissues, nuclear fluorescence is affected by the complicated and relatively poorly studied 
processes of active (energy-dependent) transport of molecules from one compartment to another. The geometry and 
dynamics of the compartments and their relation to the molecular machinery of the active transport is still puzzling. 
Statistics for the abundance of a given transcription factor in a nucleus is not likely to be simply modeled by 
elementary polypeptide synthesis on ribosomes. We need to pay attention to the many coupled processes of 
stratification and compartmentalization of the cytoplasm, which is highly dynamic and cell-cycle dependent; for 
example, the well-known local and whole-embryo scale cytoplasmic movements, especially during mitosis [15,16]. 
In recent work, we have fou -cellular compartmentalization of the 
embryo surface, which is highly dynamic in time, is a major component of total biological noise, and can exceed 
gene transcription/translation noise [13]. 

In this communication, we focus on nucleus-to-nucleus variability in the Bicoid (Bcd) transcription factor. Our 
approach involves comparing confocal data for Bcd intensity between fixed immunostained and live embryos. We 
focus on several hour old embryos, at the 13th nuclear cleavage cycle (cc13). At this stage, the embryo is a 
precellular syncytial blastoderm, with ~212 nuclei, mostly located just under the surface.  

Since Bcd is a transcription factor, it is actively imported into nuclei, where it can act in gene regulation. Nuclei 
show much higher Bcd intensity than the surrounding cytoplasm. Looking closely at the fluorescence, it can be seen 
that Bcd tends to form granules inside nuclei. This is seen in live embryos (Fig 1A) and in fixed immunostained 
embryos (Fig 1B). As noted in [17] Bcd appears to form punctate spots within anterior nuclei, possibly 
reflecting binding of GFP Bcd to target genes, or localization of GFP Bcd to a subnuclear compartmen
[17] Confocal microscopy revealed that GFP Bcd binds to many bands in the polytene chromosomes of larval 
salivary glands. Similarities and differences between the Bcd patterns in live and fixed embryos can form a basis 
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for extracting real biological noise from the confocal images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Nucleus-to-nucleus variability: Bcd signal localization in live (A) and fixed (B) nuclei. A) Bcd-GFP signal in live 
nuclei is mainly concentrated in compact dense particles and only weak signal is seen in the rest of the nucleoplasm. Probably 
what we are observing is euchromatin with hundreds of Bcd-GFP molecules bound to it. B) Nuclei in a fixed embryo 
immunostained for Bcd. Gray image has been colorized by ImageJ. Brighter granules are clearly seen and comparable with live 
observations (A). C) 3D representation of nuclear images like (A) and (B) by the Surface Plot 3D plugin for ImageJ software, 
making nuclei look like peaks. 

At this stage of development each nucleus can contain ~ 2500 Nucleus Pore Complexes, NPC [18]. This density 
of NCPs can pump a few hundred Bcd molecules into a nucleus in a few minutes ([19] and our observations). This 
keeps the Bcd nuclear concentration about four times higher than in the surrounding cytoplasm [20]. Specifically, 
maximum concentrations near the anterior pole are estimated to be ~5420 Bcd molecules per nucleus (cc14), while 
concentrations near the midpoint of the embryo are ~690 molecules per nucleus [19]. There are estimated to be 
hundreds to thousands of binding sites in each nucleus, probably mainly occupied at higher Bcd concentrations 
[21,22]. The molecular machinery of Bcd nuclear sequestration is complicated and still poorly understood [22]. 

The speed of Bcd nuclear import keeps nuclear concentrations in dynamic equilibrium with the surrounding 
cytoplasm. At the relatively low numbers of Bcd molecules and NPCs, it is expected that natural fluctuations in the 
nuclear import/export process could contribute significantly to observed variability  such a central process as the 
re-popu
contribution to gene expression variability.  

In this communication, we process and analyze the same embryo images from the FlyEx database used in [9] and 
compare these to our own observations on live Bcd-GFP embryos. We use original methods to process embryos and 
decompose spatially 2D fluorescence data into signal and noise, both for fixed and live embryos. We find that the 
observed nucleus-to-nucleus variability tends to be signal-level independent, both in fixed and live embryos. We 
conclude by discussing how our approach allows us to characterize biological noise, separated from observational or 
experimental contributions to noise. 

