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ABSTRACT 
 
Specification of the anteroposterior (head-to-tail) axis in the fruit fly Drosophila melanogaster is one of the best 
understood examples of embryonic pattern formation, at the genetic level. A network of some 14 segmentation genes 
controls protein expression in narrow domains which are the first manifestation of the segments of the insect body. Work 
in the New York lab has led to a databank of more than 3300 confocal microscope images, quantifying protein 
expression for the segmentation genes, over a series of times during which protein pattern is developing 
(http://flyex.ams.sunysb.edu/FlyEx/). Quantification of the variability in expression evident in this data (both between 
embryos and within single embryos) allows us to determine error propagation in segmentation signalling. The maternal 
signal to the egg is highly variable, with noise levels more than several times those seen for expression of downstream 
genes. This implies that error suppression is active in the embryonic patterning mechanism. Error suppression is not 
possible with the favoured mechanism of local concentration gradient reading for positional specification. We discuss 
possible patterning mechanisms which do reliably filter input noise. 
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1. INTRODUCTION 

 
Positionally specific gene regulation is believed to be a fundamental process underlying embryological development, 
responsible for the patterned cell differentiation at the heart of many developmental events. Spatial pattern has long been 
thought to be specified by gradients1,2,3 more recently identified as gradients in concentration of regulators of 
differentiation (e.g. signalling molecules or transcriptional regulators). Wolpert4,5,6 has elaborated greatly on this idea, 
that cells acquire positional information (knowing where they are in the organism) by reading the local concentration of 
gradient molecules.  
 
In the establishment of animal body plans, it is evident that the reading of relatively simple information such as a 
spatially monotonic gradient leads to more complex responses, e.g. formation of a pattern of stripes of gene expression 
(as RNA or proteins), which go on to command the formation, through many further gene-switchings, of appropriate 
body organs in the right places. The genetic interactions thus have a strongly sequential or hierarchical aspect, with more 
network-like behaviour to interpret the received information at each level of the hierarchy. Information is being 
conveyed by highly reactive molecules, that are capable of operating in small numbers, e.g. thousands7,8,9, susceptible to 
expected concentration fluctuation errors of a few percent (Poisson basis). The question of noise levels in such 
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information-transmitting and -processing systems is very important in relation to an ultimate response so intolerant of 
errors as an animal body plan.  
 
In the early development of the fruit fly (Drosophila melanogaster), a gradient of the Bicoid (Bcd) protein, translated 
from maternally-deposited RNA, is established along the length of the egg7, with highest concentration at the anterior 
(head) end, and lowest concentration in the posterior (Fig 1A). Bcd is a transcriptional regulator, and lies at the top of a 
genetic hierarchy which results in the proper segmentation of the body plan in the anteroposterior (AP) axis. Bcd is cited 
as a prime example of positional specification by gradients10,11,7,12: downstream segmentation genes are regulated by Bcd 
in a concentration dependent manner. The gap class of genes refine the input of the Bcd gradient, being expressed in 
domains with sharp spatial boundaries (Fig. 1B). These gap genes, in turn, regulate pair-rule class genes, giving narrow 
stripes of expression (Fig. 1C). Pair-rule pattern is the first manifestation of the segmented body plan characteristic of 
insects. Local reading of concentration gradients has generally been the favoured mechanism within this patterning 
hierarchy, but there are a number of proposals for pair-rule patterning (e.g.13,14,15,16,17) and the question remains quite 
open.  
 
The various proposed models can be evaluated in a descriptive sense: how well they mimic natural pattern; how well 
they model mutations; how well they respond to changes in embryo geometry. Models may also provide experimentally 
testable predictions regarding particular gene interactions15. Another avenue for model testing, and ultimately to 
understanding the natural segmentation mechanism, is to use noise as a tool to elucidate underlying gene dynamics.  
 
A chief concern in such a concentration dependent regulatory network is what effects molecular-scale fluctuations (in 
reactions and transport) have on the system’s ability to specify position precisely. The early transcriptional regulators in 
Drosophila are at low enough concentrations that relative errors should be significant. There are two aspects to using 
these fluctuations to probe gene dynamics: experimentally, the concentration fluctuations (or more specifically, their 
effects on positional specification) must be characterized; and theoretically, the proposed segmentation models must be 
shown robust to these levels of error.  
 
