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Abstract 

Background: During pretreatment, hemicellulose is removed from biomass via proton-catalyzed hydrolysis to pro-
duce soluble poly- and mono-saccharides. Many kinetic models have been proposed but the dependence of rate on 
proton concentration is not well-defined; autohydrolysis and dilute-acid hydrolysis models apply very different treat-
ments despite having similar chemistries. In this work, evolution of proton concentration is examined during both 
autohydrolysis and dilute-acid hydrolysis of hemicellulose from green bamboo. An approximate mathematical model, 
or “toy model”, to describe proton concentration based upon conservation of mass and charge during deacetylation 
and ash neutralization coupled with a number of competing equilibria, was derived. The model was qualitatively 
compared to experiments where pH was measured as a function of time, temperature, and initial acid level. Proton 
evolution was also examined at room temperature to decouple the effect of ash neutralization from deacetylation.

Results: The toy model predicts the existence of a steady-state proton concentration dictated by equilibrium 
constants, initial acetyl groups, and initial added acid. At room temperature, it was found that pH remains essentially 
constant both at low initial pH and autohydrolysis conditions. Acid is likely in excess of the neutralization potential of 
the ash, in the former case, and the kinetics of neutralization become exceedingly small in the latter case due to the 
low proton concentration. Finally, when the hydrolysis reaction proceeded at elevated temperatures, one case of non-
monotonic behavior in which the pH initially increased, and then decreased at longer times, was found. This is likely 
due to the difference in rates between neutralization and deacetylation.

Conclusions: The model and experimental work demonstrate that the evolution of proton concentration during 
hydrolysis follows complex behavior that depends upon the acetyl group and ash content of biomass, initial acid 
levels and temperature. In the limit of excess added acid, pH varies very weakly with time. Below this limit, complex 
schemes are found primarily related to the selectivity of deacetylation in comparison to neutralization. These findings 
indicate that a more rigorous approach to models of hemicellulose hydrolysis is needed. Improved models will lead to 
more efficient acid utilization and facilitate process scale-up.
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Background
In this work, the kinetics of proton generation dur-
ing prehydrolysis of bamboo chips in a batch reactor is 

examined. Bamboo grows rapidly to become harvest-
ready in approximately three years, and has a chemical 
composition similar to wood [1, 2]. It is also an abundant 
natural resource in many Asian countries. For example, 
China is reported to be the home for over 500 species of 
bamboo covering more than seven million hectares [3]. 
Moreover, bamboo is considered a promising species for 

Open Access

Biotechnology for Biofuels

*Correspondence:  heather.trajano@ubc.ca 
1 Department of Chemical and Biological Engineering, University of British 
Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-016-0619-6&domain=pdf


Page 2 of 10Kapu et al. Biotechnol Biofuels  (2016) 9:224 

cultivation on marginal land for biofuels and bio-prod-
ucts [3]. Despite these advantages, it is only recently that 
bamboo has garnered research focus in the area of pulp-
ing and biorefinery applications [1, 4], and it can still be 
considered an underutilized feedstock.

Prehydrolysis, which is also referred to as ’pretreat-
ment’, refers to the reaction pathway to remove hemi-
celluloses from lignocellulosic material during the 
production of high-purity dissolving pulps or biofuels 
[3, 5, 6]. Here, an acid catalyzes the breakdown of long 
hemicellulose chains to form shorter chain oligomers 
and sugar monomers in the presence of water or steam. 
Kinetic modeling still remains at the forefront and the 
evolution of concentration of the acid catalyst [H+] is 
one of the longstanding unanswered questions [7]. Pre-
hydrolysis is different from torrefaction wherein biomass 
is treated at 200–300 °C in an inert gas environment [8]. 
Hemicellulose is hydrolyzed into mostly soluble sug-
ars during prehydrolysis, while during torrefaction, it 
is degraded, depending on process temperature, into 
volatile organic compounds including CO2 and CO, and 
char [9]. Prehydrolysis is typically performed by treating 
biomass at 140–180 °C with either water/steam (autohy-
drolysis) or dilute acid solutions [6]. Autohydrolysis is an 
industrially practiced step in dissolving pulp production, 
and both autohydrolysis and dilute-acid hydrolysis are 
considered viable pretreatment options in the production 
of lignocellulosic ethanol. However, the chemical com-
plexity of biomass and the lack of refined kinetic models 
continue to hamper process optimization and scale-up 
efforts.

