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Abstract

A new approach to design a dynamic model of genes with multiple autonomous regulatory modules by evolutionary
computations is proposed. The approach is based on Genetic Algorithms (GA), with new crossover operators especially designed 
for these purposes. The new operators use local homology between parental strings to preserve building blocks found by the
algorithm. The approach exploits the subbasin-portal architecture of the fitness functions suitable for this kind of evolutionary
modeling. This architecture is significant for Royal Road class fitness functions. Two real-life Systems Biology problems with
such fitness functions are implemented here: evolution of the bacterial promoter rrnP1 and of the enhancer of the Drosophila
even-skipped gene. The effectiveness of the approach compared to standard GA is demonstrated on several benchmark and real-
life tasks.

Evolutionary computations; Genetic algorithms; Crossover operators; building blocks; dynamic models of genes; multiple autonomous regulatory 
elements.

1. Introduction

This paper describes an evolutionary approach used to generate functional gene regulatory networks, with the
goal of testing new crossover algorithms inspired by nature. Recently, such approaches have become more widely
used, as evolutionary simulations or evolution in silico [1;2;3;4;5;6;7]. Computer-simulated evolution is used to
optimize kinetic models of genes with multiple regulatory elements (Cis-Regulatory Modules, CRMs). We describe
the actions of upstream transcription factors on the genes and the structure of the CRMs in terms of the kinetics of
gene expression (see [7;8] for details). These interactions create spatial expression patterns of the genes under study. 
Parameters describing the structure of the CRMs and interactions between the transcription factors and their targets
(CRMs) are randomly mutated in an evolutionary procedure, and tested for the effect on gene expression. A
parameter change which improves the fit between the gene expression model and the expression pattern observed
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experimentally is retained, a general strategy in evolutionary computation.
Classical understanding of the mechanisms behind biological evolution served as inspiration for an entire order of 

heuristic optimization techniques, known generally as Evolutionary Computations (EC). In the past decade, research 
in molecular biology and genetics has conclusively shown that living organisms successfully utilize biomolecular
implementations of EC for effective solution of problems in survival and adaptation. The most obvious examples of
this type would be the mechanisms of antibody selection in a higher organism’s adaptive immune system [9]; and in 
their counterparts, the mechanisms of antigen variability in pathogenic organisms, such as viruses and bacteria [10].

Natural GA (Genetic Algorithms) acts as a somewhat flexible hybrid optimization technique, used both in higher
and lower organisms, albeit in differing ways. Specifically, our approach to EC is characterized by the use of
operators that implement reproduction and diversification of genetic material in a manner inspired by the
mechanisms of retroviral recombination [11] and the genetic-engineering technique known as DNA shuffling [12].
We refer to our overall technique as Retroviral Genetic Algorithms or retroGA. 

RetroGA has many applications to problems of forced molecular evolution and has demonstrated impressive
effectiveness on a series of benchmark tests [8]. We selected these tests on the basis of their potential similarity to
real-world problems of in vitro evolution and molecular-biological evolution. We give special attention to the fitness 
functions as formal models, closely resembling real-world problems of molecular evolution. Some of the simplest
fitness functions that demonstrate the properties of neutral subbasins linked by narrow pathways are the Royal Road
(RR) and Royal Staircase (RS) functions.

Publications of van Nimwegen with co-authors [13;14;15;16;17] emphasized the population dynamics of various
RR and RS fitness functions. van Nimwegen et al. also drew attention to RR functions as models of natural
evolution. It is becoming clear that the dynamics of evolutionary processes on neutral fitness landscapes are
qualitatively very different from evolutionary dynamics on rugged landscapes [13-16]. A major impetus for the
present work is the lack of suitable models and theory for the landscapes encountered in real molecular evolution.
Common conceptions of landscape structure (multi-modal or rugged) in the GA literature can be inapplicable for
optimization in the class of evolutionary scenarios we deal with in this communication.

Here, we develop retroGA to the point where we can clearly test its utility in possible applications, such as
directed in vitro molecular evolution and biomolecular computation.

2. The Approach

The molecular machines that rearrange DNA often process molecules according to certain signal sequences.
From a computational point of view, these are analogous to marks or tags on a string. Molecular machines read
these tags and interpret them as instructions for further string operations. Of the genetic diversification mechanisms
that utilize such signal sequences, one of the most simple and well-known is retroviral recombination. 

Retroviral Recombination: Recombination is the process by which progeny receive an arrangement of genes that
is different from that of either parent [9;11].

