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Abstract

The co-evolution of species with their genomic parasites (transposons) is thought to be one of the 

primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for 

conducting evolutionary computations (EC) using the transposon mechanism. We find that the 

selective pressure of transposons can speed evolutionary searches for solutions and lead to 

outgrowth of GRNs (through co-option of new genes to acquire insensitivity to the attacking 

transposons). We test the approach by finding GRNs which can solve a fundamental problem in 

developmental biology: how GRNs in early embryo development can robustly read maternal 

signaling gradients, despite continued attacks on the genome by transposons. We observed co-

evolutionary oscillations in the abundance of particular GRNs and their transposons, reminiscent 

of predator-prey or host-parasite dynamics.
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1. Introduction

Modelling is becoming increasingly used in biology to both explore theoretical principles 

and synthesize vast amounts of data. The study of evolution is one of the central pillars of 

biology, and has both inspired a number of techniques in computer science and benefited 

from the application of computer modelling. In computer science, this has led to the 

development of the field of Evolutionary Computation (EC), with such sub-fields as Genetic 

Algorithms (GA) and Evolutionary Programming (EP). A number of highly efficient 

optimization algorithms have been developed along these lines. EC was initially motivated 

and has largely been developed following some fundamental biological principles of 
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evolution, such as mutation, selection, reproduction. However, knowledge of evolutionary 

biology has progressed rapidly in recent decades, and there are many aspects of evolutionary 

dynamics which have not been applied in EC. There is a large potential for improved 

algorithms and new applications for EC, e.g. [1, 2, 3, 4].

In this paper, we specifically discuss developments in molecular evolution which are being 

approached with EC. We present a new technique that incorporates the mechanism of 

mobile genetic elements (transposons) into EC, and test it on a fundamental problem in 

embryo development – segmentation of the insect body plan.

1.1 Evolution of gene regulatory networks

While evolutionary selection operates on individuals, these individuals develop from 

embryos according to their genes and the regulatory interactions connecting their genes 

(gene regulatory networks, GRNs). Understanding the mechanisms by which the unique 

form of one species transforms into the form of another species involves understanding the 

evolutionary dynamics of the GRNs controlling an individual's form. Computational 

modelling of evolvable GRNs can elucidate evolutionary processes, which can then be used 

to improve EC. A number of groups are involved in modelling GRN evolution (evolution in 

silico), it is less common to apply these principles to EC. (A complementary approach to 

evolution in silico is the reconstruction of GRNs from gene expression data, or GRN 

evolutionary design.)

Many of the evolution in silico approaches use a ‘coarse-grained’ approach, in which the 

interactions between genes are represented by a regulatory matrix Wi←J, where i←J denotes 

the action of the transcription factor J (encoded by gene j) on gene i (reviewed in [5]). In 

such an approach, a gene is a black box with simple pairwise interactions with other genes. 

GRN evolution in silico can also be done at a more detailed ‘fine-grained’ level that 

accounts for DNA sequence information (though this comes with increased computational 

cost; [5, 6, 7, 8]). Real mutation occurs at this level, so fine-grained modelling allows for the 

study of evolutionary dynamics at this level, and the development of new areas of EC.

Figure 1 illustrates the general GRN evolution in silico approach: a population of individual 

GRNs is generated; these are solved, for example to create gene expression patterns; the 

patterns are scored against fitness criteria, for example data on gene expression patterns; the 

fittest individuals reproduce; these survivors are subject to mutation (in the genes or their 

regulatory parameters); and the cycle repeats. Multiple rounds of rewiring (changing the 

network connections) and retuning (changing the connection strengths) optimizes the GRN 

for a particular function. The coarse- or fine-grained level at which the GRN dynamics are 

represented determines the level at which mutation operates. In coarse-grained approaches, 

mutation directly alters gene-gene interactions; in fine-grained approaches, mutations in the 

DNA can be simulated, and gene-gene interactions are affected as a natural consequence (as 

well as producing a closer simulation of the dynamic response to a DNA alteration).

In general, the dynamics of even the best studied and smallest GRNs are incompletely 

characterized. Evolution in silico offers the substantial advantage that it can operate with 

incomplete or simple models and generate families of solutions which solve the constraints. 
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This allows us to study potential GRN designs, begin to understand how these designs might 

have evolved, and map these findings to the molecular and fossil record of evolution. In 

model development, too rigid an adherence to all the known details of a GRN can constrain 

the breadth of an evolutionary simulation, essentially over-determining to a particular 

species; this must be balanced against simulations with generic models, in which numerous 

GRN types may be generated that solve a particular problem. These may provide the range 

of possibilities encountered in evolution, but in the end should not contradict known data.

