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Abstract

A central question in evolutionary biology concerns the transition between discrete numbers of units (e.g. vertebrate digits,
arthropod segments). How do particular numbers of units, robust and characteristic for one species, evolve into another 
number for another species? Intermediate phases with a diversity of forms have long been theorized, but these leave little
fossil or genomic data. We use evolutionary computations (EC) of a gene regulatory network (GRN) model to investigate
how embryonic development is altered to create new forms. The trajectoa ries are epochal and non-smooth, in accord with 
both the observed stability of species and the evolvability between forms.
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1. Introduction

Biological species can generally be distinguished by their unique physical shapes. These shapes are created 
through developmental processes, from the fertilized egg to the adult form. Development is guided by the
unique genetic signature of a species, but the genetics must operate within physical and chemical constraints,
such as tissue mechanical properties, reaction rate laws and molecular transport properties. In addition,
organisms develop within an environment and must be robust to environmental perturbations, i.e. produce
reliable outcomes despite variable conditions.
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Robustness, however, must be balanced against evolvability: extreme robustness could produce very stable 

being continuously subjected to mutation, 
adaptation to new or changing environmental conditions. 

The developmental programme of a species is governed not only by the DNA sequences of its genome, but 
by the gene regulatory networks (GRNs) governing the dynamics of how, when and where genes are expressed 
in developing organisms to create specific cell types. These networks are created by highly interconnected 
gene-gene interactions, which are characterized by a great deal of feedback and nonlinearity.  

Evolution from one form or species to another frequently involves mutations which alter the GRNs 
controlling particular stages or events in development. Understanding evolution, therefore, ultimately requires 
an understanding of the dynamics of GRNs: how they spatially and temporally control gene expression to 
create developmental tissues; how they are made robust to environmental perturbations; and how mutation can 
drive the development of new patterns of gene expression to create new forms and species. 

A specific aspect of how forms evolve from one to another is how discrete numbers of structures change 
from one to another. For instance, it is common to see differences between species in numbers of structures 
such as vertebrate digits, body segments in arthropods, or wing spots in butterflies. What is the evolutionary 
process through which these numbers of units change? How is it that we observe discrete changes in unit 
number, despite small or incremental changes in the genetics? To address this question, both the response of 
the GRNs to environmental stress and the inherent variability in GRN dynamics must be considered. It is 
insufficient to think of the genome as an isolated encoding of traits or forms.  

In pioneering work, Goldschmidt, Waddington and others began to consider how genetically similar 
offspring could respond slightly differently to environmental stress. One of the examples Waddington [1] 
studied was the bithorax-like response to environmental stress seen in fruit flies (Drosophila; Fig. 1A). Flies 
are normally dipteran (2-winged), but in response to environmental stress (e.g. ether treatment), some (not all) 
offspring develop repeated thoracic segments, producing 4 wings. Such an environmentally caused phenotype, 
mimicking changes typically seen under genetic mutation, is termed a phenocopy. Waddington [1, 2 ,3 ] 
developed a theory that if such phenocopies conferred a selective advantage (had higher fitness) in the 
environment (especially in a changing environment), mutations in the genomes of their descendants might 

points the new developmental process would come to produce the new trait with high reproducibility, or 
[4]). It has been a matter of debate 

ead 
to rapid development of highly fit new forms and species (see review [5]). 

Since these ideas were first developed, a huge amount of work has gone into understanding evolutionary 
processes in molecular terms. It is becoming increasingly well understood how the evolution from species to 
species depends on changes in GRN architecture and regulatory dynamics (which genes affect which other 
genes, and how they do so). A great deal of this work is comparative  studying the relations between genomes 
in related species. But a newer and complementary approach is to simulate the evolution of GRN models. This 
approach has the advantage of being able to explore the evolutionary dynamics in time; for instance, it allows 
for exploring the role of transitory forms which may not have a fossil record or a presently available genome.  