Generalization of Retroviral Recombination: The techniques of DNA shuffling (Sex PCR in particular) and
Random-Priming Recombination (RPR) [12; 18] can be generalized from retroviral recombination. (For biological
details and basic references on retroviral recombination and Sex PCR see [8].)

2.1. The retroGA technique

Our technique is characterized by the use of operators that implement the reproduction and diversification of
genetic material in a manner inspired by retroviral reproduction (the Reproduction/Crossover operator, RC) and a
genetic-engineering technique known as DNA shuffling (the Generalized Replication/Crossover operator, GRC).
These are our primary genetic operators, as alternatives to classical crossover and mutation operators. In everything
else, our approach follows classical GA. 

The Reproduction/Crossover operator: The RC operator generates a child string from a given parent pair,
combining the functions of reproduction and crossover (Figure 1). Template switch (crossover) between the parent
strings takes place in the regions of local homology of the strings (for details see [8]).
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redundancy, modular architecture, and low sequence specificity of transcription factors (TFs) for their binding sites
(BS), suggest that they have freedom to change without drastic changes in their functions [27;28;29]. The commonly 
held conception is that most single mutations in regulatory regions represent a very small contribution to phenotypic 
variation, allowing the fixation of weak deleterious mutations by genetic drift [30;31]. Such an application of
Kimura’s ideas on the phenotypically close-to-neutral character of many (or the majority of) point mutations to the
evolution of regulatory regions/modules may be naturally modeled by fitness functions that exhibit subbasin-portal
architecture. A more general case, where a weak deleterious (maladaptive) mutation in a single site of a regulatory
region is compensated by a mutation in a different region (compensatory neutral mutations [32]) is also assumed in
the evolution of regulatory regions. Dynamics of this kind have features of a random walk on a neutral network, but
lead to quantitative changes in the form of the turnover of functional sites over time, while maintaining the function
of the regulatory region.

Royal Road Fitness Functions: Some of the simplest fitness functions that demonstrate the properties of neutral
subbasins linked by narrow pathways are the RR fitness functions [13-17]. A whole family of RR fitness functions
has been proposed, namely R1, R2, R3, and R4 [33]. These functions were specifically proposed for testing the BB
hypothesis, and whether recombination actually manipulated such BBs in the way that traditional GA theory
assumed [33;34;35;36]. Recently, elaborations such as the RS and Terraced Labyrinth fitness functions were
introduced [13-16]. All of these functions demonstrate neutral subbasin architecture. The difficulty of the RR
functions increases from R1 to R4. 

The function R1 is computed very simply: a bit string x gets 8 points added to its fitness for each of the given
order-8 schemas of which it is an instance:

s1 = 11111111********************************************************; c1 = 8 
s2 = ********11111111************************************************; c2 = 8
……………………………………………………………………………………………………………………………………………………………………………………………………………
s8 = ********************************************************11111111; c8 = 8 
sopt= 1111111111111111111111111111111111111111111111111111111111111111; copt= 64.

The value R1(x) is the sum of the coefficients cs corresponding to each given schema of which x is an instance.
Here, cs is equal to order(s). The fitness contribution from an intermediate stepping stone (such as the combination
of s1 and s8) is thus a linear combination of the fitness contribution of the lower level components. This fitness
function is an example of a class of functions with subbasin-portal architecture (Figure 2). The genotype space
consists of all bit-strings of length 64 and contains 9 neutral subbasins of fitness 0, 8, 16, 24, 32, 40, 48, 56 and 64
([8]). There is only one sequence with fitness 64, 255 strings with fitness 56, 65534 strings with fitness 48, etc. 

In the case of the second function R2, the fitness contributions of certain intermediate stepping stones are much
higher. R2(x) is computed in the same way as R1, by summing the coefficients cs corresponding to each of the given 
schemas of which x is an instance. 

The R3 function differs from R2 by the addition of spacers between BBs. In this case, the optimal string has the
form of:

sopt=11111111********11111111********11111111*******11111111********11111111********11111111********11111111********11111111,

where an * indicates a random bit and spacer sequences have no impact on the score. The R2 and R3 functions have
the same subbasin-portal architecture as R1.

Royal Staircase Fitness Functions: These are a generalization of the RR functions for which the subbasin-portal
architecture is more explicit [13-16]. Of all possible configurations of free bits, there is a small subset of portal
configurations that lead to increased fitness. 

