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1. Introduction  

The field of Evolutionary Computation (EC) has been inspired by ideas from the classical 

theory of biological evolution, with, in particular, the components of a population from 

which reproductive parents are chosen, a reproductive protocol, a method for altering the 

genetic information of offspring, and a means for testing the fitness of offspring in order to 

include them in the population. In turn, impressive progress in EC – understanding the 

reasons for efficiencies in evolutionary searches - has begun to influence scientific work in 

the field of molecular evolution and in the modeling of biological evolution (Stemmer, 

1994a,b; van Nimwegen et al. 1997; 1999; Crutchfield & van Nimwegen, 2001). In this 

chapter, we will discuss how developments in EC, particularly in the area of crossover 

operators for Genetic Algorithms (GA), provide new understanding of evolutionary search 

efficiencies, and the impacts this can have for biological molecular evolution, including 

directed evolution in the test tube. 

GA approaches have five particular elements: encoding (the ‘chromosome’); a population; a 

method for selecting parents and making a child chromosome from the parents’ 

chromosomes; a method for altering the child’s chromosomes (mutation and 

crossover/recombination); criteria for fitness; and rules, based on fitness, by which offspring 

are included into the population (and parents retained). We will discuss our work and 

others’ on each of these aspects, but our focus is on the substantial efficiencies that can be 

found in the alteration of the child chromosome step. For this, we take inspiration from real 

biological reproduction mechanisms.  

1.1 Biological evolution by random point mutations? 

Traditional GA, using random point mutations, indicates that such a mechanism would be 

too slow to account for the observed speed of biological evolution (e.g. Shapiro, 2010). This 

suggests that other more complicated mutational mechanisms are acting (Shapiro, 1999, 
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2002; 2010). A number of projects are indicating, indeed, that the design of biological 

molecular machines, such as gene regulatory circuits, may be unreachable by an 

evolutionary search from scratch (von Dassow et al., 2000; Kitano, 2004; Shapiro, 2010). A 

likely solution is that evolution creates complicated molecular machines by operating on 

previously-evolved simpler domains (motifs, modules) (e.g. Botstein, 1980). 

1.2 Building blocks in protein and nucleic acid molecules 

In parallel with the computational literature, we use the term ‘building blocks’ (BBs) for 
these simpler domains. Biologically, BBs are found in proteins, in which amino acids 
combine to create functionally and physically distinct regions within the protein (e.g. Voigt 
et al., 2002); they are found in the semi-autonomous domains of RNA (Ancel-Myers  
& Fontana, 2005); and they are found in DNA, from nucleosomal and chromatin 
organization to the organization of gene regulatory regions (Fig. 1). Comparative studies 
show that BBs are maintained during evolution, and can be shared by quite diverse 
organisms (Voigt et al., 2002).  

The striking conservation of BBs in biological evolution has been noted in GA. It is 
beginning to be understood how important conservation of BBs is for efficient evolutionary 
searches in GA (and other fields of EC) (Forrest & Mitchell, 1993a,b; Goldberg, 1989; 
Holland, 1975; Mitchell et al., 1992). This chapter will discuss recent developments of GA 
chromosome alteration rules which conserve BBs, and how these relate to developments in 
directed evolution in the laboratory.  

1.3 Nontrivial mutagenesis for molecular evolution in the test tube 

As well as increased understanding of the role of BBs in biology and in search mechanisms, 

there is a growing appreciation for the use of BBs in in vitro, directed evolution experiments. 

Numerous groups are using evolutionary principles to design and select macromolecules, 

and it is becoming apparent that random point mutations are not the most efficient means 

for doing this. The role of crossover in conserving BBs in GA has inspired new techniques in 

molecular evolution in the test tube (Stemmer, 1994a,b). Methods are now being used to 

recombine from specific crossover sites to maintain BBs (Fig. 2) and speed the generation of 

diverse usable progeny molecules.  

DNA shuffling (or ‘sexual PCR’) and in vitro evolution are well advanced fields now, and 

have been successfully used to design many new biotechnologically valuable enzymes (Sen 

et al., 2007). Beyond the synthesis of macromolecules, a growing area in systems biology is 

to investigate the evolution of genes and gene networks, through computation and synthetic 

biology laboratory work.  

1.4 Biological evolution requires complicated mutational mechanisms? 

The role of complex methods of mutation vs. simple point mutation is currently an active area 

of discussion (e.g. Long et al., 2003). In particular, agents such as retroviruses (e.g. HIV) and 

retroposons are believed to work as highly effective and highly specific mutators (e.g. Brosius, 

1999). The crossover mechanism evolved by retroviruses (Fig. 3) shares many similarities with 

the DNA shuffling/sexual PCR techniques used in in vitro evolution (Fig. 2).  
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A)…ACGTAATCCCcatagaaaaccggtggaaaattcgcagctcgcTGCTAAGCTggccatcCGCTAAGCT

cccgGATCATCCAaatccaagtgcgcataattttttgtttctgCTCTAATCCAgaatggatcaagagcgcaatcctcaatcc

gcgatccgtgatcctcgattcccgaccgatccgcgacctgtacctgacttcccgtcacctctgcccaTCTAATCCC… 

B)  

C)  

Fig. 1. Some examples of “building blocks” (BBs) in biological macromolecules engaged in 
keeping and transferring genetic information – polypeptides and nucleic acids. A) The core 
of the anterior regulatory region of the Drosophila (fruit fly) gene hunchback, with a cluster of 
six BBs highly specific for recognition of the Bicoid protein. B) Organization of the bacterial 
promoter rrnP1 (ribosomal RNA operon promoter) into a series of highly conserved blocks, 
with between-block spacers of conserved length. C) Illustration of BB disruption in proteins. 
Black lines represent peptide bonds, red dotted lines represent interactions between amino 
acid (aa) side chains. Two hybrid proteins are shown. If the first 12 residues (aa’s) are from 
one parent, and the last four residues are from the other parent, three side chain interactions 
can be disrupted. If the last eight residues come from the same parent, then there is no 
disruption. Hybridizations that maintained interactions would be most likely to fold 
properly. (After Voigt et al., 2002) 
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Fig. 2. Schematic of experimental mutation of DNA for in vitro evolution. Input strands can 

only be cut at specific sites; progeny are created by combining these fragments. BBs are 

maintained within the fragments, but novel combinations are created in the process. 