Recent experimental analysis18,19,20 has begun to characterize the natural variability in segmentation gene expression. 
These studies demonstrate error suppression within the segmentation network: downstream genes show greater 
positional precision than the maternal Bcd gradient.  
 
This has immediate implications for the favoured local gradient reading model of segmentation: Wolpert-style signalling 
has no capacity to suppress errors. The segmentation mechanism must contain error suppressing dynamics, perhaps of 
one of the types proposed in recent years21,22,23.  
 
There has been growing interest in the stochastic nature of gene regulation24,25,26,27,28,29. The study of this within gene 
networks, theoretically and experimentally, has focused chiefly on bacterial systems. Our Drosophila data allows us to 
begin probing noise effects in a complex eukaryotic gene network, and using this to uncover the network kinetics.  
 
In the present work, we do a detailed analysis at the top of the segmentation signalling hierarchy, that is, the positional 
errors of the maternally-derived Bcd gradient, and compare these with the theoretical predictions of Lacalli and 
Harrison30. Their paper quantified the limits in precision for positional specification by an exponential Bcd gradient, 
based on propagation calculations for molecular-level errors in Bcd production, decay, and transport rates. Here, we 
present experimental profiles of fluorescence intensity (proportional to Bcd concentration) against AP position, extracted 
from whole embryo confocal microscope images, and compare variability in these with theoretical predictions. This 
allows for a full understanding of Bcd variability, in order to focus in future on the mechanism of error suppression in 
the downstream transmission of the Bcd message. 
 

2. METHODS 
 
2.1 Images of Drosophila Gene Expression  
Protein concentration was measured using fluorescently-tagged antibodies as described in 31. For each embryo a 1024 × 
1024 pixel image with 8 bits of fluorescence intensity data in each of 3 channels was obtained (Fig. 1: parts A, B, and C 
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are from separate channels, visualizing three different proteins from the same embryo with one snapshot). Image 
processing32 transforms each image into an ASCII table containing a series of data records, one for each nucleus. About 
2500-3500 nuclei are described for each image. Each nucleus is characterized by a unique identification number, the AP 
and dorsoventral (DV) coordinates of its centroid, and the average fluorescence intensities of three gene products. The 
overall result is the conversion of an image to a set of numerical data which is then suitable for further processing. There 
are currently over 3300 embryo images, with data on 14 segmentation genes, in the databank. Most of the raw images, 
details and results of image pre-processing, and the results from two image registration techniques are available on the 
Web bases FlyEx (http://flyex.ams.sunysb.edu/FlyEx/) and Mooshka (http://urchin.spbcas.ru/Mooshka/).  
 
2.2 Temporal Classification 
Embryos in the databank belong to nuclear cleavage cycles 10 to 14 33. In these cycles, the Bcd gradient is established 
and maintained. In cycle 14 (about an hour long), the finer-scale gap and pair-rule patterns develop. Within cycle 14, 
embryos were classified into eight time classes, primarily by visual inspection of the (highly dynamic) expression pattern 
of the pair-rule gene Even-skipped18 (all embryos were stained for Even-skipped protein, as well as two others). This 
classification was later verified by observation of other protein patterns and by membrane invagination data. In this 
paper, we are primarily concerned with characterizing Bcd error as it initiates the segmentation hierarchy. Therefore, we 
present data from the first time class of cycle 14, for which we have Bcd data from 52 embryos.  
 