The literature on the kinetics of the removal of hemi-
cellulose is substantial. The modeling approach was built 
upon the approach used for dilute-acid hydrolysis of cel-
lulose [10]. For hemicellulose, complex behavior is evi-
dent and numerous groups consider that two fractions of 
hemicellulose are distributed spatially over two separate 
domains in the solid matrix to help simplify the analysis 
[11]. Each fraction reacts with the available protons at 
differing rates due to differences in reaction activation 
energy. This model has been adopted widely and is com-
monly referred to as the “biphasic model”. It consists of 
two solid species, fast and slow hemicelluloses, denoted 
as Xi(s), which hydrolyze following first-order kinetics

where ri and ki are defined as the rate of reaction and 
rate constant, respectively, to form a set of soluble prod-
ucts, X(aq), which are susceptible to further hydrolysis 
or decomposition reactions. The subscript i represents 
either fast or slow. The initial values for Xi are considered 
to be intrinsic for the biomass [12, 13]. Variations on this 

(1)Xi(s)
ki
−−→
H+

X(aq) ri = ki[Xi],

approach are available in the literature to describe subtle 
effects such as the formation of oligomeric intermediates 
or mass transfer rates [1, 14–28]. However, no physical or 
chemical attributes have been identified to differentiate 
fast and slow hemicelluloses.

One of the open remaining questions in this literature 
is an understanding of the evolution of the concentration 
of the acid catalyst. What makes this problem particularly 
challenging is that there are competing pathways govern-
ing proton evolution and neutralization. Although diffi-
cult to substantiate, a number of authors have advanced 
rate constants ki of the form

where koi is the pre-exponential factor, and Eai is the 
activation energy. The function f (t, [H+]) is determined 
empirically and is found to vary greatly in the literature. 
This function is included to allow for different reaction 
rates with different acid levels. In one extreme, we find 
that this function varies linearly in time while in the other 
extreme it is considered as a constant and set to its initial 
value. We summarize these forms as

depending upon if the experiment is conducted under 
dilute-acid or autohydrolysis conditions. Here, a, b, and 
n are empirical constants and [H+]n0 is the initial con-
centration of the acid catalyst. n is typically found to be 
between 0.8 and 1.3 and we note that Shen and Wyman 
[24] set n = 1 for corn stover. The utility of this functional 
form has been questioned and it is evident that there is 
no theoretical basis for the form of the assumed func-
tions [12, 15, 22, 29–35]. In this work, we attempt to gain 
insight into the assumed form of Eq. 3 by examining the 
evolution of the proton concentration during reaction 
through experiment and mathematical modeling.

Model development
The analysis presented in this section is aimed at under-
standing the evolution of [H+] during reaction. The goal 
is to develop a qualitative understanding of this form by 
posing a hypothetical reaction scheme which, at some 
level of approximation, represents the true reaction 
scheme. It is done at a level in which the analysis is math-
ematically transparent and of sufficient detail to capture 
the dominant mechanisms. As a result, we refer to our 
approach in the subsequent comparison to the experi-
mental data as “the toy model”.

One of the many complicating factors hindering 
the modeling process is that there is a large number of 
chemical species (Table  1 highlights this), which are 

(2)ki = koi exp

(

−
Eai
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distributed throughout the cell wall in a complex manner. 
To simplify, classes of species which behave similarly are 
grouped together and represented as one hypothetical 
species. For example, we represent the ash constituents 
as a lumped parameter MO, that is, the ash is an oxide of 
the species M with a valence state of 2+; this hypotheti-
cal species serves to neutralize the available protons. This 
can be reposed at another valence state or with second-
ary effects, such as precipitation from solution, included. 
In a similar manner the hemicellulose constituents have 
been reduced to a linear xylose polymer, denoted by X, 
fast and slow, having arabinose (Ar) side chains (Fig. 1). 
Protons are represented by H+ and the hydroxyl groups 
by OH−; both of these species are considered to be in the 
aqueous phase and the aq notation has been dropped. 
We have included the potential of an acid being added to 
the system and denote this species as H2A because sul-
furic acid is most commonly used in the literature. The 
acetyl group Ac is defined as H3C−C=(O)−. Mass trans-
fer effects are neglected.

We consider four primary reactive pathways in Fig.  2 
and each individual reaction is assumed to follow ele-
mentary kinetics. In the first of these, shown on the 
far left of Fig.  2, we consider deacetylation where Ac is 
cleaved from the hemicellulose backbone though an acid 
hydrolysis of the ester

This reaction may occur with acetyl groups which are 
attached to either soluble or solid phases of the hemi-
cellulose. For simplicity any differences in rate between 
the deacetylation reaction occurring in the solid or liq-
uid phases are ignored. As the product AcOH(aq), acetic 
acid, behaves as a weak acid, it adopts the following equi-
librium in solution

where Ki, from this point forward is defined as the equi-
librium constant and the value quoted is at room tem-
perature. Both Garrote et al. [18] and Aguilar et al. [26] 
have used similar modeling approaches to describe 
deacetylation. Aguilar et  al. for example, explicitly indi-
cated that this reaction follows first-order kinetics [26]. 
We build upon these studies by including the effects of 
the weak-acid behavior of acetic acid (see Eq. 5). Water 
disassociation

is an additional source of H+. Because of these equilibria, 
H+ is available for both the neutralization and hydrolysis 
reactions.