In the present work we develop a framework for modelling GRN evolution, especially focusing on the 
transitions between discrete numbers of units. We develop the approach on the biologically well-characterized 
system, in terms of molecular and comparative biology, of anterior-posterior (AP) segmentation of the 
arthropod body; but the technique should be applicable to GRN evolution in general. Development of AP 
arthropod pattern depends on mole
Drosophila, which we focus on, the primary maternal signal is of the Bicoid (Bcd) protein, which emanates 
from an anterior-high distribution of mRNA. Bcd is a transcriptional regulator, binding DNA in the nuclei of 
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the embryo, and activating embryonic segmentation genes (so called gap genes), which form broad domains of 
expression. Different gap genes are activated at different Bcd concentrations, spatially organizing the AP axis 
(Fig. 1B). Bcd is a classic example of a morphogen gradient in developmental biology [6], in which a 
concentration profile specifies positional information in the embryo (early development of this idea was due to 
Wolpert [7, 8]; retinoic acid is another classic morphogen, found widely in vertebrate development [9, 10]). 
 

 
Fig. 1. (A) Environmental stress can cause sudden changes in the body plan of flies, and the response varies between flies, with some 
appearing unaffected (2 wings) and some undergoing discrete changes in number of structures (4 wings). (B) AP segmentation in 

Drosophila. Left (green), Bcd forms an anterior high gradient. Bcd is a transcriptional regulator which activates expression of embryonic 
segmentation genes (gap genes). Gap genes, in turn, control downstream gene expression, positioning the body segments. Bcd is highly 

variable, and normal development requires the gap GRN to form reliable pattern despite this variability. In pathological, non-robust cases 
(bottom) extreme Bcd gradients would cause non-normal gap patterns, affecting the number of segments. As shown (right), segment 

n from a 
mutation). 

A number of studies have focused on the robustness of the trunk gap genes (see Fig. 1B) to Bcd variability 
[11,12,13,14,15,16,17,18]. Within such a specific GRN, one can begin to ask some of the broader questions 
raised above: if the gap GRN is robust to Bcd variability, how has this allowed it to adapt over evolutionary 
time; and by what means do robust GRNs evolve? 

Here, we focus on gap patterning in the head region. The diversity of arthropod head segments is rooted in 
the diversity of the number of gap gene expression domains in the head. How does a distinct, robust number of 
head segments in a particular species evolve into a different distinct, robust number of segments in a derived 
species? How is robustness affected during this evolutionary transition? Do multiple forms co-exist? 
Reductions in the number of head segments have occurred in arthropod evolution [19]. We are interested in 
simulating how these transitions might have occurred. The detailed data available for head gap gene expression 
in Drosophila makes it the best choice for developing a head GRN model; but once formulated, we use the 
model to study arthropod head evolution in general. 

Instead of a general environmental stress, in this work we focus on the well quantified variability of the Bcd 
gradient. In this case, the different, intermediate forms would be in response to very high or very low Bcd 
gradients experienced by embryos (as in Fig. 1B). In dynamic terms, Bcd gradient level would control 
bifurcations in the GRN solutions, producing different head gap patterns. GRNs which can produce variable 
outcomes can be highly evolvable, by producing alternate forms which may have increased fitness to a 
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produce the new form without the environmental stress (or gradient variability). With simulations we can track 
robustness through such an evolutionary transition; in particular, does robustness go through a minimum in the 
transitional phase, illustrating the trade-off between evolvability and robustness? 

Fig. 2 shows expression for 3 head gap genes that are key for development of the fly head [20,21,22,23,24]: 
knirps (kni);  (cnc) and empty spiracles (ems). These genes correspond to the 3 genes in our 
model (see Methods); all are transcriptionally regulated by Bcd. 

A 

B 

C 

Fig. 2. Expression of three key genes involved in early patterning of the fruit fly head:  (cnc) (A); knirps (kni) (B); and 
empty spiracles (ems) (C). Red arrows highlight the expression domains (peaks) which we model. Data courtesy of the BDTNP 
(http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp). The images are made by the PointCloudXplore software (http://bdtnp.lbl.gov/Fly-
Net/bioimaging.jsp?w=pcx ). Colour intensity corresponds to the amount of gene product (RNA); the horizontal axis is centred at the 
anterior pole, extending right and left to the posterior of the embryo; the vertical axis is dorsal-ventral position. 