An RS fitness function corresponds to a Terraced Labyrinth whose tree is a simple linear chain. The RS function
we use in this paper was defined in a manner similar to RR functions (same length of string, and same size of BB as
R1 and R2). Specifically:

s1 = 11111111********************************************************; c1 = 2 
s2 = 1111111111111111************************************************; c2 = 3 
……………………………………………………………………………………………………………………………………………………………………………………………………………
s7 = 11111111111111111111111111111111111111111111111111111111********; c7 = 8 
sopt= 1111111111111111111111111111111111111111111111111111111111111111; copt = 9
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This version of the RS was used in the work of van Nimwegen and Crutchfield [16]. We used it to be able to
compare our results to theirs. The genotype space contains 9 neutral subbasins of fitness 1, 2, 3, 4, 5, 6, 7, 8 and 9,
and is reminiscent of the R1-R3 function architecture.

One more benchmark test that we are introducing here is the RS3 function (analogous to the RR3). The RS3
function differs from RS by the addition of spacers between BBs. Hence, the optimal RS3 string has the form of:

sopt =11111111********11111111********11111111*******11111111********11111111********11111111********11111111********11111111.

We use this function on some real-life biological tasks below.

2.4. Approach to solve simulations of problems in in vitro evolution

Improvement in the computational tools for in vitro evolution has resulted in new capabilities for modeling
molecular evolution. We selected the simulation of forced evolution of transcriptional regulatory regions/modules as 
an applied case in which the data provides clear constraints. We would like to note, though, that our goal is not to
simply produce conclusions on the evolutionary path of certain specific regulatory regions. Rather, our goal is to
study the subbasin-portal architecture sequence space for some well-studied regulatory modules and to compare the
speed and effectiveness with which our methods solve these problems to other methods used in directed evolution.
This provides an excellent test of the approach described in this publication.

Simulation of the Directed (Forced) Evolution of Prokaryotic Promoters: For our target sequence (solution), we
selected the sequence of the ribosomal RNA (rRNA) operon promoter rrnP1 in E. coli. We chose this particular task 
because prokaryotic promoters in general and these promoters in particular are without a doubt the most heavily
studied [37]. The core promoter of E. coli has a length of approximately 60 bp and is characterized by the presence
of several conserved sites with spacers in between. It is believed that while the sequence of these spacers is not
significant, their length is of extreme importance [9]. There are at least four well-conserved features in a bacterial
promoter: the starting point (usually ‘CAT’); the -10 sequence (‘TATAAT’ consensus); the -35 sequence
(‘TTGACA’ consensus); and the distance between the -10 and -35 sequences. We will focus on the strongest type of 
E. coli promoter – the rRNA operon promoter rrnP1. Each rrnP1 promoter sequence contains an AT-rich sequence
called the upstream (UP) element [38] upstream of the -35 element. UP elements increase transcription 20- to 50-
fold [39]. Its consensus is AAA a/t a/t T a/t TTTT**AAAA, where * indicates a random base, and a/t means A or T. 
In addition, three to five binding sites for the Fis protein (FisBS) increase transcription three- to eight-fold [39; 40].
(For our tests we used this particular sequence of the FisBS: TGCTGAAAATTTCAGCA) Thus, the target sequence
is:

[FisBS]**<~5 bp>**[FisBS]**<~5 bp>**[FisBS]**<~15 bp>**AAA a/t a/t T a/t TTTT**AAAA**<~4 bp>**TTGACA**<16-19 bp>**TATAAT**<5-9 bp>**CAT.

Going by these facts, it is possible to interpret the evolution of the rrnP1 promoter as an example of evolution
with the Royal Staircase fitness function. In other words, evolution could proceed by a route starting at a core
promoter of reasonable sequence, to a far more powerful promoter with the UP element, to a promoter with maximal 
strength (another order of magnitude stronger) with a block of FisBSs. As such, this particular version of the Royal
Staircase fitness function for the evolutionary search of the rrnP1 promoter has a familiar appearance:
s1 =
*******************************************…*******************************************************TTGACA***…***TATAAT***…***CAT,

s2 =
*******************************************…*******************************AAAAATATTTT**AAAA***…***TTGACA***…***TATAAT***…***CAT,

s3 =
********************************…******************TGCTGAAAATTTCAGCA***…***AAAAATATTTT**AAAA***…***TTGACA***…***TATAAT***…***CAT,

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

sopt =
***TGCTGAAAATTTCAGCA***…***TGCTGAAAATTTCAGCA***…***TGCTGAAAATTTCAGCA***…***AAAAATATTTT**AAAA***…***TTGACA***…***TATAAT***…***CAT.

