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Chapter # 

THE EFFECTS OF GENE RECRUITMENT ON 
THE EVOLVABILITY AND ROBUSTNESS OF 
PATTERN-FORMING GENE NETWORKS 

Alexander V. Spirov1 and David M. Holloway2 
1Applied Mathematics and Statistics, and Center for Developmental Genetics, State University
of New York, CMM Bldg, Rm481, South Loop, SUNY at Stony Brook, Stony Brook, NY 11794-
5140, USA (corresponding author to provide phone: 631-632-8221; fax: 631-632-1692; e-
mail: Alexander.Spirov@sunysb.edu). 2Mathematics Department, British Columbia Institute
of Technology, Burnaby, B.C., Canada (e-mail: David_Holloway@bcit.ca), and with the 
Biology Department, University of Victoria, B.C., Canada. 

Abstract:       Gene recruitment or co-option is defined as the placement of a new gene under 
a foreign regulatory system. Such re-arrangement of pre-existing regulatory 
networks can lead to an increase in genomic complexity. This reorganization is
recognized as a major driving force in evolution. We simulated the evolution
of gene networks by means of the Genetic Algorithms (GA) technique. We 
used standard GA methods of point mutation and multi-point crossover, as 
well as our own operators for introducing or withdrawing new genes on the
network. The starting point for our computer evolutionary experiments was a 
4-gene dynamic model representing the real genetic network controlling
segmentation in the fruit fly Drosophila. Model output was fit to 
experimentally observed gene expression patterns in the early fly embryo. We 
compared this to output for networks with more and less genes, and with 
variation in maternal regulatory input. We found that the mutation operator, 
together with the gene introduction procedure, was sufficient for recruiting
new genes into pre-existing networks. Reinforcement of the evolutionary
search by crossover operators facilitates this recruitment, but is not necessary. 
Gene recruitment causes outgrowth of an evolving network, resulting in
redundancy, in the sense that the number of genes goes up, as well as the
regulatory interactions on the original genes. The recruited genes can have 
uniform or patterned expressions, many of which recapitulate gene patterns
seen in flies, including genes which are not explicitly put in our model.
Recruitment of new genes can affect the evolvability of networks (in general, 
their ability to produce the variation to facilitate adaptive evolution). We see
this in particular with a 2-gene subnetwork. To study robustness, we have
subjected the networks to experimental levels of variability in maternal
regulatory patterns. The majority of networks are not robust to these
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perturbations. However, a significant subset of the networks do display very
high robustness. Within these networks, we find a variety of outcomes, with
independent control of different gene expression boundaries. Increase in the 
number and connectivity of genes (redundancy) does not appear to correlate
with robustness. Indeed, removal of recruited genes tends to give a worse fit to
data than the original network; new genes are not freely disposable once they 
acquire functions in the network. 

Key Words:   Complexification of gene networks, gene co-option, gene recruitment, pattern 
formation, modeling of biological evolution by Genetic Algorithms,
redundancy and robustness of gene networks. 

1. INTRODUCTION 

Early in metazoan evolution, gene networks specifying developmental 
events in embryos may have consisted of no more than two or three 
interacting genes. Over time, these were augmented by incorporating new 
genes and integrating originally distinct pathways1. While it may initially be 
thought that new functions require novel genes, whole genome sequencing 
has shown that apparent increases in developmental complexity do not 
correlate with increasing numbers of genes2: the number of genes in the 
human genome is somewhat higher than in fruit flies and nematodes, but 
lower than in pufferfish and cress and rice plants. Therefore, evolution of 
developmental pathways may most commonly proceed by recruitment of 
preexisting external genes into preexisting networks, to create novel 
functions and novel developmental pathways3; developmental evolution may 
act primarily on genetic regulation4, 5.  

Specifically, gene recruitment may occur through mutational changes in 
the regulatory sequences of a gene in an established pathway, enabling a new 
transcriptional regulator (or regulators) to bind. This regulator may be from a 
newly evolved gene (say via duplication and subsequent change), in which 
case it simply adds to the existing pathway, or it may have already been part 
of a pre-existing pathway, in which case the two pathways become 
integrated. In either case, the developmental function of the pathway may be 
significantly altered. Similarly significant alterations can arise by inserting 
regulatory sequences for an existing gene at new loci, transferring 
transcriptional control of the original gene to other members of the genome1, 
6.  

In insects, two distinct modes of segmenting the body have evolved. In 
primitive insects, such as the grasshopper, the short germ band mode lays 
out body segments sequentially. Many more highly derived insects, such as 
flies, use the long germ band mode to establish all body segments 
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simultaneously. This simultaneous mechanism must act quickly during 
development; it has been proposed that it evolved by co-option of new genes 
to the short germ band mechanism, in order to maintain accurate regulation 
of patterned gene transcription over the whole embryo in a condensed time 
frame 1. The invertebrate segmentation network is one of the best-studied 
gene ensembles, in which the amount of diverse experimental data provides 
a unique opportunity for studying known and hypothetical scenarios of its 
evolution in detail. In particular, the level of detail for the segmentation gene 
network for the fruit fly (Drosophila melanogaster) has made it for many 
years the most popular object for computer simulations of its function and 
evolution7, 8, 9, 10, 11, 12. 

