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Abstract—Gene recruitment or co-option is defined as the 

placement of a gene under a foreign regulatory system. Such 
re-arrangement of pre-existing regulatory networks can lead 
to an increase in genomic complexity. This reorganization is 
recognized as a major driving force in evolution. We simulated 
the evolution of gene networks by means of the Genetic 
Algorithms (GA) technique. We used standard GA methods of 
(point) mutation and multi-point crossover, as well as our own 
operators for introducing or withdrawing new genes on the 
network. The starting point for our computer evolutionary 
experiments was a minimal 4-gene dynamic model 
representing the real genetic network controlling segmentation 
in the fruit fly Drosophila. Model output was fit to 
experimentally observed gene expression patterns in the early 
fly embryo. We found that the mutation operator, together 
with the gene introduction procedure, was sufficient for 
recruiting new genes into pre-existing networks. 
Reinforcement of the evolutionary search by crossover 
operators facilitates this recruitment. Gene recruitment causes 
outgrowth of an evolving network, resulting in structural and 
functional redundancy. Such redundancies can affect the 
robustness and evolvability of networks. 
 

Index Terms—Complexification of gene networks, gene 
co-option, modeling of biological evolution by Genetic 
Algorithms, redundancy and robustness of gene networks.  
 

I. INTRODUCTION 
Early in metazoan evolution, gene networks specifying 
developmental events in embryos may have consisted of no 
more than two or three interacting genes. Over time, these 
were augmented by incorporating new genes and integrating 
originally distinct pathways [1]. While it may initially be 
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thought that new functions require novel genes, whole 
genome sequencing has shown that apparent increases in 
developmental complexity do not correlate with increasing 
numbers of genes [2]: the number of genes in the human 
genome is somewhat higher than in fruit flies and 
nematodes, but lower than pufferfish and cress and rice 
plants. Therefore, evolution of developmental pathways 
may most commonly proceed by recruitment of preexisting 
external genes into preexisting networks, to create novel 
functions and novel developmental pathways [ 3 ]; 
developmental evolution may act primarily on genetic 
regulation [4], [5].  

Specifically, gene recruitment may occur through 
mutational changes in the regulatory sequences of a gene in 
an established pathway, enabling a new transcriptional 
regulator (or regulators) to bind. This regulator may be from 
a newly evolved gene (say via duplication and subsequent 
change), in which case it simply adds to the existing 
pathway, or it may have already been part of a pre-existing 
pathway, in which case the two pathways become 
integrated. In either case, the developmental function of the 
pathway may be significantly altered. Similarly significant 
alterations can arise by inserting regulatory sequences for an 
existing gene at new loci, transferring transcriptional control 
of the original gene to other members of the genome [6], [1].  

In insects, two distinct modes of segmenting the body 
have evolved. In primitive insects, such as the grasshopper, 
the short germ band mode lays out body segments 
sequentially. Many more highly derived insects, such as 
flies, use the long germ band mode to establish all body 
segments simultaneously. This simultaneous mechanism 
must act quickly during development; it has been proposed 
that it evolved by co-option of new genes to the short germ 
band mechanism, in order to maintain accurate regulation of 
patterned gene transcription over the whole embryo in a 
condensed time frame [1]. 

Here, we investigate the mechanisms of co-option, with 
direct application to how this might occur in insect 
segmentation networks. We use the Genetic Algorithms 
(GA) technique to model biological evolution on a minimal 
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4-gene model network of early fly development (adapted 
from [11], [7]). In our simulations, we used standard GA 
operators (mutation and crossover) as well as our own 
operators for introducing and removing new genes on the 
minimal network. Simulation output is tested against 
experimentally observed segmentation gene expression 
patterns.  

 

 
 
Figure 1. Biological data used to fit ODE model by GA. 

A. Drosophila melanogaster early (blastoderm stage) embryo at 
nuclear cleavage cycle 14A, immunostained for Gt, Hb, and Kr 
proteins (FlyEx database embryo; 
http://flyex.ams.sunysb.edu/flyex/). Anterior is to the left, dorsal is 
up. White bar indicates the region included in the model.  