For an arbitrary small fitness value, c1 = , c2 = ~35 , c3 = ~100 , copt = ~150 .
The main difference between the rrnP1 test and the RS3 function is the four-letter alphabet and large words and

spacers. Hence it would be crucial for further development of our approach to compare the two tests.
Simulation of the Directed Evolution of Eukaryotic Genes with Multiple Autonomous Regulatory Modules: The

group of so called pair-rule genes from the Drosophila segmentation network is probably the best candidate to apply 
our approach for simulations and fitting of models to experimental data. Each such gene is expressed in a series of
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seven stripes along the longitudinal axis of the early Drosophila embryo (Figure 3). This striped pattern is a
blueprint for the process of embryo segmentation which follows. Regulatory regions of these genes consist of a
series of autonomous regulatory elements in such a way that each stripe (or pair of stripes in some cases) has its own 
autonomous regulatory element, or CRM (stripe-specific element). An artificial gene carrying only one such
regulatory element, introduced into the Drosophila genome, controls expression of its stripe alone. Spacers between
the stripe-specific elements (See Figure 3), called insulators, are important also: the CRMs must be separated for
proper expression patterning. Hence evolution of these genes is perfectly suited to the Royal Staircase fitness
function.

Effectively performing the in silico evolutionary search on models of pair-rule genes is a serious challenge. It is a 
full-scale real-life problem. To attack it we have to use a higher level of abstraction then before. The trick here is to
represent the tight clusters of the 4-letter words (specific binding sites for Bicoid, Kruppel, etc., TFs) separated by
spacers:

Bicoid&Kruppel Bicoid&Giant Bicoid Hunchback&Giant

…***TTAATCCGTT***…***CGAGATTATTAGTCAATTGC***…***GGATTAGC***…***GAAAGTCATAAAAACACATAATA***…

by a symbol string of a higher level of abstraction:

***B K B G G B K B H G B K***…***N H H/N N H H N H K H H H***

stripe 2 element                              stripe 3 element

where B represents a binding site for the Bcd factor, K for Kruppel, H for Hunchback, N for Knirps, G for Giant.
Hence, each symbol represents a binding site (and the spacers inside clusters are ignored). If so, each such cluster 

(stripe-specific element) is a word or building block at this higher level of abstraction. The BBs are separated by the
insulators. Hence, at the higher level of abstraction we again achieved a problem representation similar to the RS3
function.

In our simulations the gene structure (“chromosome” in GA terms) was represented in the form of arrays of
numbers. The particular binding site of a given specificity and strength was characterized by a two-digit number: the 
high-order digit represents the transcription factor to bind (from 0 to 9; e.g. Bcd, etc.), while the low-order digit
represents the strength of the site:

***10 78 68 48 11 31 66 29 54 29 77 41****87 36 44 73 36 19 38…

stripe 2 element stripe 3 element

I.e., stripe-specific elements are represented as strings of symbols where each two-digit symbol represents one
binding site. Each such symbol corresponds to a binding site for factor X (Bicoid, Caudal, Giant, Hunchback,
Kruppel, Knirps, Tailless, to be precise) with a strength of Y (discrete values, from 0 to 9).The crucial difference
with previous tests is that the fitness landscape is not predetermined, but is calculated via a detailed PDE model (for
details see [8]).

A simplified view of the origin of Drosophila segmentation assumes that the current way of making segments
simultaneously was designed by evolution from ancestral mechanisms for sequential production of segments. This
sequential production of stripes was based on temporal oscillations of the ancestral genes in a growing zone. In this
picture, the easiest way to imagine how Drosophila segmentation arose would be for the evolutionary search to find
and substitute ancestral stripe-specific elements, one by one, into the sequential, time-oscillating mechanism (Figure
3). In this scenario, finding the CRM for the 1st stripe would give a score = ; finding the CRM for the 2nd stripe
would double the score (2 ); and so on to completion (score=7 ). (Note that contemporary pair-rule genes have less 
than 7 stripe-specific elements - the eve gene has five - which is why some elements have to control two stripes (for
details see [8]).)
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Table 1. Performance of our techniques versus standard GA. Values indicate number of function evaluations needed to reach optimum,
averaged over 1000 runs.

Function

TECHNIQUES

Std. GA RC operator [8] GRC operator [8]

R2 73,563±1,794[34;36] 101,986±32,671 15,449±18,163

R3 75,599±2,697[34;36] 136,566±77,241 16,720±29,977

RS ~500,000 122,855±66,459 152,630±129,750

RS3 ~500,000 135,141±76,427 163,314±158,295

rrnP1, 4th level ~46,000,000 21,304,252±2,632,548 23,411,266±3,097,116

3.2. Real-life problems

The Bacterial Promoter rrnP1: The previous benchmark tests showed both the RC and GRC operators to be
more effective than GA in evolutionary searches for the problems inspired by real eukaryotic molecular genetics
(Table 1). But the rrnP1 task is as hard as the R4 test: only a small fraction of runs were able to find the highest-
score (5th) level (cf. [8]). In achieving the 4th level, though, the RetroGA operators (RC, GRC) were more effective
than standard crossover (GA). Our tests also show that the 4-letter strings and large building blocks make this task
substantially more time consuming, compared to the RR/RS tests.