Modelling can also aid in understanding particular features of a GRN. For instance, if most 

parameters of a model are held fixed, evolution of a particular gene connection, connection 

type or connection strength can help characterize the role of this gene and its dynamics in 

the network.

DNA can be altered in a number of ways biologically, from point mutation of single bases to 

exchange of large sequences of material, as in inheritance from parent to child (particularly 

during the crossover stage of recombination) or infection by a pathogen (e.g. a virus). EC 

approaches have traditionally employed the simplest of these mechanisms, point mutation. 

Incorporation of more complex alteration mechanisms offer one of the richest areas for 

extending and improving EC.

1.2 Transposable elements

In prior work, we have presented new EC approaches using crossover mechanisms, 

including ones inspired by the mechanisms used in retroviral infections [6, 7]. Here, we 

present an EC approach using mobile genetic elements (transposons, or transposable 

elements, TEs) to alter GRNs. These sequences have tags which enable them to copy 

themselves into new locations in the host genome [10, 11, 12, 13, 14, 15]. Transposons are 

ubiquitous and may comprise up to 45% of an organism's genome [12, 14, 15, 16]. Studies 

indicate that TEs can be a major source of genetic change, leading to the creation of novel 

genes, the alteration of gene functions, and major genomic rearrangements [11, 12, 13, 17, 

18, 19]. While TEs provide a means for diversifying the genome (contributing to 

evolvability), they have also been characterized as genomic parasites or ‘selfish DNA’: a 

transposon landing into a critical region of the host DNA can disrupt functions and be quite 

deleterious. While such transpositions can disrupt existing regulatory elements, transposons 

may also provide a rich pool of regulatory elements that contribute to the long-term 

evolutionary potential of the population in a beneficial manner [20, 21]. For instance, the 

Alu transposon may constitute up to 10% of the DNA in human cells, and has been 

implicated in binding of the developmentally critical hormone retinoic acid [22, 23, 24].

1.3 Co-evolution

Co-existence with transposons, and either their negative or positive effects, requires host 

genomes to respond evolutionarily. That is, host genomes must adapt by co-evolving with 

their transposon ‘parasites’. By implementing transposons in EC, and allowing for evolution 

of the host GRNs, we can study such co-evolutionary dynamics. In particular, we can study 

how factors such as how transposon invasion rate, spread rate and evolutionary response of 

the host genome affect GRN function. We describe specific results below, but as a general 
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principle we find co-evolutionary algorithms produce more effective searches by restricting 

(explicitly or implicitly) the search space, as well as tending to avoid premature 

convergence: we focus on the biological problem of evolution of developmental GRNs, but 

the technique has broader potential in improving EC efficiency.

Early applications of co-evolution in GA were by Potter and De Jong [25, 26, 27], for 

optimizing functions in engineering applications; and by Hillis [28], who used a competition 

operator. We extend these approaches with the introduction of transposon biology. In 

contrast to the earlier approaches, selection is not based on a direct ‘selection operator’, but 

by survivability of the host, i.e. the relative ability of the host to solve required functions. 

Computationally, transposons are represented as sequences within a genetic ‘string’, and 

have the autonomy to be transmitted vertically, from one generation to another, or 

horizontally, from one individual to another. In silico evolution of a population of genetic 

strings (individuals) represents the co-evolution of the host and transposon DNA.

1.4 GRN outgrowth

In considering the response of the host genome to transposon pressure, we need to consider 

the means by which GRNs can evolve. A major theme that has emerged in recent years is 

that GRNs tend to evolve by gene co-option: instead of developing genes de novo, existing 

genes in one network can become incorporated into another (existing) network, acquiring 

novel functions in the new network [29, 30]. Instead of involving major changes in DNA 

coding sequences (instructions for the transcription of RNA/protein products), co-option can 

occur by relatively minor changes in the DNA of regulatory sequences, the elements 

upstream of the coding region to which regulatory transcription factors (TFs) bind and 

control the expression of the coding regions. Gene co-option (or recruitment) can serve as a 

major factor in GRNs becoming more complex in evolutionary time (network outgrowth).

While there has been more attention in recent years on GRN outgrowth, it is not well 

characterized what forces might influence co-option. Recruitment may occur by chance (at a 

very low level) and then be subject to evolution. Or, there may be special evolutionary 

mechanisms performing recruitment, which could produce more complicated 

rearrangements of genetic material. Transposons might be involved in evolutionary events at 

this level. In our model, we account for outgrowth by allowing for recruitment of genes to 

an existing GRN. Within the co-evolutionary framework, this allows us to explore what 

factors in transposon-host interactions contribute to GRN outgrowth; for instance, as a first 

hypothesis, whether transposons force GRNs towards higher complexity due to negative 

selection.