In this publication, we investigate the interrelations between redundancy 
(addition of extra genes to a network), evolvability (ability of a network to 
change), and robustness (ability of a network to remain fit in a variable 
environment). We use an in silico approach to simulate evolution of a 
dynamic model of the gap gene network, central to fly segmentation 
(specifically). This model (adapted from9, 14) is a system of differential 
equations describing the regulatory interactions of 4 gap genes (giant, gt; 
hunchback, hb; Krüppel, Kr; knirps, kni), under the control of gradients of 
maternal proteins (Bicoid, Bcd, in our basic model; plus maternally-derived 
Hb (Hbmat), Caudal (Cad), and Tailless (Tll) in our extended model). Fig. 1A 
shows the integrated (averaged) spatial patterns of the gap genes along the 
antero-posterior (A-P; head to tail) axis of the fly embryo in early nuclear 
cleavage cycle 14A (even-skipped, eve, is a pair-rule gene, regulated by the 
maternal and gap genes). Fig. 1B shows the gap patterns slightly later in 
development, at mid cleavage cycle 14A. Fig. 1C shows the patterns of the 
maternal input factors. Model parameters for gene interaction strengths are 
varied and solutions selected by a Genetic Algorithms method (details 
below) based on how well they fit the gap gene data. This produces networks 
describing particular interactions (and quantitative strengths) between the 
component genes (e.g., Fig. 1D). In this way, we can use a model of our 
current understanding of fly segmentation to study the evolutionary 
dynamics of how the segmentation network may have arisen, and how this 
might reflect on its current characteristics.  

In particular, we are interested in what genetic mechanisms are necessary 
for recruiting (co-opting) new genes to small networks, what characteristics 
these recruits have (e.g., spatial patterns, regulatory interactions), and how 
they might change the behavior of the network. There is currently much 
discussion in evolutionary biology on these topics, and it is expected that the 
outgrowth of preexisting networks through gene recruitment should cause 
structural (genes duplicating existing ones) and functional (development of 
compensatory pathways) redundancy of the networks13. Cases of such 
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redundancy have been found in many genetic ensembles in many 
organisms13. One of the common conclusions from these cases is that the 
redundancy could affect such key species characteristics as evolvability or 
robustness to perturbations and variability during development.  

A B  

C D  

Figure 1. Biological data used to fit ODE model by GA. 
A. Integrated gene expression profiles for early cleavage cycle 14A. Vertical axis represents relative 

protein concentrations (proportional to intensity), horizontal axis represents position along the 
anteroposterior (A-P) embryo axis (where 0% is the anterior pole). Data from the FlyEx database26.  

B. Integrated gene expression profiles for mid cleavage cycle 14A. 
C. Integrated gene expression profiles for the external, maternal inputs used in this paper, from the 

very beginning of cleavage cycle 14A. 
D. Overview of the gap gene network (After14). The gap genes are represented as boxes. Repressive 

interactions are represented by T-bar connectors. Looped arrows mean self-regulation. 
 
The segmentation network lays down the spatial order of the developing 

embryo, so the fitness of any network depends on how reliably it establishes 
spatial position. In our computations, we establish this type of fitness by 
scoring model solutions on how well they reproduce experimental pattern. 
By doing hundreds of simulations, we generate a large sample of networks 
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for studying the mechanisms of gene recruitment and how these relate to 
evolvability and robustness (in particular for making reproducible output in 
the face of biological levels of variability in the upstream maternal control 
gradients).  

 We investigate the mechanisms of gene recruitment through the Genetic 
Algorithms (GA) technique. Run on our fly segmentation model, it is a 
simulation of how this network may have evolved in nature. We use standard 
GA operators (mutation and crossover), as well as our own operators for 
introducing and removing new genes on the networks. 

In computing evolutionary searches, we have found that the standard 
operator for point mutations, in combination with the gene introduction 
operator, is enough to support recruitment of new genes to pre-existing 
networks. This is in contrast to a mainstream view in evolutionary biology, 
that the main mechanism facilitating recruitment is the sophisticated 
shuffling of genetic material, such as unequal crossover (recombination), or 
the activity of transposons15. A computational approach allows us to 
systematically compare recruitment by these different mechanisms, 
specifically point mutation versus one- and multi-point crossover.  

Our results indicate how complexification or “outgrowth” of gene 
networks can proceed, by recruiting new genes to make new connections 
between old and new members of the network. We have characterized the 
structure of the evolved networks, as well as the possible influence of gene 
recruitment on evolvability. In particular, we found that for a 2-gene 
subnetwork evolvability is clearly raised via co-option of new genes. 
Evolvability was not so clearly raised when starting with the 4-gene 
networks.  

We also studied the effects of gene recruitment on the robustness of the 
computer networks to variability in external control parameters. Specifically, 
we simulated variability in maternal morphogenetic factors which are 
upstream (in terms of regulatory control) of the simulated networks. The gap 
gene network has been shown to be quite robust to this sort of variability, 
spurring a great deal of interest in the biology community on how embryos 
might filter maternal or environmental variability or noise16, 17, 18, 19, 20, 21. 
We tested robustness in our basic 4-gene network (Bcd control only, which 
has been most extensively studied experimentally) and our extended 4-gene 
network (additional control by Hbmaternal, Cad and Tll). By simulating 
variability in each of the upstream factors we can see which computed 
solutions have experimentally observed levels of robustness, or better, and 
whether networks evolve with more robustness to particular factors. 
Computation allows us to understand the experimentally well-characterized 
factors, such as Bcd, and extend results to the other, less well-characterized 
maternal factors.  
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Analyzing several hundred high-scoring solutions of the three variants of 
our model, we found very diverse ways for the networks to solve the pattern 
fit, and these had quite different levels of robustness to variability in 
maternal factors. We did not, however, find a clear correlation between the 
types of new connections in the evolved networks and robustness. Many of 
the recruited genes are, however, spatially patterned like known Drosophila 
genes. These patterns can either be like those for members of our 4-gene 
model, or our evolutionary searches also recruit genes with patterns like real 
segmentation genes that aren’t one of the original model genes.  