The Enhancer of the Drosophila even-skipped Gene: Our computational experiments with the eve-gene task
revealed that its fitness landscape has some key characteristics of the sub-basin & portal architecture. For instance, if 
we pick a seven-stripe solution (found by evolutionary search) and study the vicinity of this solution in parameter
space, we can see that the fitness values belong to flat (iso-fit) areas with short and steep bridges between them
(Figure 4). (And note that the fitness landscape was not predetermined by the fitness function definition (as with
RR/RS functions), but was calculated via a dynamic PDE model (for details see [8]).)

Table 2 Performance of our technique versus standard GA. Values indicate number of function evaluations needed to reach optimum, averaged
over 100 runs.

Function

% for tests % for control TECHNIQUES

Std. GA RC operator GRC operator

eve-gene, 4th level 94 92 3,973,563±919,794 1,656,372±652,671 1,903,877±734,621

The evolutionary search for the eve-gene problem turned out to be very time-consuming. However we managed
to use the same overall scheme for the search. Namely, each run lasted to a predetermined number of evaluations
(5,000,000). Because we did not know the geometry of the fitness landscape in this case, we had to use a threshold
criteria to judge whether a given building block (stripe-specific element) was able to control the formation of its
stripe (or pair of stripes, see p. 6). The moment the first solution overcame the last threshold (five elements – five
thresholds) corresponded to the score for a given run (making these tests comparable quantitatively to the previous
ones). To our surprise, most control runs and all test runs achieved the desired seven-stripe pattern, though only 6%
of the test runs achieved the last, 5th level. These tests show that the RetroGA operators facilitate the evolutionary
search significantly, over GA (Table 2). Interestingly enough, the eve-gene task appears substantially less hard than
the rrnP1 one (Table 1). We expect this is caused by substantial redundancy of the stripe-specific element structure
in the case of the eve-gene problem, but it needs further study.

1012 A.V. Spirov, D.M. Holloway / Procedia Computer Science 1 (2012) 1005–1014



Spirov & Holloway/ Procedia Computer Science 00 (2010) 000–000

In addition, RetroGA effectively prevents premature convergence of the evolutionary search: the proportion of
searches failing to find the desired gene architecture was several times smaller for RetroGA than for standard GA
operators. Hence, RetroGA is an advance on the computational tools for in silico evolution.

4. Discussion and Conclusions

The mechanisms of diversification in natural GA are not analogous to the mutation and crossover operators in
computational GA. In computational GA, these mechanisms are global, act statistically upon the entire population,
and use predetermined parameter values. In natural GA, however, the character of the mutation depends on the
sequence of the given gene. It may be said that a gene contains not only information that is used to determine its
fitness, but also instructions on how to mutate itself afterwards. As such, mutation operators in natural GA are local,
and their action depends on the sequence of the particular gene in question.

The positions of crossover sites and exchange between two strings in computational GA are chosen randomly.
However, in biology, crossover occurs at sites of high homology between two molecules of nucleic acid. These
regions of high homology may be naturally interpreted as BBs. As such, crossover operations in the natural world do 
not destroy BBs, but instead conserve them wholly, while the material between the BBs undergoes crossover
exchanges and point mutations. It is well-known that the destruction of already-discovered BBs by the crossover
operator is one of the major problems with GA, and was originally brought to light by experiments with the RR
fitness functions. Because of this, the capability of homology-based PCR techniques to conserve already located
BBs is of tremendous interest. We think that the improvement of RetroGA over standard GA for fitness functions
with sub-basin & portal architecture is caused by the capability of the new operators to preserve BBs already found
by the algorithm (via search for local homology).

We believe that methods of discrete optimization developed by the living world have significant meaning for
interdisciplinary research. The new algorithms for evolutionary computation that we borrow from the living world
are to a significant degree domain-independent. Because of this, they may be easily implemented in various EC
techniques.

In the past several decades, computational GA has become an effective mathematical instrument for modeling
and analyzing the processes and mechanisms of biological evolution. RetroGA has the potential to have the same
effect on molecular evolution. Thus, further study and development of retroGA would serve to lay the foundation of
a mathematical theory describing the processes and mechanisms behind the evolution of biological macromolecules.
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