1.5 GRN modelling

GRNs have been represented at numerous levels in computational models, from discrete, 

local descriptions to continuous, spatially-distributed descriptions (see review in [5]). Local 

descriptions are adequate for the temporal dynamics of a GRN, while spatially-distributed 

approaches are necessary for gene expression across embryological tissues. Discrete (e.g. 

Boolean) models can provide a coarse approximation of gene states, while finer description 

of gene expression may require a continuous (differential equation) approach. Spatial 
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dependence may require incorporation of transport terms for gene products (e.g. protein 

diffusion). Computational cost generally increases the finer the description of the process. 

For evolution in silico of GRNs, any of the parameters in the model may be affected by 

mutation, with the fitness of the individual GRN depending on the resulting functionality of 

the GRN model for solving particular problems.

1.6 Drosophila

We develop and test our transposon-genome EC approach on the particular case of body 

segmentation of the fruit fly, Drosophila. This model genetic organism is extremely well 

characterized, experimentally and theoretically, providing the basis for data-driven model 

development. A number of groups have done modelling projects on both the GRN design 

[31, 32, 33, 34, 35, 36, 37, 38] and in silico evolution (e.g. [5, 6, 7, 8, 39, 40]) of the gene 

network determining the early anterior-posterior (AP) positioning of gene expression. (See 

the HOX pro Web resource [41, 42] for a catalogue of the known regulatory elements of the 

gene ensemble). This early patterning produces the differentiation of the body into distinct 

segments.

Working in Drosophila allows us to build GRN models from known quantitative data on 

gene expression. In addition, with respect to the current project, the evolutionary 

significance of transposons has been directly studied in the Drosophila genome ([43, 44]), 

and comparative work within insects provides evidence for gene co-option and network 

complexification [45, 46]. For instance, the transition from grasshoppers to flies appears to 

have occurred with a doubling of the number of genes in the segmentation network (at least) 

over a short geological time span.

1.7 GRN spatial patterning

The task of our model is to produce the developmentally observed patterns of gene 

expression in early Drosophila segmentation. Fitness of an individual GRN is scored by 

how well the GRN solutions fit the experimental data. We focus on the earliest stages of this 

process: activation of the segmentation GRN in response to the concentration gradient of 

maternally-supplied protein. Ability to respond to such morphogenetic gradients is a 

property of many fundamental GRNs in developmental biology. In our simulations, we are 

able to characterize how functionality of the GRN (ability to read the gradient and produce 

good pattern) is maintained in the presence of transposon pressure.

1.8 Transposon mobilization

Studies of transposons in the Drosophila genome have shown a number of intriguing 

features which we can explore with our EC approach. It appears that TEs can lie dormant in 

a host genome for some time, until some stress factor (temperature, irradiation, DNA 

damage, the introduction of foreign chromatin, viruses, etc.) activates them. Lozovskaya et 

al. [47] described the phenomenon of hybrid dysgenesis, in which multiple unrelated TEs 

are mobilized simultaneously via host genome destabilization. (This process was generally 

termed “genomic shock” by McClintock [48].) The insertion of activated TEs into a number 

of loci can then lead to altered gene expression patterns. It also appears that there are 

different classes of TEs, in terms of number of copies per genome and the degree of 
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predetermination of insertion sites: TEs with high and low specificity for insertion sites have 

both been described. Selective pressures can vary substantially between different TE classes, 

and among different Drosophila species. This has led to discussion of possible alternative 

strategies for TE-Drosophila genome interaction, such as selection against insertional 

mutations [49] vs. consideration of the deleterious effect of chromosomal rearrangements 

due to recombinational events between TE insertions. Here, we present results on simulating 

genomic shock, in which TE activation bursts and attacks key genes in the segmentation 

GRN.

While EC was initially inspired by biological evolution, we feel that there is a large potential 

to extend and improve EC through the introduction of operators from modern molecular 

genetics [7, 50, 51]. Towards that end, in this paper we describe our implementation of 

transposable elements into an EC framework (for previous work in this area see [51, 52, 53, 

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65). By developing this model on the well-studied 

case of early segmentation in Drosophila, we can use the EC approach to address biological 

questions of how early embryological patterning maintains robustness to transposon 

pressure. In particular, the model allows us to explore in what way the features of the 

dynamics (e.g. transposon insertion rate, gene recruitment rate) affect patterning and 

robustness. While our main focus is on using EC to uncover GRN design, the efficiencies 

introduced by transposon-genome co-evolution in EC are promising for improving 

optimization in general.