Keeping the BB sequences minimizes structural disruption in the products.  

 

 

Fig. 3. The overall idea of recombination between two parental RNA strings used by 

retroviruses. The child sequence is read alternately from the parent strings, jumping 

between the parent templates at regions of homology (marked by gray rectangles). This is an 

effective mechanism for genetic diversity in the child, while retaining BBs. 

Retroviral recombination usually takes two parent RNA strands to create a child DNA 

strand (Negroni & Buc, 2001; An & Telesnitsky, 2002; though a three strand mechanism is 

also a possibility). Development of GA crossover operators that use the retroviral scheme, or 

extend it to the multiple parent case seen in sexual PCR, can give quantitative 

understanding of the efficiencies of these techniques, and can provide insight into the 

biological evolution of retroviruses and retroposons. 
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1.5 Test tube evolution needs new theoretical considerations 

Some in vitro evolution groups are using DNA ‘soft computing’ on well-defined benchmark 

computing problems (Chen & Wood, 2000; Henkel et al., 2007). However, theoretical 

(mathematical) studies of these computations are still at an initial stage (Crutchfield, 2002; 

Sun, 1999; Maheshri & Schaffer, 2003). A central question is whether theory can offer new 

approaches to speed up the evolutionary search for macromolecules with desired 

characteristics or features. This chapter will survey prospective ways to apply new 

developments in GA crossover operations in order to further the theory and efficiency of in 

vitro evolution. 

We have long been interested in the design of genes with multiple autonomous regulatory 
elements – these are critical in formation of the early body plan (in particular, we study 
these genes in the fruit fly, Drosophila). We have found that evolutionary searches for such 
highly structured sequences are very similar to the well-defined Royal Road (RR) and Royal 
Staircase (RS) computational test functions. By developing GA crossover operators that 
perform well on RR and RS functions, we are developing computational techniques for 
solving real design problems for biological and synthetic macromolecules. In particular, we 
are introducing GA crossover operators that work like retroviral or sexual PCR 
recombination, and which have the ability to preserve BB architecture. We name our 
approach Retroviral GA, or retroGA.  

This chapter will first (section 2) introduce the RR and RS test functions, and introduce the 

retroGA technique. Section 3 will show the performance of this approach on the test 

functions, and on biological gene-structure problems, from bacteria and fruit flies (each with 

particular challenges as a search problem). retroGA results will be compared with standard 

GA (point mutation). In section 4 we will discuss the prospects for extending the analytical 

approach developed by van Nimwegen and co-workers for RR and RS functions to real 

biological genetic problems, such as the bacteria and fruit fly examples in section 3. We will 

conclude on the use of the retroGA approach in understanding real biological evolution 

problems and for aiding the efficiency of directed (forced) molecular evolution in the 

laboratory. 

2. Our approach 

We will first discuss the RR and RS benchmark functions, which allow for standardized 
testing and analysis of BB type evolutionary problems. We will then present our retroGA 
approach, using retroviral recombination methods (crossover) to preserve BBs during 
evolutionary searches. 

2.1 GA benchmark functions as models of molecular biological evolution 

Among the many benchmark tests in EC, the RR and RS fitness functions were specifically 

invented to study the preservation and destruction of BBs by crossover operators. As such, 

they can serve as models for many cases of natural and test tube evolution, in which 

searches proceed with BB preservation. Four RR functions, of increasing complexity, were 

invented and introduced by Forrest, Mitchell, and Holland to specifically test crossover 

operations in GA (Forrest & Mitchell, 1993a,b; Mitchell et al., 1992). The related RS functions 
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were devised and introduced by van Nimwegen & Crutchfield (2000; 2001). These well-

defined functions allow for analytical (mathematical) study of the evolutionary search 

behaviour and parameter dependence.  

2.1.1 Royal road functions 

Royal Road functions were devised to award fitness for the preservation of BBs, and thus to 
serve as models for natural evolution (van Nimwegen & Crutchfield, 2000). R1, the simplest 
function, calculates bit string fitness by the number of order-8 schema, or words, in the 
string. Order does not matter: 

s1 = 11111111********************************************************; c 1 =  8 
s2 = ********11111111************************************************; c 2 =  8 
…………………………………………………………………………………………………………………………………………………………………………………………………………… 
s7 = ************************************************11111111********; c 7 =  8 
s8 = ********************************************************11111111; c 8 =  8 
sopt = 1111111111111111111111111111111111111111111111111111111111111111; c opt = 64 

where the * is a random bit (0 or 1). The fitness value R1 (for string x) is the sum of the 
coefficients cs corresponding to each given schema of which x is an instance (cs is equal to 
order). The fitness of an intermediate step (such as the combination of s1 and s8) is a linear 
combination of the fitness of the lower level components (e.g. the combination of s1 and s8 
has fitness 16). The genotype space consists of all bit-strings of length 64 and contains 9 
neutral subbasins of fitness 0, 8, 16, 24, 32, 40, 48, 56 and 64. There is only one sequence with 
fitness 64, 255 strings with fitness 56, 65534 strings with fitness 48, etc. Because fitness 
proceeds by the build up of words, the fitness landscape for RRs has a subbasin-portal 
architecture (Fig. 4), in which evolution tends to drift in neutral subbasins, with rare jumps 
to the next level via portals (creation or destruction of a word).  