2. METHODS AND APPROACHES  

2.1 The segmentation gene network and its modeling  

Four gap genes, Kr, gt, kni and hb, are the core elements in our 
segmentation model. In Drosophila, these are transcriptionally activated by 
the maternal Bcd protein gradient in a concentration dependent manner, a 
classic example of a morphogen as characterized by Wolpert22. Three other 
gradients, Hbmat, Cad, and Tll, help determine the positions of the gap genes. 
The combination of this upstream specification and gap-gap cross-regulation 
results in sharp and precise gap patterns.  

We model these genes (and proteins) and their interactions using the gene 
circuit framework23, 24, to produce A-P concentration patterns (fitting data 
such as in Figs. 1A-B). The model is computed for a one-dimensional row of 
nuclei, between 30 and 94% A-P position (where 0% is the anterior pole) 
during nuclear cleavage cycles 13 and 14A. The gap gene proteins (Kr, Gt, 
Kni and Hb) are variables in the model, with the rates of change of their 

concentrations dt
idva

 (for each gene product  in each nucleus i) defining 

a system of number of proteins times number of nuclei ODEs (Ordinary 
Differential Equations) given by  

a

( )
1 1( ) ( )

a
ai

a

a a a a a
i i i i a

d v R g ud t
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iD v v v v vλ− +
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a
The main terms on the right hand side of (1) represent protein synthesis 
( ), diffusion (aR D ) and decay ( aλ ). ( )a

a

g u  is a sigmoid regulation-

expression function. For values  below -1.5 and above 1.5 u ( )a

a ++= aBcdababa

ab

g u  rapidly 

approaches zero.  is given by  Parameters u ∑
b

ii hvmvTu .

T  constitute a genetic interconnectivity matrix, representing activation of 
gene  by the product of gene b  (with concentration ) if positive, 

repression if negative, and no interaction if close to zero. v  represents the 

concentration of Bcd in nucleus i, which is constant in time.  describes 
the regulatory input of Bcd to each gene. Bcd is a general activator for all 
four gap genes considered.  represents regulatory input from ubiquitous 
factors. Our extended model includes Hbmat, Cad, and Tll in a similar manner 
to Bcd, as time-independent parameters.  

a bv
Bcd

am

ah

i

i

The full extended model involves heavy computation, which can greatly 
delay evolutionary searches and the generation of large samples of networks. 
For this reason, we have focused on reduced networks to study robustness 
and evolvability, either the basic 4-gene model (under Bcd control only), or 
a 2-gene subnetwork of Hb and Kr, with Bcd, Cad and Tll maternal control. 
This subnetwork can serve as a core for the whole gap network, and allow us 
to compare 4-gene networks evolved from this core to experimental results 
and results from the original (non-evolved) 4-gene models.  

After networks are created through the Genetic Algorithm selection, we 
can analyze the robustness of each solution to maternal variability (in Bcd, 
Hbmat, Cad and Tll). For this, we take any particular parameter set (network) 
and rerun the solution many times with different Bcd, Hbmat, Cad and Tll 
gradients. The gradient variability is biological: the different gradients are 
data obtained from individual embryos. We used 89 individual Bcd 
gradients, 38 Cad gradients, 35 Hbmat, and 27 Tll ones. 

2.2 Experimental data for fitting 

The data we used to fit our models is the result of a large-scale project we 
are engaged in, aimed at collecting, processing and analyzing the expression 
of the Drosophila segmentation genes17, 20, 25. Most of this dataset is now 
available publicly26. In this paper, we use expression data from early and mid 
cleavage cycle 14 (prior to full cellularization). This period of development 
is the stage during which segmentation patterns become mature, and also 
progressively more complicated, due to activation of more and more genes 
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that interact with the four gap genes in our model (this is called the mid-
blastula transition). It is unknown precisely how many newly activated genes 
begin to interact with our 4 gap genes, nor do we know the precise activation 
times of these new genes. Therefore, new genes which are recruited in our 
simulations may shed light on the spatial patterns and regulatory features of 
real genes activated during the mid-blastula transition.  

We have found that our models have faster and better fits to early 
patterns than to later, more mature ones. We believe this reflects that early 
gap patterns are chiefly under the control of the genes and maternal factors 
explicitly included in the model, while later, more complicated patterns 
begin to reflect interactions with other, newly activated genes recruited to 
the basic network. 

We have also found, with quantitative data analysis20, 25, that 
segmentation patterns become more precise and robust from early to mid 
cycle 14. Hence, it is instructive to fit our models separately to early patterns 
and to mid cycle 14 patterns, to see if the robustness of the solutions reflects 
the trend in the data.  

2.3 GA to Simulate Evolution of Gene Networks 

The set of ODEs (1) was solved numerically by Euler’s method27. We 
minimized the following cost function E by adjusting parameters abT  in 
equation (1): 

2( ( ) ( ) ) .a a
i model i dataE v t v t= −∑  (2) 

For the remaining parameters, ma and ha were found in preliminary runs and 
then used as fixed parameters; , ,a

aR Da λ were determined similarly for the 
core 4- and 5- gene networks, but were found by GA in the reduced 2-gene 
networks; for the extended 4-gene model, Ra was found by GA and the rest 
were fixed.  