2. Methods

We introduce the following extensions to the general EC framework of repeated cycles of 

mutation, selection and reproduction: i) variable-length genomes; ii) corresponding 

operators for reproduction, point mutation and crossover; iii) artificial TEs; and iv) operators 

for TE invasion and transposition.

i. Variable-length genomes

Unlike most classical GA approaches (but like GP), we use variable-length genomes 

(chromosomes). As in GP, growth of the genome in our algorithm is limited: every genome 

can have up to nine separate strings/chromosomes (Fig. 2). Each chromosome represents 

one gene. Each gene is represented by up to three 4-letter words, separated by spacers. 

Using a 3-letter alphabet (A, T, C) gives 34 = 81 possible words (summarized in Table 1). 

GRN dynamics are simulated by the regulation of genes by transcription factors (TFs) which 

are encoded by the genes. TF dynamics are simulated by Hill kinetics (Eq. 1, described 

below). The binding strength of a TF on the 9 genes is given by the weights at the bottom of 

Table 1, i.e., each word corresponds to a weight number used in the Hill kinetics parameters.

Variable-length operators for duplication, elimination and random addition can be applied 

independently to every chromosome (gene). Chromosomes are acted upon by standard 

operators for reproduction, point mutation and crossover, as well as the transposition 

operators defined below.
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ii. Artificial transposons

TEs spread within the population of evolving genomes by being transmitted from donor to 

recipient strings (chosen at random). Every genome has vacant strings to record TE target 

sequences (there are 3 TE sequences, shown in grey in Table 1). TEs can only insert at the 

target sequences, and these targets are in definite sites of definite genes (as in nature). If this 

gene is eliminated, or the insertion site is mutated, the TE strain cannot infect the genome. 

Insertion of a TE will result in subsequent elimination of the genome at N reproductive 

cycles from onset of the infection. Therefore, the overall chance for an infected genome to 

leave progeny decreases progressively with every new cycle. Progeny can inherit TEs by 

chance.

We develop new operators (procedures) to implement invasion, transmission, and mutation 

of TEs:

Procedure INVASION: randomly choose host genomes and search for the TE 

sequences. If the pattern is found, the individual is infected by the TE. The 

procedure records (in a reserved place in the genome) the “life countdown” 

number.

Procedure COUNT_DOWN runs in each cycle (before reproduction, after scoring), 

scanning through the host population and decrementing the life countdown number. 

When an individual's life countdown number reaches “0”, it is eliminated.

Procedure TRANSMISSION randomly selects pairs of host genomes and performs 

TE transmission. This implements horizontal transmission, if one of hosts is 

infected and the other has the TE recognition pattern. “Life countdown” is filled in 

for the newly infected individual, as above. An estimated typical rate of 

transpositions in natural populations of Drosophila (number of transpositions per 

element per generation) is of the order 10-4 [66]. For simulations we use faster 

rates, approximately two to three orders of magnitude higher.

Procedure TE_MUTATION is a standard GA mutation operator, which only differs 

in the usage of a symbol string instead of a binary one. Mutation of the i-th symbol 

of TE sequences (if any) of the k-th individual substitutes any given letter (A,T,C) 

for another one with equal probability.

In a stagnant mature homogeneous population practically all hosts will be infected according 

to these operators. The TE strains collected by a mature population would cross-recognize 

all genes. Hence, a selective advantage could be gained by mutants which develop a new 

genome structure, while retaining GRN functionality.

iii. Mutation and Recombination Operators

We use a standard GA mutation operator, which only differs in the usage of a symbol string 

instead of a binary one. Mutation of the i-th symbol of the j-th gene of the k-th individual 

substitutes any given letter (A,T,C) for another one with equal probability. Crossover is 

standard one-point crossover operator, exchanging parts between arbitrarily chosen pairs of 

genes in randomly chosen pairs of individuals.
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iv. Transposition Operators

We used fixed transposon coordinates to transmit transposons from host to host. The two-

place transmission operator was implemented as follows: the genomes of a randomly chosen 

pair of hosts were checked for TE sequences. If a TE was found in one of the hosts (donor) 

but not in the other (acceptor), a copy of the TE is transmitted from donor to acceptor, as 

long as the acceptor has appropriate sequences (for the TE) in appropriate sites (genes).

v. Initial Population

An initial population is generated of several thousand individuals. Each individual is 

composed of K strings of genes (K=7 in this work). The first gene (a), is obligatory, 

meaning that the (a) expression profile is the only character under selection. The other, 

optional, genes are initially inactive. Each genotype has several TE sequences. Space is 

allocated for recording the TE in each genome.

vi. Genotype-Phenotype Mapping

Natural selection operates at the level of the population of individuals (phenotypes). I.e. 

phenotype is subject to direct selection. For segmentation patterns, phenotype is the gene 

expression pattern generated by the GRN. Parameters for the differential equations model 

(below) of the GRN are encoded in the EC chromosomes (genotype). At each generation, 

these parameters are used to solve the differential equations. Solutions are the gene 

expression patterns, which are scored for goodness of fit to experimental images. The 

primary developmental event we are modelling is reading of the morphogenetic gradient, M, 

by embryonic genes a-h (initially, only the obligatory gene a). Initial generations select for 

gene (a) dynamics which best fit segmentation patterns in response to gradient m. 