In searching for fitness functions that are easy for GA and difficult for non-evolutionary 
methods, a whole family of increasingly complex RR functions was devised (R1, R2, R3, R4; 
Mitchell, 1996). These showed that standard GA is superior to non-evolutionary techniques 
on harder problems, but also brought to light that standard GA has substantial weaknesses 
in the crossover operator. Due to their formal simplicity, theoretical analysis can be carried 
out on the RR functions to understand the parameters which promote efficiencies.  

R2 is very similar to R1, but allows for higher fitness at certain intermediate steps. R3 allows 
for random-bit spacers of set length between BBs (which are not calculated in the fitness 
score). The optimal string for R3 is: 

sopt=11111111********11111111********11111111*******11111111********11111111********11111111********11111111********11111111. 

The most difficult RR function is R4, since one, two, or even four non-neighboring elementary 
(in our case 8-bit) BBs in the string gives the same exact score (Level 1). The score will only 
increase if words neighbour, e.g. a pair of juxtaposed 8-bit BBs creates a Level 2 16-bit BB. A 
Level 3 BB consists of 4 neighboring 8-bit BBs (32 bits in total). Level 4 BBs are 64-bit, 
composed of eight 8-bit elementary BBs. Level 5 BBs would consist of 16 8-bit BBs. Most 
current optimization techniques cannot effectively deal with the R4 fitness function. 

From the viewpoint of molecular biology, R1 and especially R3 are reminiscent of a key 
element of the regulatory region of a gene: a cluster of binding sites (BS’s), made of short 
BBs separated by spacer sequences. While the analogy is good, there are several differences 
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to bear in mind. First, usually the positions and order of BS’s in such clusters are less 
restricted (than in the comparable RR), but this depends on the particular gene in question 
(enhanceosomes vs. “billboards”; see Jeziorska et al., 2009). Second, any BS is not a unique 
sequence: it is usually a family of related sequences with varying strength (fitness), usually 
with a conserved core sequence (Stormo, 2000). Finally, proximity of BSs to each other is 
important for the action of activators and repressors. This is analogous to R4 (e.g. with sub-
clustering represented by R4, Level 3), but the biological spacing is somewhat less restricted 
than in R4. Because of the general parallels between RR and biological structure, we expect 
RR analysis to shed some light on the evolution of gene regulatory regions, and to be useful 
as a theory for forced molecular evolution of bacterial and yeast gene promoters. (Where 
modified or completely artificial promoters can become new molecular tools for bio-sensing, 
etc.: Haseltine & Arnold, 2007; Lu et al., 2009.) 

 

Fig. 4. Subbasin-portal architecture for the R1 function. 

2.1.2 Royal staircase functions  

These are a generalization of the RR functions in which the subbasin-portal architecture is 

expressed in a more explicit form (van Nimwegen & Crutchfield, 2000). The RS function we 

use in this chapter is similar to the 8-bit word, 64-bit string R1 and R2 of the previous 

section, but order matters (i.e. the string is built up from one end), and fitness for N=8, K=8 

RS ranges from 0 to 80: 
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s1 = 11111111********************************************************; c 1 = 10  
s2 = 1111111111111111************************************************; c 2 = 20  
…………………………………………………………………………………………………………………………………………………………………………………………………………… 
s6 = 111111111111111111111111111111111111111111111111****************; c 6 = 60  
s7 = 11111111111111111111111111111111111111111111111111111111********; c 7 = 70  
sopt = 1111111111111111111111111111111111111111111111111111111111111111; c opt = 80 

This version of RS was used by van Nimwegen and Crutchfield, and we use it in this 
chapter to be able to compare our results to theirs.  

2.1.3 Evolution of gene regulatory regions 

Here we develop two prototypical cases in the evolution of gene regulatory regions, 
highlighting their similarities to the RR and RS test functions. We will present retroGA 
results on these problems in section 3. 

2.1.3.1 Directed (forced) evolution of prokaryotic promoters 

Bacterial gene promoters, being simpler than eukaryotic promoters, present good cases for 

investigating the details of the evolutionary searches producing their structure. For a target 

sequence (solution) for these sorts of problems, we have selected the sequence of the 

ribosomal RNA (rRNA) operon promoter rrnP1 in E. coli, since it is very well studied and 

well characterized (Schneider et al., 2003). Core promoters in E. coli are approximately 60 

base pairs (bp) long and are characterized by several conserved sites with spacers in 

between. It is believed that while the sequences of these spacers are not significant, their 

lengths are of extreme importance (Schneider et al., 2003). There are at least four well-

conserved features in a bacterial promoter: the starting point (usually ‘CAT’); the -10 

sequence (‘TATAAT’ consensus); the -35 sequence (‘TTGACA’ consensus); and the distance 

between the -10 and -35 sequences. The rrnP1 promoter sequence contains an AT-rich 

sequence called the upstream (UP) element (Ross et al., 1998) upstream of the -35 element. UP 

elements increase transcription 20-to 50-fold (Hirvonen et al., 2001). Its consensus is AAA a/t 

a/t T a/t TTTT**AAAA, where * indicates a random base, a/t means A or T. In addition, three 

to five BS’s for the Fis protein (FisBS) increase transcription three- to eight-fold (Ross et al., 

1990). The weight matrix for the binding sites of this transcription factor has been defined 

(Hengen et al., 1997). The desired sequence for the rrnP1 promoter therefore includes: 

[FisBS]**<~5 bp>**[FisBS]**<~5 bp>**[FisBS]**<~15 bp>**AAA a/t a/t T a/t TTTT**AAAA**<~4 bp>**TTGACA**<16-19 bp>**TATAAT**<5-9 bp>**CAT. 