Our approach followed the general scheme of population dynamics, by 
using repeated cycles of mutation, selection and reproduction. This is 
common to both GA28 and general simulations of biological evolution. 

Following the standard GA approach, the program generates a population of 
floating-point chromosomes, one chromosome for each gene a. The value of 
a given floating-point array  (chromosome ) at index  corresponds to a a a b
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abT  value (see eqs. (1)). The task of the evolutionary search is to optimize 
the abT  to fit to the experimental patterns (e.g. Fig. 1A, B). 

The initial chromosome values are generated at random. The program 
then calculates the νi by eqs. (1) and scores each chromosome set (T matrix) 
by the cost function E (eq. 2). An average score is then calculated for all the 
chromosome sets run. Chromosome sets with worse-than-average scores are 
replaced by randomly-chosen chromosome sets with better-than-average 
scores. A proportion (from 5-25%, depending on computation) of the 
chromosomes are then selected to reproduce, undergoing the standard 
operations of mutation and crossover (defined below; 1/10 of these 
operations are crossover), giving changes to one or more of the Tab values. 
The complete cycle of ODE solution, scoring, replacement of below-average 
chromosome sets, and mutation and crossover is repeated until the E score 
converges below a set threshold, typically 4000 – 5000 generations.  

In GA, mutation is a genetic operator used to maintain genetic diversity 
from one generation of a population of chromosomes to the next, analogous 
to biological mutation. Point mutation in GA involves a probability that a Tab 

value on a chromosome will be changed from its original state (compared to 
changing a nucleotide in biological point mutation). 

GA crossover is a genetic operator used to vary chromosomes from one 
generation to the next, by swapping strings of values between chromosomes, 
analogous to crossover in biological reproduction. In one-point crossover, a 
point on a parent chromosome is selected. All data beyond that point is 
swapped between two parent chromosomes. Two-point crossover calls for 
two points to be selected on the parent strings. Everything between the two 
points is then swapped between the parent strings. Multi-point crossover is 
defined by analogy with the two-point case. 

The model is implemented in Delphi (Windows) and GNU Pascal 
(Linux) and available from the authors upon request. Each run of the 
algorithm requires about 3 h CPU time on a Dell workstation (Intel Xeon 
CPU 2.80 GHz). 

2.3.1 Introduction and withdrawal of new genes  

In biology, one can imagine at least two scenarios for how new genes 
could become available for recruitment into a network3. First, a new gene 
could appear in the genome by the process of gene duplication. Second, a 
given gene from another network could become available for recruitment. In 
our model we do not distinguish these two cases, but introduce a Gene 
Introduction operator which adds a new gene to the network (at a rate of 5 – 
10% per generation, depending on computation). Specifically, this adds a 
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new row and column to the abT matrix, which can be then be operated on by 
mutation and crossover. To study the importance of this one-way process 
forcing networks to recruit new genes, we introduced a Gene Withdrawal 
operator which removes a row and column from the abT  matrix (at a rate of 
2 - 10% per generation, depending on computation). Gene Withdrawal does 
not operate if the network is minimal (N = 4 genes). 

3. RESULTS AND DISCUSSION 

Recruitment of new genes into the preexisting network is typical for our 
model. We have found that even with point mutation alone, the network will 
recruit small numbers (from one to four) of new genes by the time it 
converges below the threshold E score. If mutation is reinforced with 
crossover, the number of recruits increases slightly (but statistically 
significantly). Increasing the rate of crossover leads to continual recruitment 
up to convergence, with some dozens of genes in the final networks. 

We also find that cooption of a new gene can facilitate the evolutionary 
search, i.e. increase evolvability, in the sense of giving faster and better fits 
to the data. This was most apparent for a subnetwork 2-gene model.  

Recruited genes can be uniform or spatially patterned. These patterns can 
either recapitulate patterns of existing network genes, or introduce patterns 
novel to the model network, but like patterns seen in the full biological 
network.  

When we test the evolved networks against variability in maternal control 
factors, we find a significant minority display high robustness. These 
network solutions are varied, and show that robustness can be local to 
particular gene pattern boundaries. We did not find, however, that gene 
recruitment was associated with the robustness of the networks.  

We expand on these findings in detail in the subsections below.  
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A B  

C  

Figure 2. An example of a redundant gene network selected by Genetic Algorithms: 12 (A-L) genes 
have been recruited to the original 4 model genes.  

A. Representative patterns for the 4 obligatory genes. 
B. Patterns for some (A,B,F,G) of the genes recruited upstream of the 4 obligatory genes (in A).  
C. Overview of the gene network in A-B, showing some of the interactions of the recruited genes. 

The genes are represented as boxes. Repressive interactions are represented by T-bar connectors. Looped 
arrows mean self-regulation. Cf. with Fig. 1C. 

In this simulation, 4000 networks were generated for each generation; the point mutation rate was 
18% per generation, plus 2% crossover rate; 20% of individuals with the best scores were marked for 
reproduction; and the rate for new gene recruitment was 5% per generation. 