(Additional genes are co-opted in response to TE infection, see below.)

For each generation, gene expression patterns are calculated as follows. First, a subroutine 

scans each gene string for TF target sites, and records the corresponding weights from Table 

1. For simplicity we assume that each gene encodes either an activator or a repressor of the 

other genes. We further assume that simple cooperative Hill kinetics applies [67]; for gene x 

activated by TF z (product of gene Z):

(1)

This yields cooperative activation at small values of Z for n > 1. For m > n, inhibition 

occurs for large values of Z. n is the number of target sites in a gene for morphogen factor M 

(from 1 to 3); m is the sum of the weights from Table 1. For example, if gene (a) has three 

target sites for M (sequence ‘AAAT*AACA*AATA’) n = 3. Table 1 gives weights of 2, 4, 

and 7 for that sequence, so m = 2 + 4 + 7 = 13. Equation (1), for all genes, are solved 

numerically [68] by Euler's method (in 1D, representing the AP axis of the embryo). The 

solutions are plotted as concentration profiles (e.g. Fig. 5).

In terms of the Wi←J matrix formalism (Introduction), each gene i corresponds to a row in 

W and each element of the row describes the regulatory action of the TFs encoded by genes 
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in the GRN (including self-effects). However, a Wi←J element is only non-zero if it has at 

least one target site for factor J in gene (i), otherwise the element is zero.

vii. Scoring

Fitness was calculated according to the difference between GRN solutions (concentrations 

) and data (concentrations ):

(2)

The following parameter values were used in this publication: size of population, popul = 

2000; mutation rate (P/bit)/generation, MU= 0.09; crossover rate (P/bit)/generation, CRS = 

0.03; transposition rate (P/bit)/generation, TRP = 0.05; initial TE invasion rate (P/bit)/

generation, INV = 0.03; TE transition rate (P/bit)/generation, TRANS= 0.60; TE mutation 

rate, as a percentage of host's rate, VirMu = 10; Parameter N for the COUNT_DOWN 

procedure, N = 1.

3. Results and Discussion

Since the primary function of the segmentation GRN in this study is to read the external 

gradient M, we have focused our TE-GRN co-evolution computations on the ability of the 

artificial transposons to isolate GRNs from M. In the model, TE sequences are in the M 

gene, so that transposons attack the M activation sites.

3.1 GRN rewiring via co-evolution with transposons

In this study, the population was initiated with individuals containing seven chromosomes 

(three target-sites each). Each individual obtained the genome:

a. ‘AAAT*AACA*AATA’

b. ‘CAAA*ACAA*AAAA’

c. ‘CCAA*ACCA*CCCC’

d. ‘CACA*ACAC*AAAA’

e. ‘AAAA*AAAG*CAAA’

f. ‘CAAA*ACAA*AAAA’

g. ‘AAAA*AAAG*CAAA’

Each individual then undergoes mutation followed by TE invasion. The INVASION 

procedure scans the genome for TE sequences (AAAT, AACA, & AATA; Table 1, grey), 

and finds the three sites in the (a) gene. Note that the TE sequences are 3 of the 9 sequences 

for the M gradient, and (a) is initially the only gene reading the M gradient. The genome is 

tagged for invasion (the intervening mutation step could not have removed all of the TE 

sites). The initial genome was constructed so as to generate the simplest expression patterns 

for evolutionary tuning. From a bell-shaped M profile, the simplest gene (a) expression 

(from eq. 1, activating at low M and inhibiting at high M) is the 2-domain pattern shown in 
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Fig. 3c. In the initial population most individuals have one active gene (gene (a); the first 

mutation step may create M binding sites in other genes, but this is unlikely). In these cases, 

the other genes (b-h) represent a pool of potential genes that can be co-opted into the GRN 

to read the M gradient. The total number of genes, the sequence of their recruitment and 

their regulatory relations are pre-determined in these simulations.