Evolution of the rrnP1 promoter can be viewed as a Royal Staircase fitness function. Starting 
with the core promoter (s1), evolution could add the powerful UP element (s2) and then 
sequentially add FisBSs (s3, s4): 

s1=**********************************…*************************************************TTGACA***...***TATAAT***...***CAT, c1 = Δ 
s2=****************…******************************AAA a/t a/t T a/t TTTT**AAAA***...***TTGACA***...***TATAAT***...***CAT, c2 = ~35 Δ 
s3=*************…******************[FisBS]*** …***AAA a/t a/t T a/t TTTT**AAAA***...***TTGACA***...***TATAAT***...***CAT, c3 = ~100 Δ 
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… 

sopt=***[FisBS]***…***[FisBS]***…***[FisBS]*** …***AAA a/t a/t T a/t TTTT**AAAA***...***TTGACA***...***TATAAT***...***CAT, copt = ~150Δ 

where Δ is an arbitrary small fitness value. 

Like RS, rrnP1 probably evolved by sequential finding and adding of BBs, with each 
addition raising the fitness of the promoter sequence (transcriptional efficiency). As with RS, 
the length and positions of the BBs are conserved during evolution, though not as strictly as 
the RS function in section 2.1.2.  
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The simplified rrnP1 test 

A major difference between RR and RS functions and functional clusters of BBs in biological 
macromolecules is the redundant character of the blocks. Functionally very similar blocks 
can have different sequences, sharing only a common core sequence. I.e. BBs usually are not 
unique, but are a family of related sequences. Also, compared to RR and RS, biological 
clusters of BBs include longer spacers (of variable length), and they are usually longer than 
64 or 128 elements. Finally, they are not binary, but quaternary (DNA and RNA) (or even 
consisting of 20 letters, in the case of proteins). 

To begin studying the rrnP1 problem (and do so within the RR, RS framework), we can 
simplify some of these complications: we ignore the redundant character of its 8 BBs and the 
variability of spacer lengths (see Fig. 1A,B); we assume that all the elements are fixed 
and/or unique in sequence; and we consider five elements only. The first of these represents 
the whole core promoter and is modelled by only 6 letters. The second element is the 
proximal half of the UP element, assumed to have a length of 5 letters. The spacer between 
the 1st and the 2nd elements is 24 letters. The 3rd to 5th elements are given the same length, 
with spacers of 15-letter length. We will present results on computing this simplified target 
in section 3. 

2.1.3.2 Genes with multiple regulatory units 

In eukaryotic organisms (i.e. non-bacterial), the organization of gene regulatory regions is 
far more complex. Genes are regulated from cis-regulatory modules (CRMs), which have 
clusters of BS’s for activators and inhibitors, with very important spacer lengths between 
them to allow for quenching (inhibition) and cooperativity (activation). CRM’s can be an 
arbitrary distance from the gene coding region. Compared to a prokaryotic model, like that 
for rrnP1, a eukaryotic CRM model must account for evolution of the BS locations and 
strengths, and be tested, fitness-wise, against a global production capacity. If the BS’s are 
words in the language of gene regulation, CRM’s order those words into sentences. Where 
rrnP1 could be treated as analogous to an RS problem with spacers, a eukaryotic CRM is 
more analogous to an R4 function, to account for clustering, with the level of the R4 
representing the number of BS’s in a functional cluster. Since the number of BS’s is 
frequently 2 or 3, this begins to present major computational challenges, since most 
algorithms are insufficient at R4 Level 2 or 3. If we now begin to consider genes with 
multiple CRM’s, which is common, we must consider at least R4 Level 4, a point at which 
most algorithms tend to fail. In analogy to language, organization of multiple CRM’s is at 
the level of the paragraph directing a gene’s regulation. Such problems may need to be more 
realistically thought of as higher level RS functions.  

Evolution of multiple CRM’s in Drosophila 

The genes responsible for early body segmentation in the fruit fly, Drosophila, form a highly 

studied network of interacting regulations. These genes code for proteins which 

transcriptionally regulate the other segmentation genes, and their spatial expression 

patterns determine where different body parts will form. The regulatory regions for 

segmentation genes involve multiple CRM’s, each of which can control different aspects of 

the spatial gene expression. It is believed the complex modern regulatory regions evolved 

by addition of CRM’s to a simpler primitive antecedent. We are running computations on 

the evolution of a number of the segmentation genes.  
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One example is evolution of the regulatory region of the hunchback (hb) gene, which forms 
an anterior-high ‘step function’ pattern which differentiates the head from the tail end in the 
embryo. Fig. 5 shows the organization of the 3 hb CRM’s, and the spatial expression that 
each is primarily responsible for. hb expression is controlled by at least 5 transcriptional 
regulators (protein products of other segmentation genes): Bicoid, Caudal, Tailless, 
Huckebein, Hunchback, Giant, Kruppel & Knirps. Available information on the 
organization of the hb regulatory regions is collected in the HOX pro (Spirov et al., 2000; 
2002) database (http://www.iephb.nw.ru/hoxpro/hb-CRMs.html). 

 

 

Fig. 5. One of the best studied examples of a gene from the Drosophila segmentation gene 
network – the hunchback (hb) gene. Bottom: the schematic organization of the hb regulatory 
region, with three separate autonomous regulatory elements (CRMs). Each regulatory 
element is a cluster of binding sites for, at least, five transcription factors (Bicoid, Caudal, 
Tailless, Hunchback, Huckebein, Giant, Kruppel & Knirps), shown as colored bars. Spacers 
(insulators) are also shown. Middle: mature expression pattern for the hb gene in an early 
fruit fly embryo (one-dimensional spatial expression profile, along the main head-to-tail 
embryo axis). Top: representation of the gene regulatory structure, each responsible for a 
different aspect of the hb expression pattern.  

We can study the building up of the modern hb regulatory region through computational 

evolution from a single CRM ancestor. Starting from a single CRM with fitness score = Δ, 

the evolutionary search finding the 2nd CRM would double the score (2Δ); and so on 

sequentially to completion (score=3Δ; Fig. 6). 