B. Integrated gene expression profiles for early cleavage cycle 14A. 
Vertical axis represents relative protein concentrations, horizontal 
axis represents position along the anteroposterior (A-P) embryo 
axis (where 0% is the anterior pole). Data from the FlyEx database.  

C. Overview of the gap gene network (After [7]). The gap genes are 
represented as boxes. Repressive interactions are represented by 
T-bar connectors. Looped arrows mean self-regulation. 

 
In computing evolutionary searches, we have found that 

the standard operator for point mutations, in combination 
with the gene introduction operator, is enough to support 
recruitment of new genes to pre-existing networks. By 
contrast, many evolutionary biologists believe that the main 
mechanism facilitating recruitment is the sophisticated 
shuffling of genetic material, such as unequal crossing over, 

or the activity of transposons [8]. By using a computational 
approach, we can test the significance of different 
mechanisms for recruitment. Specifically, we test point 
mutation against one- and multi-point crossover 
(recombination).  

Our results also indicate how complexification or 
“outgrowth” of gene networks can proceed, by recruiting 
new genes to make new connections between old and new 
members of the network. We have studied the structural and 
functional redundancy of the evolved networks, as well as 
the possible influence of the redundancy on their 
evolvability and robustness. 

 

II. METHODS AND APPROACHES  

A. The segmentation gene network and its modeling  
The fruit fly’s segmentation gene network is one of not too 
many fully characterized genetic ensembles, making it for 
many years the most popular object for computer 
simulations of its function and evolution [9], [10], [11], [12], 
[13], [14]. 

The maternal Bicoid (Bcd) protein in the blastoderm stage 
Drosophila embryo is a classic example of a morphogen 
[15]: distributed in a spatial gradient, it transcriptionally 
activates its targets, such as the gap genes Krüppel (Kr), 
giant (gt), knirps (kni) and hunchback (hb) (Fig. 1), in a 
concentration-dependent manner at distinct positions. 
Subsequent cross-regulation of the gap-genes makes 
segmentation patterns sharper and more precise.  

The gene circuit framework [16], [17] was used to model 
the antero-posterior (AP) pattern formation shown in Fig. 
1A-B. The model is computed for a one-dimensional row of 
nuclei, between 30 and 94% A-P position (where 0% is the 
anterior pole) during nuclear cleavage cycles 13 and 14A. 
The model includes the bcd, hb, Kr, kni and gt gene products 
(see Fig. 1). The rates of change in protein concentration 

dt
dva

i  for each regulated gene product a  in each nucleus i 

are given by a system of number of proteins times number of 
nuclei ODEs defined by  

1

1 1( ) ( ) .

Na
ab b a Bcd ai

a i i
b

a a a a a a
i i i i a i

dv R g T v m v hdt

D v v v v vλ
=

− +

⎞⎛= + + +⎟⎜
⎝ ⎠

⎡ ⎤− + − −⎣ ⎦

∑
(1) 

The main terms on the right hand side of (1) represent 
protein synthesis, diffusion and decay, respectively. aR , 

aD , and aλ  are parameters representing the rates of 

maximum synthesis, diffusion and decay. ( )ag u  is a 
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sigmoid regulation-expression function. For values au  

below -1.5 and above 1.5 ( )ag u  rapidly approaches zero. 
au  is given by ∑ ++=

b

aBcd
i

ab
i

aba hvmvTu .  

Parameters abT  constitute a genetic interconnectivity 
matrix, representing activation of gene a  by the product of 

gene b  (with concentration b
iv ) if positive, repression if 

negative, and no interaction if close to zero. Bcd
iv  represents 

the concentration of Bcd in nucleus i, which is constant in 
time. am  describes the regulatory input of Bcd to the gene 
system. Bcd is a general activator for all four gap genes 
considered. ah  represents regulatory input from ubiquitous 
factors.  

 

B. GA to Simulate Evolution of Gene Networks 
The set of ODEs (1) was solved numerically by Euler’s 

method [18]. We minimized the following cost function E 
by adjusting parameters abT  in equation (1): 

∑ −= .))()(( 2
mod data

a
iel

a
i tvtvE                                     (2) 

The rest of the parameters, a
aaa

a DhmR λ,,,, , were 
found in preliminary runs and then used as fixed parameters 
in the following computer experiments. 