With this initial configuration, the population is immediately infected with TE (initial TE 

strain, from external source; Fig. 3a), since the M sequences for gene (a) are also TE 

sequences. The output in Fig. 3c is a good fit to the target data, and scores well in terms of E 

(Eq. (2)). However, the immediate infection of gene (a) interferes with its M activation; the 

transposon disrupts the regulatory connection from M to (a). Because reading out the 

gradient is the main function of the GRN, the transposon drastically reduces the score of the 

“infected” GRN. As a consequence, the infected individual can live no longer than N cycles 

of reproduction, with a low chance for leaving progeny. The initial TE infection can also 

now be transmitted both horizontally (to other hosts) and vertically (to the next generation).

TE infection has an immediate negative impact on the GRN function. However, the pool of 

potential genes offers an indirect selective advantage if they can be recruited quickly enough 

to maintain GRN function. For example, TE infection of gene (a) can impart an indirect 

selective pressure on mutations in gene (b) to become activated by M (Fig. 4). If gene (a) 

acquires the ability to be activated by B, the functioning of the newly found GRN becomes 

appropriate. We call these first successful mutants type 1 GRNs. Another example of a type 

1 pattern is shown in Fig. 5A. In this case, genes (b) and (c) are coopted into the GRN. 

Mutations in genes (a) and (c) produce (by chance) the B- specific binding sites and B 

becomes an activator for genes (a) and (c). Factor B is encoded by gene (b) via 

concentration-dependent activation by M. In so doing, the GRN gets rid of the negative 

selective pressure of the initial TE infection. C acts as a repressor of (a), in this way shaping 

the main A domain to fit to the desired profile (Fig. 5A black; Fig. 3c). In the example in 

Fig. 5A, the (a) gene is expressed in two pairs of domains, but only one pair fits to the 

desired pattern. The computation did not apply penalties for extra domains of (a) expression 

(though this could be implemented).

Type 1 GRNs emerge very quickly in simulated evolution, co-opting the (b) and (c) genes to 

eliminate the initial TE negative selective pressure, and rewiring the GRN. Reduction of TE 

sites in gene (a) confers a selective advantage on the mutants. The new GRN obtains a good 

score and is insensitive to the initial TE infection. Hence, the GRN soon becomes abundant 

in the population. Moreover, the indirect pressure of selection results in high heterogeneity 

of mutants, because they are selected in the model not only by phenotype score, but by 

resistance to the initial TE as well.

Gene (b) can be also a target for the TE initial strain (if mutation creates TE sites in (b)). 

This means that type 1 GRN mutants (Fig. 4) can quickly come under TE attack. As with the 

initial scenario, new genes can be recruited to a type 1 GRN to avoid TE selective pressure. 

In turn, new mutant strains of TE (via the TE_MUTATION procedure) can appear and 

invade a new GRN. An example of such a new type 2 GRN is shown in Fig. 5B; here, 

besides the recruited genes (b) and later (d), the list of potential recruits also includes genes 
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(c) and (e). The recruited genes act on their targets as repressors and are able to correct 

patterns of genes (a) and later (b), raising fitness scores and generating increasingly complex 

GRNs which are completely insensitive to the initial TE.

In time, the cycles of resistance and attack repeat, leading to increasingly complex networks. 

A type 3 GRN is shown in Fig. 5C, in which it appears gene (c) has wired into the type 2 

GRN shown in Fig. 5B. In general, TE pressure induces the GRNs to co-opt increasing 

numbers of genes: the co-evolutionary process tends to select for larger and increasingly 

complex GRNs.

3.2 Evolutionary search of complex expression patterns via GRN – TE co-evolution

The results in Fig. 5C suggest that gene (c) is not obligatory for type 3 GRNs. This suggests 

we might use the selection of the (c) expression pattern to test the efficacy of the co-

evolutionary approach. For this, we add a search for a four-domain pattern of gene (c) to the 

original scheme. I.e., the tests in this section add to the search criteria of the previous section 

(fitting Fig. 3c) by also evaluating each individual for ability to fit the (c) expression profile 

to the profile in the Fig. 6A. If an individual fits both criteria well, the search is considered 

successful and is terminated. Efficacy of the (c) gene pattern search is measured by the total 

number individuals evaluated in order to find the desired (c) profile. As controls, we used 

versions of the program in which the transposition and transposon operators were switched 

off. Note that we do not perform a selection of the 4-domain (c) profiles, we simply search 

for it among the diversity of GRNs produced by TE-GRN coevolution.

We found that the lower the TE selective pressure on GRNs, the lower the chances of 

finding the desired 4-domain (c) pattern. Table 2 summarizes how searches for the (c) 

pattern depend on the two key TE operators, invasion rate and transposition rate. Invasion 

rate greatly increased the chance of finding the (c) pattern, particulary compared to the 

controls without transposons. Increased transposition rate caused a small increase in the 

chances of finding the (c) pattern. We conclude from these tests that co-evolution biases 

GRNs to form more complicated patterns.