2.3 Extraction of the AP Bcd gradient 
We are interested in characterizing the precision with which the Bcd gradient can specify position along the AP axis. 
Therefore, Bcd positional errors are calculated directly in terms of the variability of AP positions over which nuclei 
exhibit a particular fluorescence intensity range (rather than circumstantially, using Bcd intensity fluctuations). We 
calculate positional error both for between-embryo variability and for within-embryo variability. To get a large number 
of nuclei for these statistics, we use a significant portion, in the DV direction, of the original image. Use of such data is 
complicated by a slight DV dependence of AP pattern (evident in the stripe bending of Fig. 1C). We remove this 
dependence with a polynomial deformation of nuclear coordinates, which uses an evolutionary programming approach 
with a cost function based on the straightness of pair-rule stripes34,36. This allows us to sample a rectangle of nuclei from 
each image, of 50% DV height, centred on the AP axis. This captures approximately 1400-1700 nuclei (cleavage cycle 
14). Fig. 2 shows a scatterplot of fluorescence intensity for each nucleus against AP position, in percent egg length (% 
E.L.), for a single embryo. Between-embryo variability is calculated from the differences between averaged single-
embryo profiles. Within-embryo variability is calculated directly off scatterplots like Fig. 2.  
 
2.4 Quantification of positional errors 
The intensity scale is divided into 36 equal-height bins. Within each bin, mean and standard deviation AP positions are 
calculated. These standard deviations are the within-embryo positional errors, giving estimates on variability due to 
molecular fluctuations in the mechanism establishing and maintaining the Bcd gradient (Fig. 4). For between-embryo 
positional error, standard deviations are calculated from the single-embryo means for each intensity bin (Fig. 3), giving 
estimates of embryo-to-embryo variability.  
 
There is some concern that all of a standard deviation calculated as above may not be due to actual molecular 
fluctuations or between-embryo variability: part of the positional scatter of nuclei in an intensity bin serves to define the 
slope of the Bcd gradient, and this slope decreases exponentially towards the posterior. To see the effect of removing this 
slope contribution, we have also binned the data exponentially. That is, bin heights are decreased exponentially towards 
the posterior.  
 

3. RESULTS AND DISCUSSION 
 
Fig. 2 is a scatter plot of fluorescence intensity vs. AP position for a single embryo (early cleavage cycle 14). Each dot is 
the intensity for a single nucleus. From this, it is apparent there is a fair degree of scatter in positions for any given 
intensity interval. If Bcd is a morphogenetic gradient, positioning cell type along the AP axis by its concentration, a 
similar scatter should be seen, ultimately, in cell type, and earlier in the expression of downstream segmentation genes 
(addressed below, Fig. 5).   
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In 1991, Lacalli and Harrison30 predicted that this positional scatter should increase towards the posterior of the embryo. 
Their analysis was based upon calculations of the contributions of molecular scale fluctuations to positional error for an 
exponential Bcd gradient in 1D. An exponential concentration (C) gradient along AP position s 
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can be set up by a local source of Bcd protein (C0) at the anterior pole, followed by diffusion into the embryo (with 
diffusivity D) and first-order degradation of the protein throughout (rate constant k). (The assumption of a 1D 
exponential fits the experimental data well, e.g.19, but we are currently investigating deviations from the exponential due 
to diffusion in the 2D shell of surface nuclei or the full 3D embryo.) Molecular fluctuations can affect the shape of the 
exponential through either C0 or k/D. Lacalli and Harrison30 showed that C0 gives homogeneous contributions to 
positional error 
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(where 
0Csσ is the absolute error (standard deviation) in s due to the relative error in C0, 0 0 0C C Cδ σ= ), while k/D 

contributions rise linearly towards the posterior 
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(where ( )k Dsσ  is the absolute error in s due to the relative error in k/D, ( ) ( ) ( )/k D k D k Dδ σ= ).  

 
Here, we test these theoretical predictions against the positional errors found in real Bcd gradients. Fig. 3A shows the 
between-embryo statistics (see section 2.4 for details) for 52 Bcd profiles. Mean positions and 1 standard deviation error 
bars are shown for each intensity bin. This shows a trend of increasing positional error (standard deviation) towards the 
posterior of the embryo (Fig. 3B). In Fig. 3B, the minimum (leftmost) value can be taken as the homogeneous C0 
contribution, shared by all positions. This value, roughly 1.6 standard deviations (units of %EL), translates into roughly 
7% relative error in C0 (using eqn. 2, and an exponential decay constant of 4.5/EL for Fig. 3A). This is somewhat more 
than the 5% C0 error used by Lacalli and Harrison30 for their calculations, which they cited as too high to correlate with 
the robustness of real embryos. Error in C0  can arise from a variable (between embryos) deposition of Bcd RNA by the 
mother on the anterior pole, and from molecular fluctuations (within embryos) affecting the translation rate of RNA to 
Bcd protein.  
 