2. Methods and Approaches 

2.1. Confocal scanning of live embryos 

We use a transgenic fly line in which GFP (Green Fluorescent Protein) has been fused onto the Bcd protein (gift 
of Dr. Wieschaus, [20]). With these flies, we can follow developmental dynamics in live embryos. FPs have been 
instrumental to studying noise in single-celled organisms, and it is hoped that using FP-tagged proteins can 
eliminate many sources of experimental noise in whole embryo imaging. However, confocal scanning of FPs has its 
own serious limitations. FPs are very sensitive to bleaching and live embryos are very sensitive to photo-damage. 
This makes photon-detection noise substantially higher than in fixed immunostained embryos, making it hard to 

 
A                                                  B                                           C 
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follow long developmental periods. Yolk autofluorescence also interferes with GFP. We now have a fair degree of 
experience with Bcd-GFP, however, and have developed a series of confocal protocols to minimize these 
difficulties. For instance, published studies with Bcd-GFP have been performed at low speed (one frame per 1-3 
minutes). We found that scanning the mid-sagittal plane with a very small pinhole (0.5 airy) and low resolution 
(512*512 or even 256*256 pixels) minimizes bleaching. This allows us both to achieve 1 frame/sec. time resolution, 
allowing us to observe such processes as Bcd redistribution during mitosis. 

2.2 Processing of confocal images 

Confocal images of fixed immunostained embryos from the FlyEx database and scanning results of live Bcd-GFP 
embryos were processed using the same data processing protocol (summarized in Fig 2):  

 (Segmentation) The regions of interest (ROI) of nuclei are detected in a confocal image and the average 
expression of each nuclei is computed. 

 (Regularization) The irregularly sampled expression data is cropped and resampled to the image (data 
mapped onto a regular grid). 

 (Smoothing) The image of expression is smoothed by non-parametric methods. The values of smoothed 
expression in nuclei centers and the nucleus-to-nucleus variability are determined.  

In this paper we use circular ROI for segmentation, with both automatic and manual detection of nuclei centers. 
For this purpose special ImageJ scripts were designed. Images from FlyEx were also segmented by Khoros / 
VisiQuest software by using publicly available workspaces and recommended settings (http://urchin.spbcas.ru/flyex/) 
to compare with our segmentation results. 

In the smoothing step the data is decomposed by a non-parametric 2D-extension of Singular Spectrum Analysis 
(2D-SSA [23]), which we have previously applied to Bicoid pattern analysis. For the regularization step MATLAB 
scripts were developed, and for smoothing the 2D-SSA software was employed (as described in [14]).  

 

A Confocal image B Detected nuclei  C Irregularly sampled data 

D Regularized expression  E Smoothed expression   F Smoothed expression in nuclei 

Figure 2. Data processing step results.  

2.2.1 Segmentation of confocal images 

Automatic boundary detection of nuclei can be inaccurate due to varying intensity of nuclei and also due to 
measurement noise. We propose the use of circular sub-regions that are contained within each nucleus (see Fig 2B). 
The radius of ROI is chosen manually (in the case of Fig 3, large ROI radius is 7 pixels, small  4 pixels; visible 
nuclei radii are 10-12 pixels). The centres of ROI can be defined either manually, or as centroids of nuclei regions 
detected by a segmentation algorithm.  
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The centroids of nuclei were found by our original ImageJ plugin (script). The results were then carefully 
inspected by eye, with the main criterion being whether the centroid corresponded closely enough to the (local) 
intensity maximum of the nuclear staining (see peaks in Fig 1C). In the vast majority of cases the nuclear intensity 
looks like a peak with the maximum in the vicinity of the geometric centre of the nucleus. Usually the script finds 
these correctly, but nuclei with low signal were frequently segmented inappropriately and needed manual correction. 

The result of this step are triples (xi, yi, fi), where (xi, yi) are the coordinates of centroids and fi is the average pixel 
intensity over the ROI (see Fig 2C). 