Our approach followed the general scheme of population 
dynamics, by using repeated cycles of mutation, selection 
and reproduction. This is common to both GA [19] and 
general simulations of biological evolution. 

Following the standard GA approach, the program 
generates a population of floating-point chromosomes, one 
chromosome for each gene. The value of a given 
floating-point array a  (chromosome a ) at index b  

corresponds to a abT  value ( See (1)). The task of the 
evolutionary search is to optimize the abT  to fit to the 
experimental patterns (Fig. 1B). 

The initial chromosomes are generated at random. The 
program then calculates the νi and scores every chromosome 
by the cost function E, and calculates an average score. 
Chromosomes with worse-than-average scores are replaced 
by chromosomes with better-than-average scores. (The 
choice of the chromosomes is random.) A proportion of the 
chromosomes then undergoes standard operations of 
mutation and crossover (defined below), giving changes to 
one or more of the Tab values. The complete cycle of 
evaluation, scoring, replacement of loser chromosomes, and 
mutation and crossover is repeated multiple times to 
simulate evolution.  

In GA, mutation is a genetic operator used to maintain 
genetic diversity from one generation of a population of 
chromosomes to the next, analogous to biological mutation. 
Point mutation in GA involves a probability that a Tab value 
on a chromosome will be changed from its original state 
(compared to changing a nucleotide in biological point 
mutation). 

GA crossover is a genetic operator used to vary 
chromosomes from one generation to the next, by swapping 
strings of values between chromosomes, analogous to 
crossover in biological reproduction. In one-point crossover, 
a point on a parent chromosome is selected. All data beyond 
that point is swapped between two parent chromosomes. 
Two-point crossover calls for two points to be selected on 
the parent strings. Everything between the two points is then 
swapped between the parent strings. Multi-point crossover is 
defined by analogy with the two-point one. 

The model is implemented in Delphi (Windows) and 
GNU Pascal (Linux) and available from authors upon 
request. Each run of the algorithm requires about 3 h CPU 
time on a Dell workstation (Intel Xeon CPU 2.80 GHz). 

 
1) Introduction and withdrawal of new genes  

In biology, one can imagine at least two scenarios for how 
new genes could become available for recruitment into a 
network [3]. First, a new gene could appear in the genome 
by the process of gene duplication. Second, a given gene 
from another network could become available for 
recruitment. In our model we do not distinguish these two 
cases, but introduce a Gene Introduction operator which 
adds a new gene to the network from time to time. 
Specifically, this adds a new row and column to the 

abT matrix, which can be then be operated on by mutation 
and crossover. To study the importance of this one-way 
process forcing networks to recruit new genes, we 
introduced a Gene Withdrawal operator which removes a 
row and column from the abT  matrix. Gene Withdrawal 
does not operate if the network is minimal (N = 4). 

 

III. RESULTS AND DISCUSSION 
Recruitment of new genes into the preexisting network is 

typical for our model. We have found that even with point 
mutation alone, the network will recruit small numbers 
(from one to four) of new genes in 5,000 generations. If 
mutation is reinforced with crossover, the number of recruits 
increases somewhat (but statistically significantly). 
Increasing the rate of crossover leads to continual 
recruitment up to convergence, with some dozens of genes 
in the final population. 
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Figure 2. An example of a redundant genetic network (16 genes in toto) 
selected by genetic algorithms. 
The size of the population is 4000; mutation rate is 18% per generation; 
20% of individuals with higher scores are marked for reproduction 
(truncation strategy); rate for new genes recruitment is 5% per generation; 
rate for crossover action is 2% per generation. 

A. Representative patterns (lines with points, a, b, c, & g) for genes 
recruited upstream of the 4 obligatory genes (shown in solid lines: 
gt, red; hb, green; Kr, blue; kni, brown).  

B. Overview of the gene network in A. The genes are represented as 
boxes. Repressive interactions are represented by T-bar 
connectors. Looped arrows mean self-regulation. Cf. with Fig. 1C. 

 

A. Point mutations are enough to recruit new genes 
In our first series of runs, we studied in detail the 

recruitment events and checked if crossover can raise the 

efficacy of recruitment. Several sets of runs under different 
conditions (mutations only; mutations + multi-point 
crossover; etc) were performed, with each set including 
~200 runs. For runs with both mutation and crossover, the 
mutation rate was adjusted so that total change per 
generation stayed comparable to runs with mutation only. 
Runs with E (see (2)) scores below a threshold level were 
picked as winners. The threshold was established by visual 
inspection of the quality of fits to the expression patterns, 
and resulted in about half of the runs being winners.  