For the k/D fluctuations, we see a posteriorly rising component to the positional errors in Fig. 3B. Though there is some 
nonlinearity in this Figure, linear regression gives significant (p<0.01) correlation, with R2 = 0.80. This line has a slope 
of 8% and a y-intercept of 2.4 (which would give a higher estimate of C0  error than above).  From eqn. (3), this slope is 
half of the k/D error, giving an estimate of 16% for k/D error. This is slightly less than the 20% k/D error used in the 
calculations in 30, Fig. 2. k/D errors can arise from variability in enzyme concentrations and transport properties between 
embryos, and from molecular fluctuations in reactions and diffusion within embryos. We expect experimental errors 
(due to variability in embryo fixation, staining and antibody quality), though minimized, to have greatest effect on 
background, C0, noise rather than follow the spatial dependence of k/D errors. 
 
With exponential binning, to remove slope contributions to the standard deviations, the trends remain very similar (Fig. 
3C). A linear regression on these data has a slightly better fi t (R2 = 0.82), giving a slope of 9% and a y-intercept of 2.1. 
In Figs. 3C and 4B, an exponential base of 1.1 was used, giving 15 bins of between 50 and 100 nuclei each (a smaller 
range than with non-exponential binning). Trends were similar with other exponential bases, but the number of nuclei  
per bin was not as consistent.   
 
We estimate the standard deviation of the exponential decay constant to be 0.36/EL. (The fractional positional error, the 
slope from Fig. 3B, is equal to the fractional error in the decay constant. The standard deviation for the decay constant is 

obtained by multiplying the value of k D  by the slope of Fig. 3B). This translates into a standard deviation of 0.018 

EL for the reciprocal of the decay constant, slightly less than half the value of 0.045 EL recently reported in 19.  
 
We can focus on molecular sources of the C0 and k/D contributions to positional error by doing statistics on single 
embryos, removing contributions from between-embryo and experimental variability. Here, we directly calculate 
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positional standard deviations in each intensity bin. Fig. 4A shows these positional errors vs. AP distance for equal-
height intensity bins, showing a similar posteriorly rising trend to Fig. 3B. The background, C0, error is around 1 %EL, 
comparable to that seen in Fig. 3B. The trend is nonlinear, but generally reaches similar levels in the posterior as Fig. 
3B, agreeing with the estimates for k/D error made from Fig. 3. Exponential binning for these data (Fig. 4B) appears to 
reduce the posterior rise in the positional errors (and increase the anterior noise). This may be an effect of the bin 
resolution and warrants further investigation.  
 
From characterizing Bcd errors, a chief interest is to see how these errors are propagated downstream in the 
segmentation hierarchy. Previous studies have shown reduction of Bcd error in the downstream genes, at particular 
positions in the embryo 19,20. This has suggested that simple Wolpert-style reading of the Bcd gradient is insufficient for 
proper spatial expression of downstream genes. Here, we extend this conclusion to more positions in the embryo. Fig. 5 
shows positional errors for the gap protein Hunchback (Hb; also in Fig. 1B), which is directly regulated by Bcd. By 
visual inspection, Hb errors are similar to, or worse than, Bcd errors (Fig. 4B) up to about 45 %EL, at which point Hb 
becomes fairly well controlled, with errors of roughly 1 %EL, as Bcd errors continue to climb. The slight posterior rise 
in Hb errors past about 60 %EL is stil l much lower than that of Bcd. The positioning of the sharp Hb boundary at about 
50 %EL (see Fig. 1B) is biologically important, and it is in this region that Hb errors are clearly independent of the 
noisier upstream Bcd signal.   