2.2.2 Regularization 

The data first is cropped to form a rectangular area [xb, xu]x[yb, yu] with homogeneous placement of nuclear 
centers. Then the data is regularized to be defined on a rectangular grid with step . The values (F)m,n = f(xb + m, 
yb + n) of the regularized image are determined by bilinear interpolation (the function is approximated by a 
piecewise linear function, defined on triangles given by a Delaunay triangulation of the set of points (xi, yi) (see Fig 
2D).  

The  of the regular grid should be small in comparison to inter-nuclear distances (0.2% embryo length was 
used for all analyses). 

2.2.3 2D-SSA nonparametric smoothing 

Regularized images are smoothed by the 2D-SSA procedure  a novel nonparametric technique of 2D data 
analysis. 2D-SSA works o
and noise. The decomposition of F into these summands is performed by the SVD (Singular Value Decomposition) 
of a structured matrix of higher dimension, which is constructed from data F using a sliding Lx  x Ly window.  

Trend, oscillations and noise correspond to different singular triplets of the SVD (analogous to principal 
component analysis), and can be grouped. After grouping, a reconstruction of the original summands is performed. 
Further details on this method can be found in [14] and [23]. The trend usually corresponds to the first r principal 
components, and therefore the parameters of the smoothing method are (Lx, Ly, r) (see Fig 2E). 

2.2.4 Reconstruction of smoothed function in original points 

To determine the values  of the smoothed image on the original irregular grid (points of nuclear centres) a 
bilinear interpolation is used; the values of  are interpolated separately along X and Y axes. For an appropriately 
small regularization step, the interpolation method is not significant (see Fig 2F).  

The noise (the residuals) is calculated as . 

2.2.5 Choice of parameters in 2D-SSA 

Window sizes must be large enough to capture distinct nuclei. Smaller windows give more detail in the leading 
principal components of the SSA decomposition (i.e., the pattern is captured by just one or two leading 
components), while larger windows give better resolution and decompose the trend into a larger set of components. 
Choosing the number of components can also affect the fit. Trend principal components should correlate weakly 
with the residual (noise) set, one can determine the number of trend components by examining the w-correlations 
between components. For more details see [14]. Due to the above considerations, in this study we chose a window 
size of 33x33.  

3. Results and Discussion 

3.1 Expression noise in the nuclear layer 

Fixed immunostained embryos in the FlyEx database were imaged tangentially, that is scanned in a side view of 
the embryo, capturing a 2D expression surface for the protein of interest (Fig 2A). We conducted tangential scans of 
Bcd-GFP embryos for comparison. The key methodological problem with tangential scans is to identify the nuclear 
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positions and areas. This is the process of segmentation, to find a mask or ROI (Region of Interest) that covers each 
nucleus in the image. This is challenging, since nuclear signals are distorted optically. To the best of our knowledge, 
nobody has systematically studied the effects of fixation and confocal setting on nuclear segmentation (but see 
[10,11]). Specifically, the problem is that the overall form of a nuclear image depends on the magnitude setting of 
the microscope (the lower the magnitude the more nuclei look like peaks, with maximum fluorescence at the center 
of a nuclear image). Therefore, the lower the intensity of nuclear fluorescence, the smaller the nucleus appears (it 
does not simply become dimmer, it optically shrinks). In addition, the gap between adjacent nuclei can be so small 
(and the illumination from the core part of the nucleus can be so high) that intensity in the between-nuclei gaps is 
probably not representative of the true (lower) cytoplasmic fluorescence or background intensity. It is therefore a 
general question how to measure the intensity of a nuclear signal  e.g. by i) averaging the sum of pixel intensities 
by the area of nucleus (defined by pixels above background intensity), or ii) by counting intensity from the bright 
core only. One of the main methodological problems we have found with nuclear-level variability analysis (for both 
fixed immunostained and live Bcd-GFP embryos) is the influence of the segmentation (nuclear finding) technique 
on the character of the extracted nucleus-to-nucleus noise. 