3.1 Point mutations are enough to recruit new genes 

In our first series of runs, we studied recruitment events in detail and 
checked if crossover can raise the efficacy of recruitment. Several sets of 
runs under different conditions (point mutations only; point mutations + 
multi-point crossover; etc.) were performed, with each set including ~200 
runs. For runs with both mutation and crossover, the mutation rate was 
adjusted so that total change per generation stayed comparable to runs with 
mutation only (e.g. if crossover, with rate 2% per generation was added to 
mutation, which had run at a 20% rate, the mutation rate would be adjusted 
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to 18%). Runs with E (eqn. (2)) scores below a threshold level were picked 
as winners. The threshold was established by visual inspection of the quality 
of fits to the expression patterns, and resulted in about half of the runs being 
winners. These winners were analyzed further to see what qualities they had.  

We found new genes recruited to the network formed two distinct types 
of pattern. In the first type, recruits formed flat or nearly flat patterns 
(uniform distributions); they were incorporated into the network as 
ubiquitous activators or inhibitors. In the second type, recruits produced 
monotonic gradients, or even more sophisticated spatial patterns, influencing 
the patterns of the obligatory, minimal 4 genes of the network (gt, hb, Kr & 
kni). Fig. 2 shows a representative example of such a network. The 
obligatory 4 genes all fit well to the experimental data in Fig. 1. All good-
score networks studied (112 point mutation only + 94 also with crossover) 
included at least one new recruit acting upstream of the obligatory genes 
(i.e., the obligatory genes were regulatory targets of the recruits). Nearly all 
networks studied included at least one (but usually more) upstream recruit 
that formed an AP gradient, such as Bcd. But most networks also included 
one or more upstream recruits that formed an opposing, postero-anterior 
gradient (Fig. 2B, patterns A, B). This is especially interesting because the 
minimal 4-gene ensemble we fitted in these runs did not posses such 
postero-anterior gradients. Hence, recruitment produced a kind of 
compensation for this lack of essential external output: in real fly embryos 
postero-anterior gradients of proteins such as caudal and nanos are essential 
for early segmentation. 

In some cases, upstream recruits formed not simple monotonic gradients, 
but more sophisticated patterns with sub-domains (Fig. 2B, patterns F, G). 
These patterns are reminiscent of the mature patterns of Drosophila gap 
genes and demonstrate how recruitment could supply new gap genes for an 
evolving segmentation network (as in the transition from short to long germ 
band mechanisms). 

We found that the point mutation operator is enough to recruit at least 
one new gene to the network; i.e., not one of the evolved high-score 
networks had just the obligatory 4 genes (Table 1). The mean number of 
recruits was around 3, while the average number of recruits upstream of 
(controlling) the obligatory 4 genes was about 2. As shown in Table 1, it 
appears that crossover selects networks with a slightly better score, gives a 
higher average number of upstream recruits and a lower number of these 
recruits have uniform distributions (all differences statistically significant). 
These upstream recruits more often form gradients or more complicated 
patterns (highly statistically significant). So, while we find crossover 
facilitates recruitment, point mutation is certainly sufficient for this, in 
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contrast to a mainstream view in evolutionary biology, that complex 
recombination of genetic material is required for recruitment15. 

Table 1. Outgrowth of networks by evolutionary search, with point mutations only and point 
mutations plus crossover* 
 N 

runs 
mean score recruits, in 

toto 
recruits 
upstream of 
4 
obligatory 
genes 

upstream 
recruits 
expressed 
~ubiquito-
usly 

upstream 
recruits 
forming 
patterns 

point 
mutations 

112 188.00±69.61 2.99±0.93 1.98±0.75 0.33±0.49 1.65±0.57 

point 
mutations 
+ 
crossover 

94 171.18±63.70 2.95±0.60 2.22±0.92 0.20±0.43 2.02±0.98 

* Results are mean±standard deviation. 

3.2 Addition and subtraction of new genes 

A simple explanation for why the number of recruits rises during 
evolution of a network is that addition of new potential recruits to the system 
creates an implicit pressure facilitating that recruitment. More specifically, a 
new recruit becomes incorporated into a network as its T matrix values begin 
to deviate from zero. Holding the T values at their initial zero state would 
involve a cost to the existing network, hence the presence of a new recruit 
causes pressure to evolve its T values and become incorporated into the 
network. With this tendency towards incorporation, the mean number of 
recruits should depend on the introduction rate. To test this, we introduced 
the Gene Withdrawal operator into our computations, as a way to control the 
net introduction rate. In conditions where addition is higher than subtraction, 
mutation and crossover operators still ensure recruitment. However, if the 
subtraction rate is equal to or greater than the addition rate, then recruitment 
is reduced compared to the Table 1 results; due to the random nature of the 
mutation, some networks can still gain recruits under these conditions. 
Hence, by using the Gene Introduction and Withdrawal operators to control 
net addition, we can show that addition of a new recruit creates implicit 
pressure for incorporation, facilitating recruitment. 

3.3 Network redundancy and evolvability 

The minimal, obligatory 4-gene network fits experimental pattern with 
good quality. Introduction of new recruits to this network does not generally 
raise the quality of the fits. In this sense, the new interactions with the 
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recruited gene can be considered redundant. However, this is not what is 
frequently called structural redundancy, in which repeated elements (genes) 
can substitute for lost elements, providing a type of robustness in networks. 
We find that withdrawal of a recruited gene from a good-scoring network 
(solution) makes its fit worse. Therefore, recruitment tends to alter the 
interactions of the original network; it is not advantageous to remove a gene 
once it has acquired functionality in the network. In this and the next section, 
we evaluate how recruitment affects a network’s properties of evolvability 
and robustness. In terms of evolvability, we investigate whether recruitment 
of additional genes aids a network’s capacity to evolve further. In particular, 
we can see if recruitment leads to faster (less generations) or better fits of the 
network to the data.  