3.3 GRN – TE oscillations

We frequently observe irregular oscillations in the GRN – TE dynamics (Fig. 7). Because of 

the deleterious action of TEs on their hosts, these dynamics are characteristic of host – 

parasite oscillations, with hosts and parasites (or predator and prey) out of phase with each 

other. These results are observed at a broad range of parameter values in our GRN-TE co-

evolutionary simulations.

3.3.1 Rare bursts of new forms—We have found that low values of the invasion and 

transposition operators can cause a transition from the oscillatory behavior in Fig. 7 to the 

bursting activity shown in Fig. 8. At these operator levels, the populations of GRNs and TEs 

spend most of their evolutionary time stagnant. But after long and irregular periods short, 

sharp peaks of new forms of GRNs appear and then quickly disappear.

We believe that these GRN – TE co-evolutionary oscillations and bursts could be used as a 

new tool in forced GRN computational evolution. Specifically, it is a promising mechanism 
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for gentle and indirect forced GRN evolution. The observed oscillations could be useful in 

overcoming the very general problem of premature convergence in evolutionary searches for 

GRNs with desired features.

4. Conclusions

i. Targeted destruction of key regulatory connections in a GRN by transposons can 

produce negative selection pressure on the GRN.

ii. Initially non-functional genes can be co-opted into the GRN to respond to this 

selective pressure. Co-opted genes substitute the regulatory connections under 

transposon attack (i.e., they rewire the GRN).

iii. We have focused on the co-option of genes to restore disrupted connections to 

external morphogen signaling. This is relevant to the maintenance of gradient-

reading GRNs (critical in biological development) in the face of transposon attacks.

iv. For gradient-reading GRNs, we have observed outgrowth and complexification of 

the networks under the selection pressure of targeted transposon activity.

v. GRN–TE co-evolution is capable of facilitating the search for desired expression 

patterns for genes co-opted into the GRNs as by-products, not by selective 

pressure. We suggest this happens because co-evolution restricts GRN evolution 

and canalizes it, thus accumulating in the co-evolved populations some GRN types 

without explicit selection pressure.

vi. Oscillatory dynamics in GRN-TE co-evolution may offer a new method for 

avoiding premature convergence in evolutionary searches and optimization 

problems.
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Fig. 1. 
Schematic of GRN evolution in silico. Differential equations for each network are integrated 

(step 1). The fitness function is computed from the steady state of each network (step 2). 

The fittest 50% of solutions (networks) are retained (selection), copied (reproduction, step 3) 

and randomly mutated (step 4). Mutations change parameters (kinetics) or the network 

connections themselves, as shown here (after [9]).
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Fig. 2. 
Organization of an individual's genome. Each genome consists of nine genes (variable 

length strings). Each string can include up to three four-letter words separated by spacers 

(asterisks ‘*’). We use a three-letter alphabet (A, T, C), giving 34 = 81 possible distinct 4-

letter words, as summarized in Table 1.
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Fig. 3. 
Functional organization of individuals in the initial population (a), corresponding kinetic 

equation (b), and corresponding concentration profiles (c).

a) Morphogen M activates gene (a) in a concentration-dependent manner. The target sites 

(4-letter words) for M in the (a) gene become the first sites for transposon attack. The rest of 

the genes ((b), (c), (d), etc.) are available for cooption and free to mutate and evolve.

b) Hill's law activation of gene (a) by morphogen M and first-order degradation of A. M is 

the morphogen concentration; A is the gene (a) product concentration; Ca, n, l, γ, ε are 

parameters of the Hill equation.

c) Spatial pattern of (a)-gene expression. The M factor gradient (red) controls A-gene 

expression in a concentration-dependent manner (such that higher concentrations of M 

repress gene (a)). As a result, the bell-shaped profile of M activates (a) in two symmetrical 

peaks.
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Fig. 4. 
Functional organization of the GRN with the first recruited genes (A), and the corresponding 

system of kinetic equations (B).

i) Recruitment of gene (b) enables gene (a) to acquire resistance to the initial TE infection. 

Gene (c) tends to be recruited also because C acts as a repressor and helps to shape the A 

profile two-domain form.

ii) Gene (b) is activated by M in a concentration dependent manner in accordance with eq. 

(1). Gene (a) is activated by B in the concentration-dependent way also. M is the morphogen 

concentration; A, B are concentrations of products of genes A, B, correspondingly; Ca, Cb, 

Cc, I, j, n, l, k , q, α, β, γ, μ, η, ε, ϕ are parameters of the Hill equation.
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Fig. 5. 
Representative examples of patterns producing by high-scoring individuals at consecutive 

stages of computer evolution (co-evolution of GRNs with artificial TEs).