Coding the hb problem for computation highlights the levels of abstraction necessary to 

represent multiple CRMs:  
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DNA   
***TTAATCCGTT***…***CGAGATTATTAGTCAATTGC***…***GGATTAGC***…***GAAAGTCATAAAAACACATAATA***… 
BS for  Bicoid&Kruppel     Bicoid&Giant           Bicoid       Hunchback&Giant 
 

Symbolically, CRM level (B for Bicoid, K for Kruppel, H for Hunchback, N for Knirps, G for Giant): 
 

***B K B G G B K B H G B K***…***N H H/N N H H N H K H H H*** 
     Element 1            Element 2 
 

Symbolically, in octal numbers: 
 

***0 1 0 4 4 0 1 0 2 4 0 1***…***3 2 2 3 3 2 2 3 2 1 2 2 2*** 
     Element 1           Element 2 
 

 

Fig. 6. A simplified scenario for the evolutionary origin of hunchback gene organization. A 
single element would insert into an ancestral gene with no elements, and, due to increased 
fitness, build up to the gene with three elements. Gene organization and the corresponding 
patterns of gene expression are shown schematically. 
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The BS’s are finally coded as decimal pairs, where the 1st digit identifies the transcriptional 
factor and the 2nd digit represents its binding strength. To capture activator cooperativity 
and inhibitor quenching, neighbouring BS’s can be allowed to alter binding strengths. GA 
and retroGA algorithms can perform crossover operations on these strings to evolve them. 
In contrast to the rrnP1 problem, where fitness is rated by transcriptional efficiency of the 
gene, fitness of the hb regulatory string depends on how well it produces the required 
spatial expression pattern. The strings are formal representations of real functional 
connections between genes in a network. Candidate strings must be solved in a reaction-
diffusion model for spatial patterning, and the resulting pattern scored for fitness against 
experimental data (e.g. profile in Fig. 5).  

2.2 The retroGA technique 

As discussed in the Introduction, standard GA techniques, specifically through the use of 
point mutations to generate diversity in the chromosome, can destroy BB’s which are 
important for fitness, slowing evolutionary searches. We have taken inspiration from the 
mechanisms of retroviral recombination to create crossover operators which preserve BB’s. 
Our innovations are only in the crossover operators, all other actions of the algorithm are as 
in classical GA.  

As discussed above, homology-based PCR techniques (DNA shuffling, sexual PCR) used in 
test tube evolution may be naturally interpreted as a generalization of retroviral 
recombination processes (Fig. 3), using n instead of 2 parent strings. Our retroGA operator 
generates a child string from a given "parent set", combining the function of reproduction 
and crossover. Crossover points are determined by regions of homology in the parent 
strings. The parent strings are selected from the population, as in standard GA, by one of 
several predetermined strategies, such as truncation, roulette-wheel, etc. One string is selected 
as a donor, the others as acceptors (Fig. 7).  

In our reproduction and crossover procedure, a first pair of parent candidates is selected. 
These are the donor and acceptor-1 (Fig. 7). Their sequences are then compared going from 
left to right for a short distance Lacc (where Lacc < L, L is the length of the whole sequence). If 
the required zone of local homology is not found, another candidate for acceptor-1 is 
selected. The number of attempts to find a suitable acceptor is at most Nacc. If, and only if, a 
zone of complete homology of a size no less than Lhom symbols (Lhom < L) is found during an 
attempt to scan two sequences, do these two sequences become the donor and acceptor-1 
pair. Replica generation is then initiated, and takes place in the first n symbols of the donor, 
from the first element to the last element of the region homologous between the two parents. 
Replication then jumps to acceptor-1, and acceptor-2 candidates are selected. A search for 
local homology takes place between acceptor-1 and the putative acceptor-2. If no such 
region is found, the next candidate is searched. This process is iteratively repeated until the 
replica (child) is completed, or until the Nacc limit is exceeded. 

retroGA with point mutations: As discussed in the Introduction, crossover of BB’s is more 
efficient than point mutation. In real retroviral recombination, however, it appears that both 
processes are present. Template switching between parent RNA strings tends to introduce 
mutations in the child sequence. For our retroGA, we include this effect by introducing one 
point mutation in one of a few starting sites in the portion of the child string being copied 
from the new acceptor. This addition provided speed-up for retroGA on RS, rrnP1-gene and 
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hb-gene searches, but not on RR searches. Further analysis is needed to understand this 
difference. 

  

Fig. 7. Principle of the retroGA operator, an analogy to in vitro DNA shuffling techniques. 
The process of creating the child sequence by the operator starts with the donor-parent. 
Replication of the child from the donor-parent occurs if there is at least one region of 
homology (identity) between the donor and acceptor -1 (marked by gray rectangles). The 
process then jumps onto the acceptor-1 string. An acceptor-2 is found with a region of 
homology to acceptor-1, and the process repeats, copying from acceptor -1 and jumping to 
acceptor-2 (which becomes the third parent of the child sequence). The process of jumping 
from acceptor to acceptor continues until the creation of the child sequence is complete. 

3. Results 

In this section we present results on the efficiency of retroGA in comparison with standard 
GA (point mutations only). We do the comparison on RR and RS benchmark tests, as well as 
on the biological rrnP1 and hb gene sequence problems. Because all of these problems share 
a subbasin-portal type architecture, such computations allow us to begin to characterize the 
degree to which RR and RS test functions can predict behavior in gene searches. This is 
especially relevant if we can begin to use the analytical (mathematical) tools that have been 
developed for the RR and RS test functions to understand the gene search dynamics. 

3.1 Crossover operators for RS problems 

As a baseline, we have corroborated the RS results of van Nimwegen & Crutchfield (2000; 
2001) with point mutation GA. Following their analytical and computational work provides 
a framework from which to understand the efficacy of our retroGA technique (including for 
the RS-like rrnP1 problem). In particular, they derived the dependence of the number of 
evaluations E to achieve the global optimum on the frequency of point mutations q and size 
of population M (point mutations only and roulette-wheel selection strategy). They found 
theory and computational experiments to be in good agreement. 
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We have reproduced their computational experiments and analyzed how average time to 
achieve a given fitness n empirically depends on n. The case of N = 4, K = 10 is shown in Fig. 8. 
The averaged time (in the average number of candidate string evaluations) to achieve the n+1 
fitness level rises exponentially (Fig. 8A); plotting in semi-log scale confirms this (Fig. 8B). 