3.2 Fixed immunostained embryos 

We picked the best quality cc13 embryo images from the FlyEx database by eye (in contrast with the procedure 
and parameters used for semi-automatic processing, presented on FlyEx and described in [24]). These were chosen 
based on the quality of the nuclear images: focus; clearly observable sub-nuclear granular structure; and low 
background. Only a fraction of the database images fit these criteria. Our selection criteria were constrained by 
needing to match, as far as possible, fixed and immunostained images with clear live Bcd-GFP images. We found 
the ms18 embryo, used as the representative exemplar in Figure 1 of Wu et al. [9] not to be the best one according to 
these criteria. (The ms18 embryo belongs to early cc13 and its nuclei are smaller than for later embryos; as a result, 
they have more optical distortion.) The bd3 embryo is analyzed here as an exemplar. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Dependence of the between-nucleus noise on signal at different ROI, tangential data for Bicoid factor, fixed and 

immunostained embryo bd3 from the FlyEx database ([25]; http://urchin.spbcas.ru/flyex/). The between-nucleus noise is largely 
independent of the signal level (trend). A) Nuclear intensity of Bicoid, measured via small ROI. Median smoothing of absolute 
values of the noise (y-axis) vs. means (x-axis). Moving medians are in magenta. The between-nucleus noise is independent of 
signal level, particularly at moderate intensity (value ~60) and above. B) Bicoid nuclear intensity with large ROI. Magenta  as in 
A); again the between-nucleus noise is largely independent of signal level (in this case for intensities above value ~25).  

 
Since the quality of the nuclear images in tangential scans depends dramatically on magnitude / resolution of the 

microscope, we varied and optimized both the nuclear segmentation and SSA parameters before proceeding with 
decomposition into 2D trend and residual noise. 

Fig 3 shows the results for a good fixed immunostained image (embryo bd3, Fig 2A). The nuclear centers were 

 
A                                                                    B 
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found manually and mean nuclear intensity was calculated for two radius values (small ROI, large ROI). Large ROI 
is shown in Fig 2B. The results of the noise analysis are shown in Fig 3. The main conclusion is that the between-
nucleus noise for the Bcd factor for fixed immunostained embryos is largely independent of the signal level. This 
characteristic of the noise was reproduced with different image processing parameters (particularly, different ROI 
radii;  Fig 3CD) and different SSA parameters (size of the sliding 2D window, the number of components in the 
SSA decomposition corresponding to the trend; not shown). As can be seen ( Fig 3), the residual noise with small 
ROI is much higher than for large ROI. 

3.3 Live embryos, Bcd-GFP 

Two of the most serious problems in quantitatively studying the dynamics of GFP-tagged proteins in live 
Drosophila embryos are i) low signal due to low GFP concentration, and ii) GFP bleaching. Ideally, we would like 
to adjust the scanning time to collect as many photons per pixel as possible. However, extension of the exposure 
time bleaches the GFP, and we cannot use anti-fog agents. By careful comparison of the Bcd-GFP dynamics under 
different scanning protocols, we found confocal settings optimal for our purposes of studying within- and between-
embryo noise (see 2.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Nucleus-to-nucleus noise for a live embryo, Bcd-GFP signal. A) Live embryo image, scanned 430 times in 10 minutes. 
Each nucleus was masked by an ROI of 37 pixels (small ROI). B) Dependence of between-nucleus variation on trend. Moving 
medians are in magenta. The between-nucleus noise is independent of signal level. (Cf Fig 3) 
 

Fig 4A shows a live embryo image which was scanned 430 times in 10 minutes. Each nucleus is masked by a 37 
pixel ROI, the small ROI in 3.2 (see  Fig 3). For live imaging, the large ROI causes greater optical distortions of the 
nuclear images. Overall intensity for Bcd-GFP signal in live embryos is lower than with fixed immunostained 
embryos. Live embryo nuclear intensities are generally between 18  48 units on a 0-255 scale, about 5 times lower 
than for fixed embryos. 

A  

B  
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Following segmentation, the data from  Fig 4A was processed by 2D-SSA, as in 3.2. The results are shown in  
Fig 4B. The between-nucleus noise is independent of the signal level. The residuals are about 0.5-1 on an intensity 
scale of 0-255; the noise is quite low. Our procedure for scanning makes GFP signal of comparable noise level to 
fixed immunostained embryos. The main conclusion of this communication is that both procedures, live GFP and 
fixed immunostained, display signal independent noise. 