3.3.1 Evolvability of the four-gene models  

To begin to investigate what potential role these added interactions 
provide, we tested whether they might help a network recruit more new 
genes. In these runs, we constrained the model to keep 5 obligatory genes: 
gt, Kr, kni, hb, and one new recruit. We first fit the model to the usual gap 
gene data of Fig. 1, during which process new genes were recruited. Once a 
good fit was attained, the fit criteria were changed to require the model to fit 
an expression pattern for 5 genes, by including the pattern for the primary 
pair-rule gene even-skipped. The 5th pattern could be fit by any of the newly 
recruited genes. Our expectation was that higher redundancy of networks 
could facilitate the evolutionary search for the gene to fit this pattern. We 
performed runs with point mutations only, and with point mutations and 
crossover (Table 2). The parameters for these runs were exactly as for 
section 3.3 (see caption for Fig. 2). To our surprise, we did not find any 
difference in efficacy between these runs and the previous runs of Table 1, 
as measured by the average number of recruits. We did find, however, that 
the average number and character of the recruits upstream of the even-
skipped gene were significantly different: upstream recruits are far fewer in 
Table 2, and recruits form far fewer patterns. As in Table 1, crossover still 
tends to favor patterned recruits, compared with mutation alone.  

Hence, gene networks with four obligatory genes do not show evident 
correlation of evolvability and the extent of redundancy. 
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Table 2. Efficacy of evolutionary search with redundant networks 
 N 

runs 
mean score 
(averaged) 

recruits, in 
toto 
(averaged) 

recruits 
upstream of 
even-skipped 
(eve) 
(averaged) 

recruits 
upstream eve, 
expressed 
~ubiquitously 
(averaged) 

recruits 
upstream 
eve, forming 
gradients 
(averaged) 

point 
mutations 

98 235.23±65.68 3.06±0.96 0.50±0.56 0.40±0.49 0.10±0.39 

point 
mutations 
+ 
crossover 

73 224.35±76.45 2.92±0.57 0.67±0.67 0.23±0.43 0.44±0.52 

3.3.2 Evolvability of the two-gene model 

To further investigate how the number of genes in the network might 
affect evolvability, we did a similar study, but starting from a 2-gene 
network, with hb and Kr only. As a control, we ran 500 simulations with this 
simple network, and computed an average score for how well Hb and Kr fit 
the biological patterns (both the mid cycle 14A patterns and the early cycle 
14A ones, see Methods). Then, we did a series of 579 test simulations, in 
which two new genes were added at the onset of the evolutionary 
computation. Further addition/withdrawal operators were not used during the 
course of the computations. Again, the test networks were only required to 
fit the Hb and Kr patterns, but we wanted to see whether the two introduced 
genes would be incorporated into the network in such a way as to affect 
these pattern fits. Using the average score of the test computations, we found 
that the added genes significantly improved the fitting of the Hb and Kr 
pattern, both for early and mid cycle 14A, with the mid 14A difference being 
more dramatic. On average, the tests had scores of 128.005±71.703, and the 
controls had scores of 165.073±32.809.  

For the 2-gene model, we find that redundancy serves as a mechanism to 
find not only better solutions, but also usually to find these solutions faster, 
in less generations; recruitment significantly raises the efficacy of the 
evolutionary search. Hence for a small fragment of the network, which could 
be treated as an “ancestral” primitive primary gene ensemble, redundancy 
via co-option could substantially facilitate evolutionary searches. To 
improve pattern, evolution causes such a primitive network to enlarge. 

We wondered what kind of spatial patterns are generally made by the 
recruits, particularly whether they tended to mimic the missing two members 
of the real 4-gene gap network, gt and kni. We found that the patterns of the 
co-opted genes are usually reminiscent of anterior Hb or Gt domains; that is, 
simple S-shaped patterns, but often with reversed orientation (Fig. 3 A). We 
also found cases where recruits had Kr-like patterns (Fig. 3 B).  
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A B  

C D  

Figure 3. Representative examples of 2-gene models with two recruits. 

A. Recruit patterns are similar to Gt and Hb (reverse orientation; Cf. Fig. 1A). 

B. Recruit pattern is similar to Kr. 

C. Recruit pattern looks like anterior Gt (Cf. Fig. 1A). 

D. Recruit pattern is reminiscent of real Gt, with anterior and posterior domains. 

 
We found several cases when one of the co-opted genes formed pattern 

similar to anterior Gt (Fig. 3 C). We also saw more complicated patterns, 
reminiscent of real two-domain gap patterns (Fig. 3 D). It could be that the 
evolutionary search is tending to fill in the missing gap patterns to generate 
the structure of the real, complete gap network. However, these two-domain 
gt-like patterns were relatively rare, and we did not find any kni-like 
patterns. 

In summary, we have found that for the case of small fragments of gene 
ensembles, the co-option of new genes really does facilitate the evolutionary 
search. We can speculate that similar mechanisms acted during early 
evolution of primitive ancestral gene ensembles, while for evolutionarily 
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more mature and larger gene networks this tendency has become less 
pronounced.  