In this work, we combine the dynamics of a maternal morphogen with those of three downstream genes into 
a reaction-diffusion (RD) model. This class of models has been studied since the time of Turing [25] for their 
ability to spontaneously form spatial patterns. Here, we use the RD system to model pattern formation, and then 
subject it to evolutionary computations to simulate biological evolution. We develop the model on the 
particular case of fly head segmentation, but the approach applies to the general question of how evolutionary 
transitions between discrete numbers of units occur. 

RD pattern formation is a well-developed field in its own right, but in this project we use it within the 
context of the computer science field of evolutionary computations (EC). This fits within the emerging area of 
systems biology known as evolution in silico [26,27,28,29], in which genetic algorithms (and other EC 
techniques) are used for optimizing GRN models and simulating network evolution.  

With simulations on this relatively small GRN, we are able to quantify network robustness (to maternal 
gradient variability) and to observe how robustness changes through evolutionary transitions which change the 
number of units. This gives insight into the network dynamics which produce both the robustness of particular 
species and the evolvability which allows for new forms and species.  

2. Methods and Approaches 

The RD model in this paper was originally developed by Shvartsman and co-authors [30,31,32] for 
development of respiratory appendages in the Drosophila egg; specifically, to understand how the number of 
appendages is limited to 2 in wild-type flies. RD models have long been studied for their ability to 
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spontaneously form spatial patterns for particular values of reaction parameters (e.g. controlling the rates of 
interaction between two or more patterning chemicals) and diffusion parameters [25]. Pattern formation in
classical Turing systems depends on differential diffusivities between the patterning chemicals, or what has

- -Shvartsman model is capable of this type of 
pattern formation, though the original authors used it in a parameter regime which did not require the diffusive
instability for pattern formation.) Here, we use the Muratov-Shvartsman mechanism to model head patterning,

(e.g. cnc), and C (e.g. ems):

(1)

(2)

(3)

In this system of PDEs (partial differential equations) A, B, and C are proteins; coded by genes a, b, and c. The
proteins are diffusible transcription factors, which would biologically affect the other protein concentrations by 
acting on the corresponding genes. x is the spatial coordinate, centered at the anterior pole of the embryo; t is
time. {X} is a sigmoidal function X {X}X =X2/( X2+1)
respectively). Transcription factors A, C and M act as activators, while B is a repressor.

The maternal gradient M is specified as a time-invariant spatial gradient, centred and maximal at the anterior 
pole. We represent M by a Gaussian function (see [30]):

(4)

To study the effect of M variability on GRN solution robustness, we vary M by 
(5)

where k is the number of M profiles used for each GRN (k=4 in this paper) and . This creates 4 M
profiles, with maxima ranging from 0.55 to 0.61 arbitrary units (about 11% relative change; see Fig. 3A,B).
This variability is sufficient to study robustness, but is lower than some observed variability levels 
[11,12,15,16,33]. Robust GRN solutions are those which produce the same pattern (specifically, number of 
peaks) over this range of M input gradients (Fig. 3D,F).

Following [30] we used a non-dimensionalized form of eqns. (1-3):

(6)

(7)

(8)

Numerical integration of the RD model: The PDE model (eqns. (6-8)) was integrated by spatial
discretization into cells; in each of the 100 cells the continuous system becomes a set of finite difference
equations, solved by the standard Euler method. RD models can be computationally expensive, with small time
steps frequently needed to maintain stability. This can be challenging for evolutionary searches. We found that 
50,000 time steps for each t = 0.0005) gave a good balance between calculation costs and 
achieving stable patterns.
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Implementation of the evolutionary search: The model (6-8) has 10 parameters; the aim of the EC is to find 
particular parameter sets that produce the desired spatial pattern (the PDE system (6-8) solution) despite 
variability in the maternal gradient M. Examples of such patterns are shown in Fig. 3 D,F. Using a standard GA 
(Genetic Algorithms) approach, each trial parameter set was represented by a floating-point chromosome 
(array), with each floating-point element corresponding to a particular value of a given parameter in the model. 

Initial population: The computational population was usually 400 species (parameter sets). Instead of 
beginning from a standard random collection of parameter sets, we started from parameter sets known from 
[31, 32, 32] to produce desired patterns. We then generated populations from these through small random 
increments or decrements to one (or more) of the parameter values.  