3.4 Bcd between-nucleus noise: the effect of data processing 

Wu et al. [9] previously reported on Bcd nucleus-nucleus variation, using the same dataset (cc13 FlyEx images 
[24]). They reported a heterogeneity in their results, with signal-independence of Bcd variation in some embryos and 
signal-dependence in others. Here we discuss the differences in data processing which likely led to the 
heterogeneous outcome in Wu et al. [9], and how our process produces more robust, consistent results.  

First, as discussed above, the segmentation process, to find nuclei, can have a strong effect on acquired nuclear 
intensities. (These embryos were not stained with a specific nuclear stain; nuclei must be inferred from transcription 
factor expression [24,25].) Using the Khoros/VisiQuest segmentation package with publicly available workspaces 
and recommended settings [24 and http://urchin.spbcas.ru/flyex/], we found poor quality masks. In Fig 5, we show 
the Khoros/VisiQuest segmentation for embryo bd3 (shown with ROI segmentation in Fig 2B). (FlyEx does not 
display the mask images that were used as data in [9 -

observable nuclear boundaries, to provide much more consistent data regarding nuclear intensities.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Segmentation (nuclear masking) of the bd3 embryo image by tools and settings recommended in [24; 
http://urchin.spbcas.ru/flyex/).]. Bcd immunostaining is shown in magenta, black contours are the nuclear masks found by 
Khoros/VisiQuest software. This is approximately the same embryo region illustrated in Fig 2B. 

 
Second, the choice of a trend, from which to find the noise (residuals left from subtracting the trend from the 

data), is critical. Along the anterior-posterior (AP) axis, the Bcd trend is surprisingly exponential looking in central 
portions of the embryo, and can be described by a simple exponential, a exp(-j/ ). Wu et al. [9] calculated residuals 
as the difference between this exponential and the data. However, a non-parametric decomposition of the data, via 
2D-SSA, demonstrates that the full 2D surface of Bcd intensity (AP by dorso-ventral plane) is not a simple 
exponential and is not smooth  it has low frequency disturbances or texture. 2D-SSA shows that these components 
statistically belong to the trend (they have a low correlation with the higher frequency noise components of the data; 
see 2.2.5). Fig 6 shows the 2D Bcd trend extracted via 2D-SSA (same embryo as Fig 3). The non-smooth 
components of the trend may have a biological basis in the short range correlations between neighbouring nuclei (a 
component with a correlation length ) reported by [19 19]. 

Wu et al. [9] discussed their results in terms of the number of primary and secondary antibody molecules which 
bind to proteins in the fixed immunostaining process. They discussed that fluctuations in these numbers could lead 
to a rescaling noise (between numbers of protein molecules and observed fluorescence) which could produce the 
signal-dependent noise observed in many of the embryos. This mechanism seems quite reasonable and warrants 
further study.  
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Figure 6. Bcd trend found by 2D SSA processing of the two-dimensional dataset shown in Fig 3. The first three components in 
the SSA decomposition were chosen to plot the expression surface on the basis of the w-correlations between components (see 
2.2.5 for details; Cf Fig 2E). (AP, anteroposterior; DV, dorsal-ventral.) 

 
However, we have found, in the present communication, that i) nuclear segmentation and ii) determination of the 

signal trend have strong effects on any conclusions about residual between-nucleus noise. With a more consistent 
nuclear masking technique and non-parametric determination of the trend, we find that both live and fixed embryos 
show signal-independent between-nucleus noise. This suggests that the immunochemical amplification of the signal 
does not change the nature of the noise drastically. 

4. Conclusions 

 Nucleus-to-nucleus variability (noise) of the Bicoid transcription factor intensity, both for live embryos 
(Bcd-GFP) and for fixed & immunostained embryos is signal-independent. 

 The character of the noise is sensitive to the segmentation method used to find nuclei (masks). 
 The technique for finding the signal (expression surface) from raw intensity data affects the residual noise 

extracted, and affects conclusions regarding the character of the noise. 
 The immunochemical amplification of the signal in fixed embryos (due to usage of secondary antibodies) 

does not drastically change the character of the noise. 
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