3.4 Redundancy and robustness of gene networks 

Above, we have shown that our models of evolution, both the 2-gene and 
4-gene ones, do account for recruitment of new genes and the selection of 
redundant networks. Here, we investigate the influence of redundancy on 
network robustness. A case of robustness that has received much attention in 
Drosophila segmentation is the robustness to variability in the shape of the 
Bcd morphogen gradient 16 - 21. We can use our GA model to study this kind 
of robustness. The networks in the previous sections were selected on an 
averaged Bcd gradient (average profile of the real Bcd gradients in the FlyEx 
database26). If we take one of these networks, and now run it on the 
individual, and varying, Bcd gradients in our database (Fig. 4B), we get a 
picture of how robust the network’s gap gene patterning is, and how this 
compares with the observed biological robustness (Fig. 4A). We can 
compare network robustness for the starting 2-gene and 4-gene models, as 
well as for the evolved redundant models.  

3.4.1 Robustness of two-gene networks 

We start our investigation of robustness on the 2-gene model described in 
section 3.3.2, with the same test and control simulations described there. 
With this simplified model, the effect of variability in Bcd input on 
robustness is especially evident. 

First, we found that the 2-gene solutions can be very robust to Bcd 
variability. Some solutions are substantially more robust than the robustness 
level observed for real Drosophila segmentation genes (Fig. 5A). However, 
good or even very good solutions (according to fitting score) can show no 
robustness to Bcd variability. These non-robust solutions can give Hb and Kr 
variability as high as that for Bcd (Fig. 5B), in contradiction to the several-
fold drop in variability seen in the data (Fig. 4; 20). The best-fit solutions 
span from highly robust, capable of filtering out Bcd variability nearly 
completely, to solutions unable to filter variability at all.  
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Figure 4. The real, biological variability in the gap gene patterns and the maternal inputs (See 
20, 25; Fly Ex DB). 

A. The between-embryo variability of the gap gene patterns (gt , hb, Kr, kni; Cf. with Fig. 1B) 
for mid cleavage cycle 14A. Much of this variability is probably due to between-embryo 
variability in the maternal gradients, such as Bcd (B), and Cad (C).  

B. The between-embryo variability of the maternal morphogenetic gradient Bcd, 89 embryos, 
13th cleavage cycle. 

C. The between embryo variability of the maternal factor Cad, 38 embryos, 13th cleavage 
cycle. 

It is biologically established that the position of each domain border of 
each gap gene pattern is under the control of different combinations of 
regulatory inputs from the other members of the segmentation ensemble. In 
the case of the 2-gene model, we have one border for Hb and two borders 
(anterior & posterior) for Kr. Even for good-scoring solutions, there are 
cases when Hb is robust but Kr is less robust, or even non-robust (Fig. 5C). 
In many cases, the anterior Kr border is more robust then the posterior one 
(Fig. 5D), but we also saw some cases with the opposite (Fig. 5E). Our 
results show that robustness can evolve relatively independently at each 
border. Hence, the positional error for each border can be relatively 
independent. 
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Figure 5. 2-gene model: robustness to Bcd variability. Bcd – green; Hb – red; Kr – blue. 

A. Highly robust. 

B. Not robust. 

C. Hb is robust, but Kr is not robust. 

D. All borders are robust, except for posterior Kr. 

E. The posterior Kr border is the most robust. 

 
Detailed analysis of the dynamics underlying this robustness to Bcd 

variability in the networks, both for the hb-Kr pair and the rest of gap 
ensemble, will be presented in another paper 29.  
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Because the 2-gene model is under the control of not one, but three 
external inputs (Bcd, Cad & Tll), we could also study its robustness to the 
variability of these other factors. Cad displays an even higher variability than 
Bcd (Fig. 4C; Cf. 20). We have found a set of solutions that can filter this 
Cad variability to a degree comparable to Bcd filtering. This small set of 
solutions can filter Cad variability substantially better than real embryos can 
(data not shown). A typical result from this set has very precise Hb and 
anterior Kr borders, but un-precise posterior Kr (Fig. 6A). This situation is 
not unexpected, because the more posterior the domain position, the higher 
Cad intensity level and the higher the Cad positional (horizontal) variability 
(Fig. 4C; Cf. 20).  

We found cases where Cad variability induced not only quantitative, but 
qualitative changes in the Hb and Kr profiles. For instance, Cad variability 
can cause or at least highly amplify a second, posterior domain of Hb (Fig. 
6B). Interestingly, this new posterior domain really does form in embryos 
during cycle 14, but later than the early stage patterns we used to fit the 
model.  
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Figure 6. 2-gene model: Cad noise filtration. Hb – red; Kr – blue. 

A. Hb and anterior Kr borders are very precise, but posterior Kr is not. 

B. Cad variability can cause, or amplify, the second, posterior domain of Hb. 

In summary, the simple 2-gene model, an elementary module of the gap 
network, shows all possible combinations of robust versus non-robust 
behavior, including a significant subset of solutions which are very robust to 
upstream variability. We also found that robustness of the three domain 
borders can be independently controlled.  

We did not find any significant correlation between the fitting scores of 
solutions and their robustness, either for the control 2-gene networks or 
redundant solutions with one or two recruits. Robust solutions constitute 
about 10% or less of the total for 2-gene model, and non-robust solutions 
constitute a similar proportion.  
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3.4.2 Robustness of the four-gene networks 

To see if the external noise filtration we found in the elementary 2-gene 
model works in more complicated gene networks, we tested the robustness 
of 4-gene network solutions to biological variability in a similar way. In 
these cases, the model has 10 domain borders, which makes systematic 
analysis more difficult. However, we again found that there is (1) no evident 
correlation between fitting scores and robustness, (2) different borders of 
different domains can display quite different levels of positional precision, 
(3), both robust and non-robust solutions are relatively rare, and (4) there 
were no evident differences in robustness between the control 4-gene 
networks and redundant networks evolved from these.  