Mutations: During the evolutionary searches, parameters were changed one at a time (simple GA mutation). 
Crossover, in which multiple elements of a chromosome are changed per generation, was not used. Mutations 
produced small inheritable adjustments of the RD-model parameters. In theoretical terms, the EC searches are 
through a 10-dimensional parameter space, which is likely to be multi-stable (see Shvartsman analysis). Most 
parameter changes would be expected to yield little change, but those which crossed boundaries between 
different stable states could produce large quantitative pattern changes. In this paper, we performed an 
evolutionary search on only two parameters,  x0 (eq. 
4, spatial scaling of the M gradient). The other 8 parameters were kept fixed. 

Evaluating the solutions: A common strategy for reverse engineering gene networks is to evaluate model 
solutions by the sum of squared differences from the desired patterns (i.e. experimental data; [e.g. 34]). In the 
present work, however, we were interested in the number (count) of broad expression domains, and this is not 
properly captured by a difference summed from every position (cell). In other words, we did not want to 
evaluate the shifting of the expression domains: their count is important, but not their exact positions. In 
particular, our aim was to find profiles with two or four domains but with freedom to shift position (while 

-
- sion, a single domain (peak) will show a 

steep rise (minimum to maximum) followed by a steep drop (maximum to minimum). For two domains, there 
are two such pairs of up and down slopes. We devise an evaluation measure in which each such pair of up and 
down slopes adds a predetermined score value of N (=20 in this paper). In this work, we only use the profile of 

than 40% of the global maximum.  
To investigate the robustness (or non-robustness) of particular parameter sets of eqns. (6-8), we solve each 

parameter set with 4 different M gradients (shown in Fig. 3B). Each solution is scored, and a composite score is 
calculated as the sum of these individual scores. Robust parameter sets produce the same number of domains 
(peaks) for all four M gradients (while the exact heights and positions of the profiles can vary, see Fig. 3D,F). 
Non-robust cases might produce, for example, 4-domain solutions with the lowest M gradient, 2-domain 
solutions with the highest M gradient, and 3-domain solutions with intermediate M gradients (see Fig. 4).  

GRN evolution in silico: As described above, parameter sets were encoded in floating-point chromosomes, 
and these were altered to form a varied initial population. Each parameter set in the population was solved 
numerically and scored according to the number of domains produced. An average score was then calculated 
for all the chromosomes. A portion (25%) of the chromosomes with worse-than-average scores were replaced 
by randomly-chosen chromosomes with better-than-average scores. Offspring underwent a standard mutation 
operation, changing one or more of the chromosome values. The complete generation cycle of PDE solution, 
scoring, replacement of below-average chromosome sets, and mutation was repeated until the score converged 
above a set threshold. This typically took 100  200 generations. The model was implemented in Delphi 
(Windows) and Free Pascal (Linux). The source code is available from the authors upon request. 
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3. Results and discussion 

In this work, we focus on 4-domain to 2-domain evolutionary transitions. These numbers are applicable to 
head segmentation and other developmental phenomena, but our main aim is to present a framework for the 
evolutionary transition between any numbers of units.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Behavior of the reaction-diffusion system (eqns. 6-8). A, B) input M gradients: A) an ideal non-varying M gradient; B) the more 
realistic case of varying M input, representing the different maternal gradients that different embryos experience. C, E) solutions which are 
non-robust to changes in the M gradient: C) 2-domain solution with a low M gradient; E) 4-domain solution with a high M gradient. D, F) 

Solutions which are robust to M variability: D) stable 2-domain solutions, despite a range of M inputs; F) stable 4-domain solutions, 
despite a range of M inputs. M is specified by eqs. (4-5), with X0=2.92, M_0=0.8. 

3.1. Modeling evolution: from 4-domain to 2-domain patterns 

Initial population: Starting from a 4-domain pattern robust to M variability (Fig. 3F; magnitude of M 
variability shown in Fig. 3B), we are interested in studying the evolutionary transition to 2-domain patterns. x0 
and  parameters were varied as described to create a population of individual parameter sets. Individuals were 
scored on the number of domains (peaks) produced (each domain adding 20 to the total score, see Methods). 
For instance, each 4-domain pattern costs 80, so summing over all 4 input M profiles, an initial robust 4-
domain solution (such as Fig. 3F) produces a score of 80+80+80+80=320. Since a 2-domain pattern evaluates 
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as 40, a robust 2-domain solution has a total score of 40+40+40+40=160 (see Fig. 3D). The aim of the 
evolutionary search is to find trajectories which take the initial score of 320 and reduces it to 160.  