We found new genes recruited to the network formed two 
distinct types of pattern. In the first type, recruits formed flat 
or nearly flat patterns (ubiquitous distribution); they were 
incorporated into the network as ubiquitous activators or 
inhibitors. In the second type, recruits produced monotonic 
gradients or even more sophisticated patterns, influencing 
the patterns of the obligatory, minimal 4 genes of the 
network (gt, hb, Kr & kni). Fig. 2 shows a representative 
example of such a network. The obligatory 4 genes all fit 
well to the experimental data in Fig. 1. All good-score 
networks studied (112 + 94) included at least one new 
recruit acting upstream of the obligatory genes: the 
obligatory genes were targets of the recruits. Nearly all 
networks studied included at least one (but usually more) 
upstream recruit that formed an AP gradient, such as Bcd. 
But most networks also included one or more upstream 
recruits that formed opposing, postero-anterior gradients 
(Fig. 2A, patterns a, b). This is especially interesting because 
the minimal 4-gene ensemble we fitted in these runs did not 
posses such postero-anterior gradients. Hence, recruitment 
produced a kind of compensation for this lack of essential 
external output: in real fly embryos postero-anterior 
gradients of proteins such as caudal and nanos are essential 
for early segmentation. 

In some cases, upstream recruits formed not simple 
gradients, but more sophisticated patterns with sub-domains 
(Fig. 2A, patterns c, g). These patterns are reminiscent of the 
mature patterns of Drosophila gap genes and demonstrate 
how recruitment could supply new gap genes for an 
evolving segmentation network (as in the transition from 
short to long germ band mechanisms). 

We found that the point mutation operator is enough to 
recruit at least one new gene to the network; i.e., not one of 
the evolved high-score networks had only the obligatory 4 
genes (Table 1). The mean number of recruits was around 3, 
while the average number of recruits upstream of 
(controlling) the obligatory 4 genes was about 2. As shown 
in Table 1, crossover helps to select networks with a slightly 
better score, and a slightly higher average number of 
recruits. Crossover shifts selection in such a way that 
recruits upstream of the obligatory 4 genes less often have 
ubiquitous distributions, and more often form gradients or 
more complicated patterns. 
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Table 1. Outgrowth of networks by evolutionary search, with point mutations only and point mutations plus crossover. 
 N runs mean score 

(averaged) 
recruits, in toto 
(averaged) 

recruits upstream 
of 4 obligatory 
genes 
(averaged) 

upstream 
recruits 
expressed 
~ubiquitously 
(averaged) 

upstream 
recruits 
forming 
patterns 
(averaged) 

point 
mutations 

112 188.00±69.61 2.99±0.93 1.98±0.75 0.33±0.49 1.65±0.57 

point 
mutations + 
crossover 

94 171.18±63.70 2.95±0.60 2.22±0.92 0.20±0.43 2.02±0.98 

 

B. Addition and subtraction of new genes 
A simple explanation for why the number of recruits rises 

during evolution is that addition of new potential recruits to 
the system creates an implicit pressure that facilitates 
recruitment. To study this effect, we introduced the Gene 
Withdrawal operator into our computations. In conditions 
where addition is higher than subtraction, mutation and 
crossover operators still ensure recruitment. However, if the 
subtraction rate is equal to or greater than the addition rate, 
then recruitment is reduced compared to the Table 1 results. 
Implicit pressure by the Gene Introduction operator does 
facilitate recruitment. 