By using our extended 4-gene model, which includes control by all (or at 
least most) of the known maternal factors, Bcd, Hbmat, Cad and Tll, we can 
investigate the networks’ abilities to filter a more complete set of external 
variabilities, or to test their robustness to combinations of these factors.  

 
We performed a series of runs to fit this extended version of the 4-gene 

model, for both control conditions and test runs with recruitment of new 
members to the core 4-gene ensemble. This extended 4-gene model is 
several times more computationally intensive, so for this case we have 
obtained several dozen networks with an appropriate level of fitting to the 
experimental data.  

We performed a detailed analysis of the 18 best-fit solutions (control and 
test runs) for robustness to variability in all four external factors (Bcd, Hbmat, 
Cad and Tll), one by one, and in pairs of the factors. For Bcd variability 
alone, we found that the behavior of the extended gene network is similar to 
that observed for 2-gene and minimal 4-gene models. In most cases (Fig. 
7A; control runs shown in Fig. 7, but test runs give the same qualitative 
results), Hb and Gt tend to be highly robust, while Kr and kni are less robust 
(but they are comparable to the biologically observed robustness). In other 
cases, all the gap domains (with the exception of posterior Hb) can show 
similar, and relatively high, levels of positional variability (not shown). 
Finally, we see some cases of autonomy in robustness to Bcd variability: the 
Kr domain can show very high precision, while the other genes do not (not 
shown). 

With variable Cad input, we have not found robust solutions (Fig. 7B). 
The only precise domain in the case of Fig. 7B is the most anterior Gt one. 
Robustness of this domain can be expected because it is chiefly under 
control of Bcd and relatively independent of Cad regulation. With variable 
Tll (also a posterior gradient), the picture is similar (Fig. 7C); the extended 
4-gene model is largely not robust to this. Only the most anterior borders of 
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Gt, Hb and Kr are robust, and again these are largely under Bcd control and 
are relatively independent of Tll.  
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Figure 7. Extended 4-gene model (Bcd, Cad, Tll maternal control). Colors as in Fig. 4. 

A. Robustness to Bcd variability. 

B. Non-robustness to Cad variability. 

C. Non-robustness to Tll variability. 

D. Robustness to double Hb + Bcd noise. 

Looking at pairs of external factors, the most interesting case was the pair 
of Bcd and Hbmat. It is biologically established that this pair of 
anteroposterior gradients cooperatively control patterning of gap genes in the 
anterior half of the Drosophila embryo30. We found that the extended 4-gene 
model is capable of decreasing not only Bcd or Hbmat variability separately, 
but can filter both these variabilities together (Fig. 7D). 

4. CONCLUSIONS 

In this work, we have presented the results of a computational simulation 
of evolution of the segmentation gene network, controlling spatial patterning 
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in early fly embryonic development. We used Genetic Algorithms (GA) 
methods to evolve the parameters of a differential equation model for the 
segmentation proteins, tested against fitness for matching the biological data 
for the protein patterns.  

We simulated recruitment (co-option) of new genes to existing networks, 
by introducing gene-addition and gene-removal operators, on top of standard 
GA techniques. We found that recruitment occurred in all our simulations, 
even for those in which only point mutations were operating. Crossover 
aided recruitment, but was not necessary. The recruited genes were either 
ubiquitous or formed spatial patterns, many of which were similar to real, 
biological gene patterns, including patterns for genes not in our core starting 
networks.  

With our generated networks, we tested whether recruitment affected 
evolvability or robustness to variability in external factors. We found the 
evolvability was especially aided in a 2-gene subnetwork, possibly 
representing the process by which the ancestral short-germ band 
segmentation mechanism evolved into the long-germ band mechanism of 
flies. For robustness, we tested the networks for their ability to filter 
variability in upstream, regulatory maternal factors. This apparent filtration 
has been the subject of a great deal of attention in developmental biology in 
recent years, and we find that a significant subset of our evolved networks 
(with and without recruitment) have the capacity to filter this maternal 
variability, i.e. generate domain boundaries with greater precision than the 
maternal regulatory gradients. Robust networks display a variety of 
behaviors, demonstrating that domain boundaries can be regulated 
independently with respect to spatial precision. The model was very 
successful for filtering variability in anterior gradients, such as Bcd and 
Hbmat (individually, or as a pair), but less so with posterior gradients, such as 
Cad and Tll. There is no apparent correlation between the quality of a 
network’s fit to the data and its capacity for robustness to maternal 
variability.  

It has been suggested that redundancy, either structural, in which new 
genes can substitute for existing genes, or functional, in which new genes 
create compensatory pathways, can provide robustness to networks13. We do 
not find that recruitment aids robustness to maternal variability, but our 
recruited genes are not strictly structurally or functionally redundant. Rather, 
removal of recruited genes results in fitting scores lower than the starting 
network: genes can not be freely disposed once they have been integrated 
into the functionality of the network.  

Our work demonstrates that relatively simple evolutionary operators can 
account for network outgrowth. The evolved networks display a number of 
features of the biological system of interest, such as recruitment of genes 
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from ancestral modules, and robustness to regulatory variability, shedding 
light on the evolutionary and functional dynamics of this developmental 
network. 
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