 

        

       

             

Fig. 8. Average total number of fitness function evaluations to achieve nth fitness level for 
the Royal Staircase with N=4 blocks of length K=10, in comparison with the rrnP1 gene test. 
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Evolutionary search with point mutations only (A, B; Cf. van Nimwegen & Crutchfield 
(2000; 2001)) vs. search by retroGA algorithms (C,D). Each data point was obtained as an 
average over 200 GA runs. A, B) Corroboration of the van Nimwegen and Crutchfield tests 
with point mutation only (no crossover). Population size M=30,000; mutation rate q=0.01; 
roulette-wheel selection strategy. C,D) Our tests with the retroGA operator as the mutation 
procedure (see text for details). retroGA speeds the search by about 5.5 times compared to 
point mutations only. M=5,000; truncation selection strategy. E,F) retroGA results on the 
simplified rrnP1 test function, M=24,000. 

3.1.1 retroGA speeds up search on RS fitness functions 

Testing both versions of our retroGA operators – crossover without point mutations and 
crossover with associated point mutations (see section 2.2 ) clearly shows that the combined 
crossover/point mutation mechanism is the most effective procedure on RS tests, speeding 
up searches about five-fold. Fig. 8C,D shows the retroGA crossover/point mutation results 
for the same RS fitness function as in previous section (N=4, K=10). The RS optimum was 
achieved in 36,469±36,991 solution evaluations, about 5.5 times faster than by standard GA 
(point mutations only; ~200,000 evaluations). It can also be seen in Fig. 8C,D, that the 
retroGA search shows a nearly exponential dependence between search efficacy and the n 
level, like GA with mutations only (Fig. 8A,B).  

3.2 Crossover operators for the rrnP1 problem 

We found that the simplified version of the rrnP1 test behaved very closely to the RS tests 
with N=4, K=10. Though we had initially thought of rrnP1 in terms of RS organization 
(section 2.1.3.1), we were surprised at the closeness, because the rrnP1 test is specified by 
quaternary strings (the four DNA letters A, T, G, C) and the string length is about twice the 
RS test, owing to spacers. The dependence of the search efficacy on the n level is still 
exponential (Fig. 8E,F) for retroGA on rrnP1, as on RS. retroGA on the simplified rrnP1 
(with five blocks) was over five times faster than GA with one-point crossover (crossover 
rate = 0.01): 95,618±69,575 (Fig. 8E,F) vs. 512,040±48,378 average evaluations. Success on the 
rrnP1 problem, and the parallels to the well-characterized RS function, suggests that 
retroGA is an effective technique for prokaryotic gene search problems, and could 
contribute to real problems of forced (directed) evolution of bacterial promoters in the test 
tube. We will follow up these connections with modern synthetic biology in the Discussion. 

3.3 Crossover operators for R1 - R3 functions 

In this section we characterize retroGA performance on R1 to R3. These functions have been 
well-studied in the literature, and as discussed above, have some of the fundamental motifs 
necessary for modeling gene organization. Testing retroGA both with and without point 
mutations after crossover showed little effect (in contrast to RS). The results shown here are 
for retroGA crossover without accompanying mutation. 

We have already reported on the several-fold speed-up of retroGA vs. standard GA for RR 
problems (Spirov & Holloway, 2010). Here we will focus on the dependence of retroGA 
performance on key computational parameters. It is known that the R1 – R3 functions behave 
similarly in computational experiments (Forrest & Mitchell, 1993a,b; Mitchell et al., 1992; 
Mitchell, 1996). Therefore, we will focus on R1 tests, and present comparisons to R3 performance.  
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3.3.1 Dependence on population size 

Theoretical and computational studies have shown that many performance parameters of 
R1 depend on population size M (van Nimwegen et al., 1999). With an aim to applying 
retroGA to real directed molecular evolution problems (in vitro), it is important to 
characterize the population size dependence (and to connect the theoretical knowledge of 
R1 to real biological problems). We tested M dependence (Fig. 9) for a set of parameters 
found to be close to optimal in other tests (see next sub-sections).  

 

 

Fig. 9. Royal Road fitness functions 1 & 3: Empirical dependence of average total number of 

fitness function evaluations on population size M. Each data point was obtained as an 

average over 100 retroGA runs. Other parameters: limit of acceptor parents Nacc=100.  

A) The R1 tests. B) R1 vs. R3 results. 

While retroGA performance, as number of evaluations, is relatively consistent across 
population size (Fig. 9A, red), there is a relatively narrow window of M from ~2,400 to 2,700 
in which number of evaluations and the standard deviation on these are both low. In this 
range of M, retroGA is about 6 times faster than standard GA (~10,000 vs. ~60,000 
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evaluations). While M=<2,400 can achieve fast results, the standard deviation is higher and a 
lower percentage of runs achieve the global optimum (Fig. 9A, blue). For M>2700, the number 
of evaluations steadily rises with population size. We find that retroGA behaves very similarly 
on R3 as on R1 (Fig. 9B), as seen earlier with standard GA (Mitchell, 1996). The main 
conclusion here is that the retroviral crossover is most efficient just as the success rate 
approaches 100% - small populations are enough for efficient and reliable retroGA searches. 

3.3.2 Dependence on retroGA parameters 

retroGA algorithms have only three parameters: the maximum number of acceptors Nacc to use 
in synthesizing a child-string (see Fig. 7); the maximum acceptor length to search for local 
homology Lacc; and the maximum length of the local homology region Lhom (see section 2.2). 