A) Type 1 GRN pattern, produced by initial TE selective pressure. Two new genes, (b) and 

(c), have been co-opted into the GRN. Factor B (green), encoded by gene (b), acquires the 

function of activator for genes (a) and (c). C (red) acts as a repressor of (a), shaping the main 

A domain (blue) to fit to the desired profile (black; also Fig. 3c).

B) Type 2 GRN pattern. Two genes, (b) and (d), are coopted into the GRN. Factor D, 

encoded by gene (d) acquires the function of a morphogen for gene (a). In so doing, the 

GRN removes the selective pressure of the initial TE infection.

C) Type 3 pattern. Three genes, (b), (c) and (d), are coopted into the GRN. Factor D, 

encoded by gene (d) acts as an activator for genes (a) and (c).

Spirov et al. Page 20

Parallel Process Lett. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. 
A) Four-domain profile used for evolutionary search. B) Corresponding 4-domain 

expression profile in Drosophila (Blimp-1 gene; data from http://bdtnp.lbl.gov/Fly-Net/

bioimaging.jsp; using PointCloudXplore [69]); C) 1D expression profile along the AP axis.
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Fig. 7. 
Irregular oscillations between hosts (GRN) and their parasites (TE) in GRN-TE co-

evolution.

A) Type 2 GRNs are out-of-phase with the initial TE attacking the (a) gene. This can be 

expected, due to GRNs escaping the TE pressure by rewiring gene regulatory connections.

B) Type 3 GRN peaks are preceded by peaks of the initial TE attacking the (b) gene.

C) Oscillations between type 2 and type 3 GRNs.

D) Relation between the TEs attacking gene (a) of the initial GRN and the TEs attacking 

gene (b) of type 2 GRNs. TEs attacking gene (b) appear very early in evolution, with bursts 

of these TEs preceding bursts of the TEs attacking gene (a).
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Fig. 8. 
Bursts of co-evolutionary events at low levels of TE activity (primarily low invasion rates). 

Sudden bursts of population sizes in the TEs attacking gene (b) precedes bursts of the TEs 

attacking gene (a), which coincide with bursts of type 2 GRNs. Bursts end abruptly followed 

by resumption of the long stagnant phases.
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Table 1

The target sites “dictionary”.

Factor M: ‘AAAA’ ‘AAAT’ ‘AAAC’ ‘AATA’ ‘AATT’ ‘AATC’ ‘AACA’ ‘AACT’ ‘AACC’

Factor A: ‘ATAA’ ‘ATAT’ ‘ATAC’ ‘ATTA’ ‘ATTT’ ‘ATTC’ ‘ATCA’ ‘ATCT’ ‘ATCC’

Factor B: ‘ACAA’ ‘ACAT’ ‘ACAC’ ‘ACTA’ ‘ACTT’ ‘ACTC’ ‘ACCA’ ‘ACCT’ ‘ACCC’

Factor C: ‘TAAA’ ‘TAAT’ ‘TAAC’ ‘TATA’ ‘TATT’ ‘TATC’ ‘TACA’ ‘TACT’ ‘TACC’

Factor D: ‘TTAA’ ‘TTAT’ ‘TTAC’ ‘TTTA’ ‘TTTT’ ‘TTTC’ ‘TTCA’ ‘TTCT’ ‘TTCC’

Factor E: ‘TCAA’ ‘TCAT’ ‘TCAC’ ‘TCTA’ ‘TCTT’ ‘TCTC’ ‘TCCA’ ‘TCCT’ ‘TCCC’

Factor F: ‘CAAA’ ‘CAAT’ ‘CAAC’ ‘CATA’ ‘CATT’ ‘CATC’ ‘CACA’ ‘CACT’ ‘CACC’

Factor G: ‘CTAA’ ‘CTAT’ ‘CTAC’ ‘CTTA’ ‘CTTT’ ‘CTTC’ ‘CTCA’ ‘CTCT’ ‘CTCC’

Factor H: ‘CCAA’ ‘CCAT’ ‘CCAC’ ‘CCTA’ ‘CCTT’ ‘CCTC’ ‘CCCA’ ‘CCCT’ ‘CCCC’

Weight 1 2 3 4 5 6 7 8 9
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Table 2

Co-evolution of TE and GRN, conditions affecting the appearance of four domains for gene (c).

Key parameter values for co-evolution Evaluations (mean±s.d.)

High invasion and high transposition rates 33679.4±7917.1

High invasion and low transposition rates 35811.9±10713.6

Low invasion and high transposition rates 47677±17831.1

Low invasion and low transposition rates 48538.9±15595.9

No invasion or transposition 153189±56965.1
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