Selection: In successive generations, individuals continued to be mutated by small increments/decrements in 
the x0 and  parameters. Mutant solutions which produced 2-domain patterns gained selective advantage by 
lowering their scores.  

Representative case of in silico evolution: There is enough diversity in the initial population that there is 
frequently one (or more) individual with score lower than 320 (i.e. it already has at least one or two 3-domain 
profiles or even a 2-domain one). Early into an evolutionary experiment mutations start to create non-robust 
individuals, in which 4- 3- and 2-domain patterns (examples shown in Fig. 4) are produced by the range of 
input M profiles. Though they produce variable responses to the M gradients, such individuals (GRNs) are at a 
selective advantage due to their reduction of peak number. Continued evolution produces robust 2-domain 
individuals (in which 2-domain solutions are achieved for all 4 M gradients, Fig. 3D).  

The simulations show the feature of evolutionary epochs (also reported in other studies with evolution in 
silico [e.g. 35]): long times pass with very slow (or even no) changes to the population, punctuated by bursts of 
new forms. For example, a first sudden jump can be seen when the evolutionary search finds the score of 
80+80+40+40 (corresponding to two M profiles producing 4-domain solutions and two M profiles producing 2-
domain solutions). Some time later, solutions appear with, for example, one 4-domain, one 3-domain and two 
2-domain patterns. The next evolutionary jump finds solutions with scores of 80+40+40+40, and so on. Epochs 
last from 50 to 100 generations and take from 15,000 to 50,000 new mutants to evaluate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Non-robustness of spatial patterns of the reaction-diffusion model (6-8) to variability of the external input (profile of factor M; 
Fig. 3B). (A - D) the diversity of patterns induced by the M profile variability. 

With a cost associated with domain number, our computational experiments on the RD model can produce 
rapid evolution which changes discrete units of the body plan. We are specifically interested in embryo 
segmentation, but the model could easily be applied to other cases of arthropod (generally) and insect 
(particularly) morphogenesis.  

Interestingly, simulations of the reverse evolutionary process, from 2- to 4-domain solutions (optimizing 
fitness to a score of 320), look and behave very much like the forward 4-to-2 transition. Overall, the 
computations can explain not only a decrease in the number of pattern elements through evolution, but also 
their increase.  
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These simple dynamic evolutionary models capture some of the crucial features expected by evolutionary 
biologists for developmental mechanisms [e.g. 36 ]. In particular, these computational experiments show 
transitional and highly variable patterns which connect old and new robust patterning processes. 

4. Conclusions 

Using evolutionary computations on a model for spatial pattern formation, we have been able to follow the 
dynamics of transitions between discrete numbers of units. Though the model has been developed for the 
evolution of head segmentation in flies, we address the general problem of how a developmental GRN which 
robustly produces a particular number of units in a particular species evolves to create a new form or species 
with a different number of units. We have focused on a fundamental type of developmental robustness: the 
ability of a pattern forming GRN to produce the same patterns despite variable inputs from signaling gradients 
(in our case, maternal positional information gradients, such as Bcd). Our simulations show that GRNs robust 
to a particular number of peaks (e.g. 4) can evolve to new number-of-unit solutions if fitness conditions change 
(e.g. 2 domains become more fit than 4; which could arise from a change in environment). Our simulations 
eventually become robust to variable gradient input with the new fitness criteria, but we were quite intrigued 

 of intermediate forms  a by-definition non-
robust state. However, in terms of the earlier ideas of Waddington and others, the ability of a GRN to produce 

simulations indicate that a diversity of forms can be a natural part of optimizing GRNs to new fitness criteria to 
achieve a new ro

appearance/disappearance of forms or species. Our model, therefore, prese
37], with discrete jumps between species forms rather than a gradualist 

approach.  
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