Dependence on number of acceptors, Nacc: Even for such a simple problem as R1, a high number 

of acceptors helps greatly (Fig. 10A). Having only a few acceptors gives a very high number 

of evaluations; adding acceptors, up to about 40, drops the number of evaluations many-

fold. More parents provides a more effective evolutionary search. 

Dependence on maximum acceptor length to search for local homology Lacc, and on maximum length 

of local homology region Lhom: As explained in section 2.2, in this work we scan each acceptor 

for local homology for a certain distance from the jump point (see Fig. 7), using length from 

2 to Lacc to find a homologous sequence of length from 2 to Lhom. Fig. 10B shows results for 

the dependence of efficacy on Lacc for the R1 function. The algorithm shows a great increase 

in efficiency going from Lacc ~10% to 20% bit-string length: for the 64 bit test strings, Lacc 

should be over 13 bits. Tests with Lhom show a smoother increase in efficiency, and indicate 

that Lhom should be kept over ~40% bit-string length (Fig. 10C). 

3.3.3 Time to achieve fitness level n 

In addition to total number of evaluations, RR and RS functions have been evaluated in 

terms of epoch duration, the time a population stays at a given level n searching for the 

solution to the next level n+1. In developing a theory for the R1 problem, van Nimwegen 

and colleagues (1999), predicted that epoch duration depends exponentially on epoch 

number (fitness level) n. Computationally, we do see a roughly exponential dependence for 

standard GA (no crossover; Fig. 11C), though it is not strictly exponential (Fig. 11D, semi-log 

plot; this in contrast to RS, which shows strict exponentiality, Fig. 8). Interestingly, retroGA 

with a high level of acceptors shows a linear relationship between number of evaluations 

and n (Fig. 11A). The dependence becomes exponential again for low acceptor numbers (Fig. 

11B). The retroGA operator with many acceptors is far more efficient than standard GA (Fig. 

11D) in terms of keeping epoch duration low.  

3.3.4 Tests with ternary strings 

While the R3 fitness function has strong parallels to the typical clustering of binding sites in 
gene regulatory regions (Fig. 1A), a major difference is that DNA “strings” are quaternary 
(four-letter) ones. Here, we check how such dimensionality affects overall efficacy in GA 
tests. Specifically, we tested R1 with optimized parameter sets (c.f. Fig. 11A) with ternary 
strings. (Quaternary strings were too computationally intensive for GA for test purposes.) 
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Fig. 10. Tests with the retroGA parameters. Each data point was obtained as an average over 

200 retroGA runs. A) Tests on the number of acceptors to use, Nacc, for the R1 fitness function. 

B) Tests on the maximum acceptor length to search for local homology Lacc. C) Tests on the 

maximum length of local homology to find, Lhom. M=5,000 in all computations. 
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Fig. 12 shows the same linear relationship of epoch duration on n found in Fig. 11A for 

retroGA on binary strings, but the number of evaluations goes up dramatically, with the 

ternary problem taking ~20 times more evaluations on average than the binary problem 

(10,893 vs 228,419 – Fig. 11A vs. Fig. 12). There is a large price to pay for increasing the 

dimension of the problem; we would expect the quaternary problem to be many times 

slower again. 

 

 

 

Epoch level, n 
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Fig. 11. Epoch durations for the R1 problem: time to achieve fitness level n. Each data point 
was obtained as an average over 100 retroGA runs. A) retroGA - M=2600; Nacc=48; Lacc=32; 
Lhom=32. B) retroGA - M=2600; Nacc=4; Lacc=32; Lhom=32. C) Standard GA - M=2600; 
crossover rate = 0.1; mutation rate = 1/L . D) retroGA vs. standard GA: plots A (green) and 
C (blue) in semi-log coordinates. 

 

Fig. 12. Epoch duration for retroGA on the R1 problem with ternary strings. Cf. Fig. 11A. 
Each data point is an average over 100 retroGA runs. 

3.4 Crossover to design the hunchback gene model 

The hb gene problem as formulated in section 2.1.3.2 is like R3 in form (N=3; K=16; spacers 
of length 4), but with octal-digit strings and a substantial level of degeneracy in its three 
building blocks. The sequential search for CRM's also gives this problem an RS-like 
character. While the hb search has RR- and RS-like qualities, which should aid in analysis of 
the problem, the degeneracy of the building blocks is not captured by the test functions, but 
this does bring the problem closer to real life problems of forced evolution. 

We found retroGA (crossover and point mutations) to be an effective method for solving the 
hb gene problem. Specifically, retroGA was over 4-fold faster than standard GA 
(325,594±59,456 vs. 1,373,246±198,698; averaged over 100 runs).  
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The hb gene problem is the only one in this chapter which has redundant building block 
sequences. Results show that these blocks are highly redundant. Fig. 13 shows 100 good 
solutions for the hb regulatory sequence. Each row is a solution, with octal-digit represented 
on an 8-bit grey-scale. There is no discernible pattern outside of the spacer regions (black 
stripes), illustrating how high the redundancy is in such a problem (for solutions which 
match the data well). 

 

Fig. 13. Grey-scale representation of an aligned stack of 100 good solutions of the hb gene 
problem. Each row corresponds an octal-digit string. The two vertical black columns 
correspond to two spacer regions of four elements in length each. 

4. Discussion 

A major aim with this work is to bridge evolutionary computations from benchmark cases, 
such as Royal Road and Royal Staircase, which are well-understood theoretically (in terms 
of mathematical analysis), to biological cases, which can serve as a basis for more efficient 
directed molecular evolution in the test tube and for understanding the mechanisms of 
biological evolution at the level of gene regulatory sequences.  