 

C. Network redundancy and evolvability 
The minimal, obligatory 4-gene network fits experimental 

pattern with good quality. Introduction of new recruits to 
this network does not generally raise the quality of the fits. 
In this sense, the new interactions with the recruited gene 
can be considered redundant. However, withdrawal of a 
recruited gene from a good-scoring network (solution) 
makes its fit worse. To begin to investigate what potential 
role these added interactions provide, we tested whether 

they might help a network recruit more new genes. In these 
runs, we constrained the model to keep 5 obligatory genes: 
gt, Kr, kni, hb, and a new recruit. We first fit the model to the 
usual gap gene data of Fig. 1, during which process new 
genes were recruited. Once a good fit was attained, the fit 
criteria were changed to require the model to fit an 
expression pattern for 5 genes, by including the pattern for 
the primary pair-rule gene even-skipped. The 5th pattern 
could be fit by any of the newly recruited genes. Our 
expectation was that higher redundancy of networks could 
facilitate the search of the next new recruit. We performed 
runs with point mutations only, and with point mutations and 
crossover (Table 2). The parameters for these runs were 
exactly as for section 3.1 (see caption for Fig. 2). To our 
surprise, we did not find any difference in efficacy between 
these runs and the previous runs of Table 1, as measured by 
the average number of recruits. We did find, however, that 
the average number and character of the recruits upstream of 
the even-skipped gene were significantly different: upstream 
recruits are far fewer in Table 2, and recruits form far fewer 
patterns. As in Table 1, crossover still tends to favor 
patterned recruits, compared with mutation alone.  

 
Table 2. Efficacy of evolutionary search with redundant networks. 
 N runs mean score 

(averaged) 
Recruits, in toto 
(averaged) 

recruits upstream 
of even-skipped 
(eve) 
(averaged) 

recruits 
upstream eve, 
expressed 
~ubiquitously 
(averaged) 

Recruits 
upstream eve, 
forming 
gradients 
(averaged) 

point 
mutations 

98 235.23±65.68 3.06±0.96 0.50±0.56 0.40±0.49 0.10±0.39 

point 
mutations + 
crossover 

73 224.35±76.45 2.92±0.57 0.67±0.67 0.23±0.43 0.44±0.52 
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D. Redundancy and robustness of gene networks 
Above, we have shown that our model of evolution does 

account for recruitment of new genes and the selection of 
functionally redundant networks. Here, we investigate the 
influence of redundancy on network robustness. A case of 
robustness that has received much attention in Drosophila 
segmentation is the robustness to variability in the shape of the 
Bcd morphogen gradient [20], [21], [22], [23], [24], [25]. We 
can use our GA model to study this kind of robustness. The 
networks in the previous sections were selected on an averaged 
Bcd gradient (average profile of the real Bcd gradients in the 
FlyEx database). If we take one of these networks, and now run 
it on the individual, and varying, Bcd gradients in our database, 
we get a picture of how robust the network’s gap gene 
patterning is, and how this compares with the observed 
biological robustness. We can compare network robustness for 
the minimal 4-gene model, as well as for the evolved redundant 
models.  

 

 
Figure 3. The variability of early gap gene patterns in reality (See [24]; Fly Ex 
DB), and in computer experiments. 

A. The between-embryo variability of early gap gene patterns (gt – red, 
hb – green, Kr – blue, kni – brown) for early cleavage cycle 14A. This 
variability probably is caused by between-embryo variability in the 
shape of the primary morphogenetic gradient Bcd.  

B. The between-embryo variability simulated by using individual, real 
Bcd gradients with different shapes as external input for a model of the 
same 4 genes. 

 

Fig. 3 shows the real experimentally observed variability of 
early gap gene patterns (Fig. 3A) compared to one of the typical 
redundant models (Fig. 3B). The simulated gap gene network 
appears at least as noisy as the real one. The same level of 
noisiness was observed for the non-redundant minimal 4-gene 
models fitted with recruiting off (data not shown). That is, the 
redundancy gained in our computer experiments does not 
increase robustness to the variability of the Bcd gradient, but 
does produce noise levels comparable to the real ones. 
 

IV. CONCLUSIONS 
• Recruitment (co-option) of new genes into 

pre-existing gene networks was observed in 
simulations of network evolution using Genetic 
Algorithms (GA). 

• The GA operator for point mutations was sufficient to 
produce recruitment. Crossover (recombination) is not 
required for gene recruitment. 

• The GA operator for multi-point crossover facilitates 
co-option of new recruits upstream of the original 
network genes. 

• Recruitment makes networks structurally and 
functionally redundant. 

• The functional redundancy achieved by recruitment 
does not influence the robustness and evolvability of 
networks (Cf. [26]). 
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