 
4. CONCLUSIONS 

 
The chief focus of this paper was to test the predictions of Lacalli and Harrison30 for positional error trends in Bcd 
signalling with our recent data on segmentation patterns. We have shown that Bcd positional errors do generally follow 
the trends predicted by error propagation of an exponential gradient. Estimated levels for exponential source (C0) and 
decay (k/D) variability are high, comparable to values used in calculations by Lacalli and Harrison30, which were 
considered large overestimations at the time. With such large Bcd errors, the question becomes how does the fruit fl y 
embryo reduce this noise to form a precisely patterned body plan? Preliminary work19,36,20 is showing that gap and pair-
rule genes do have far lower positional error than Bcd. Experimental and data analysis work continues in order to 
characterize these errors, and use relative error levels to shine some light on the underlying kinetics in the segmentation 
mechanism. The initial results have shown that this mechanism is not solely reliant upon local reading of the Bcd 
gradient. Something a bit more complex is at work, and there exist some proposals for possible noise reducing 
mechanisms21,23,37,22. These latter two works demonstrate the noise reduction inherent in Turing38 reaction-diffusion 
dynamics. Turing models have been proposed for segmentation patterning, but experimental corroboration, for any 
model, remains difficult. We hope that accurate response to experimentally-characterized noise levels may become a 
point of testing for any proposed segmentation model. 
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FIGURE LEGENDS 
 

Figure 1: Confocal microscope images of a fruit fly embryo (roughly 0.5 mm long), stained with fluorescent antibodies 
to three different gene products (Bicoid, Hunchback and Even-skipped), in late cleavage cycle 14 (about 4 hours of 
development; see Foe and Alberts 1983, for Drosophila staging). At the beginning of the cycle, most of the nuclei 
(approximately 8000) are in a single layer at the surface of the egg (which is a multinucleate single cell, or syncytium). 
By the end of the cycle, membranes have grown inwards to enclose each nucleus separately, and create a sheet of cells. 
Fluorescence intensity is proportional to protein concentration. Anterior left, posterior right, dorsal up, ventral down. 
Each dot is a nucleus (approximately 3000 in view at this orientation, but not all will have high fluorescence for a 
particular protein). A) Stain for Bicoid (Bcd) protein, maternal class. B) Stain for Hunchback protein, gap class. C) Stain 
for Even-skipped protein, pair-rule class. 
 
Figure 2: Fluorescence intensity vs. anteroposterior (AP) position, for a single embryo (early cleavage cycle 14) stained 
for Bicoid (Bcd) protein. Each point represents fluorescence intensity at a single nucleus. From stripe-straightened 
images, data was taken from 50% dorsoventral (DV) slices, giving a small sample of nuclei for each AP position, or (as 
used in this paper), increment in intensity.  
 
Figure 3: For 52 early cycle 14 embryos: A) Mean AP positions, with 1 standard deviation (variation between embryos) 
error bars, for each (equal-height) intensity bin. B) Positional errors (the 1 standard deviation error bars from A  against 
AP position for the same data. Regression line is shown. A posteriorly rising trend is observed, as predicted by Lacalli 
and Harrison (1991). From this, we estimate noise levels in the Bcd mechanism (see text). C) Same data, with 
exponentially decreasing intensity bin height (see section 2.4). Regression line is shown. Overall trends and Bcd noise 
estimates similar to B.  
 
Figure 4:  For the same 52 embryos: A) Positional error (within-embryo standard deviation) vs. AP position (compare 
Fig. 3B). Each line represents one embryo. Increasing error towards the posterior is still observed with individual 
embryos. B) Exponentially decreasing bin heights (as in Fig. 3C). The posterior rise in the errors appears reduced (and 
anterior noise increased).  
 
Figure 5:  Downstream reduction of Bcd noise. Positional error vs. AP position for 37 early cycle 14 embryos stained 
for the gap-class gene Hunchback (Fig. 1B). These are exponentially binned, as in Fig. 4B. Each line represents one 
embryo. Overall noise is less than for Hunchback’s direct upstream regulator, Bcd (compare Fig. 4B), especially in the 
mid-embryo region, where an important boundary in Hunchback concentration is defined.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
 
 

 
 
 
 