4.1 Towards a theory of evolution of biological macromolecules 

Using analytical tools from statistical mechanics, dynamical systems theory, and 
mathematical population genetics, van Nimwegen and co-authors (van Nimwegen & 
Crutchfield, 2000; 2001; van Nimwegen et al., 1999; Crutchfield & Nimwegen, 2001) 
developed a detailed and quantitative description of the search dynamics for the RS and RR 
class of problems that exhibit epochal evolution. From this, the authors could analytically 
predict optimal parameter settings for this class of problems. More generally, the detailed 
understanding of the behaviour for this class of problems provides valuable insights into the 
emergent mechanisms that control the dynamics in more general settings of evolutionary 
searches and in other population-based dynamical systems. By establishing the RR and RS 
characteristics of gene regulatory problems, we can use this theoretical background to 
anchor our understanding of more realistic biological search cases.  
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4.1.1 Royal staircase theory 

For RS (point mutation only (no crossover) and roulette-wheel selection strategy), van 

Nimwegen & Crutchfield (2000) derived an analytical expression for the dependence of the 

number of evaluations E to achieve the global optimum on the frequency of point mutation 

q and population size M. Numerical tests (Fig. 14 upper, a) closely follow the analytically 

predicted dependence (Fig. 14 upper, b). With numerical tests, we found (Fig. 14, (c)) the 

retroGA operator to have a similar dependence of E on M and Q (Q is the point mutation 

rate for retroGA; also see Fig. 8). retroGA uses substantially larger populations (M>=2,500) 

but is several times faster than the standard GA studied by van Nimwegen and Crutchfield. 

This similar general character of the dependence is promising for extending the van 

Nimwegen–Crutchfield theory to the case of retroGA crossover. 

4.1.2 Royal road theory 

van Nimwegen and colleagues (1999) developed an analytical theory for the R1 problem 

(without crossover and with roulette-wheel selection) and deduced a series of expressions 

describing the behaviour of this evolutionary search at low mutation rate q. From these, 

they could predict that high mutation rate would be associated with lower average fitness; 

they also derived a basis for the exponential dependence of number of evaluations on fitness 

level. Such predictions are very intriguing for understanding searches and diversity in test 

tube directed evolution. However, our numerical results with the retroGA operator show a 

linear relationship of number of evaluations on fitness. This indicates that the analytical 

results, for the inefficient point mutation operator, may not be seen in biological situations 

which use more efficient BB-preserving (crossover) operators. Further work is needed to 

establish the applicability of the point mutation analysis to crossover mechanisms. 

4.2 Future prospects for applying the computational results to directed evolution of 
gene circuits 

Our aim is to use the techniques developed in this chapter to aid the directed evolution of 

bacterial and yeast gene promoters in the laboratory. Several approaches to improve and/or 

analyze such promoters via directed evolution have been undertaken by experimentalists 

(Schmidt-Dannert, 2001; Haseltine & Arnold, 2007; Collins et al., 2006). While there is still 

some gap between the gene models in this chapter and real macromolecular evolution, we 

hope to have outlined the directions that can be taken for the computational work to 

provide a stronger theoretical basis for directing and analysing experiments. 

We have focused on evolution of sequences, with biological applications in gene promoter 

structure. The growing field of synthetic biology also includes a great deal of work on 

designing gene circuits, where large numbers of genes affect each other’s expression (e.g. the 

Drosophila segmentation network). Haseltine & Arnold (2007) have identified three primary 

limitations in using directed evolution to design gene circuits: (a) the evolutionary search 

space for a genetic circuit composed of many genes is generally too large to explore 

efficiently; (b) detuning parameters (reducing function) is much easier than improving 

function; and (c) although selecting for independent properties is possible, it usually 

requires setting up multiple rounds of screening or selection. In this area, using  
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Fig. 14. Dependence of search efficacy E on population size M and mutation rate q. Upper 
figure: (a) experimentally obtained dependence of E on population size M, each data point is 
an average over 250 GA runs; (b) shows the theoretical predictions for E as a function of M 
(van Nimwegen & Crutchfield, 2000). In both, N=4 blocks of length K=10 (c.f. Fig. 8) for four 
different mutation rates: q ∈ {0.013, 0.015, 0.017, 0.019}. Lower figure (c): Tests with retroGA, 
showing the empirical dependence of E on M and parameter Q (the point mutation rate for 
retroGA). 
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mathematical models to suggest mutational targets can greatly speed up the process and 
help overcome each of these limitations. 

In the wider perspective, an appropriate theory of molecular evolution in the test tube, 
which includes effective mathematical analysis of new experimental recombination 
techniques, as described in this chapter, would give a new way to design gene circuits 
effectively. We hope that the theoretical and computational results discussed in this chapter 
can facilitate progress in this direction. 

5. Conclusion  

In this chapter, we have discussed some of the computational issues for evolutionary 
searches to find gene regulatory sequences. One of the challenges for such searches is to 
maintain building blocks (meaningful ‘words’) through genetic change operators. Mutation 
operators in standard GA frequently destroy such BB’s and slow searches. We have 
introduced the retroGA operator, inspired by retroviral recombination and in vitro DNA 
shuffling mechanisms, to copy blocks of genetic information. The Royal Road (RR) and 
Royal Staircase (RS) benchmark functions have been developed for analysing evolutionary 
searches which preserve BB’s. RR and RS theory provide a mathematical framework for 
understanding the dynamics of searches which have subbasin-portal fitness landscapes. 
Empirically, we see that retroGA searches share many of the characteristics of RR and RS, 
but that features, such as multiple parent strings, which can greatly speed up searches, also 
produce different optimization dynamics than RR and RS. We aim to bridge between RR 
and RS functions and real biological applications. Through working on specific cases, the 
rrnP1 and hb gene regulatory regions, we are altering simple, binary RR functions to take 
into account BS clustering and non-binary coding. While real biological problems have a yet 
higher degree of complexity, our aim is to sketch how EC computations can be used to aid 
experimental biological work. Computational theory can contribute to both understanding 
how real gene structures have evolved and to speeding up laboratory work on directed 
evolution of macromolecules in the test tube. 
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