In addition to this, protons may also be available if acid 
is added to the system. We capture the reaction scheme 
as if the added acid is sulfuric acid, as this is the most 
common addition in the literature:

Like others in the literature, we consider the disassocia-
tion given in Eq. 7 to be instantaneous. The final aspect 
to consider is the neutralization of the protons by the ash. 

(4)
XOAc+H2O

k1
−−→
H+

XOH(s)+ AcOH(aq)

r1 = k1[XOAc][H+
].

(5)
AcOH(aq)

KAcOH
⇋ AcO−

+H+,

KAcOH =
[AcO−

][H+]

[AcOH]
= 1.8× 10−5M,

(6)
H2O

Kw
⇋OH−

+H+

Kw = [OH−
][H+

] = 1× 10−14 M2

(7)H2A(aq)
fast
−−→ HA−

+H+

(8)
HA−

Ka
⇋A2−

+H+

Ka =
[A2−][H+]

[HA−
]

= 1× 10−2M

Table 1 Representative composition of the bamboo chips

Composition % od, bamboo

Hemicellulose as 24.1

Xylan 22.3

Arabinan 1.1

Galactan 0.7

Ash as 2.1

SiO2 1.1

CaO 0.4

K2O 0.3

Al2O3 0.2

Cellulose as 48.7

α 47.3

β 1.4

Lignin as 25.1

Acid soluble 0.9

Acid insoluble 24.2

Fig. 1 A schematic of the idealized hemicellulose (X)–lignocellulose 
(LC) substrate considered in this work. Although xylan is hypoth-
esized to be comprised of fast and a slow-reacting fractions, we do 
not distinguish these in this figure. The species Ac and Ar, which 
represent the acetyl and arabinose groups, are initially bound to the 
xylan chain but are released through acid hydrolysis. The ash (MO) is 
not shown in this figure but is considered to be physically embedded 
in the LC portion of the matrix
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As mentioned above the reaction scheme depends upon 
the species involved. Here, we considered a hypotheti-
cal oxide MO which reacts according to the following 
scheme

As the equilibrium constant Km is unknown, we simply 
assign this value to be a very small number to reduce the 
number of free parameters. It should be noted that we 
do not characterize a number of the potential secondary 
reactions in solutions, even though they may affect the 
proton levels to a small degree. For example, we ignore 
the potential reaction between M2+ and A2− for math-
ematical transparency as these do not effect the proton 
concentration.

Having established the chemistry of the toy model, 
we now construct the mathematical model. We build 
the model upon two conservation laws: conservation 
of mass of each of the species found in solution and an 
overall charge neutrality of the solution. Conservation of 

(9)

MO(s)+ 2H+ k2
−→ M2+(aq)+H2O

r2 =k2[MO(s)][H+
]

(10)
M2+

+ 2OH−
Km
⇋M(OH)2(aq)

Km =
[M2+(aq)][OH−]2

[M(OH)2]
→ 0

mass expresses that the initial moles of a certain species 
must sum to the total moles of the species in the reaction 
products. For example, the initial moles of M in [MO]0 
must balance the number of moles of M, in the species 
[MO], [M2+], and [M(OH)2] at any time throughout the 
course of the reaction. This can be expressed as

through use of the equilibrium relationship given in Eq. 
(10). In a similar manner, conservation of mass for the 
species Ac can be expressed as

and A as

with use of Eqs. (5) and (8), respectively. To continue, the 
charge neutralization conservation equation is invoked, 
i.e.

(11)

[MO]0 = [MO] + [M
2+

] + [M(OH)2]

= [MO] + [M
2+

]

(

1+
[OH

−]2

Km

)

(12)

[XOAc]o = [XOAc] + [AcOH] + [AcO
−
]

= [XOAc] + [AcO
−
]

(

1+
[H+]

KAcOH

)

(13)[H2A]o = [HA−
] + [A2−

] = [A2−
]

(

1+
[H+]

Ka

)

(14)[AcO
−
] + [OH

−
] + [HA

−
] + 2[A

2−
] = [H

+
] + 2[M

2+
]

Deacetylation

Hydrolysis

Acid Cycle

Acid Addition

Neutralization

Fig. 2 A schematic of the idealized reaction scheme. The chemical reactions shown form the basis of the toy mathematical model of the proton 
concentration
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which can be expressed as

through use of Eqs. (11)–(13). This equation indicates 
that the proton concentration in the solution is gov-
erned by charge neutralization and is related to moles 
of acetic acid formed (first term on LHS of equation), 
the amount of ash neutralized (second term on RHS of 
equation), three different equilibria found in solution 
(Km, Ka, KAcOH), and the amount of acid initially added 
([H2A]0). To complete this description, we use the rate 
expressions given in Eqs. (4) and (9)

where the subscript o represents the initial concentration 
of the species. Eqs. (15–17) represent the toy model to 
describe the proton concentration during reaction. The 
utility of this set of equations was tested in three separate 
experiments:

1. At long reaction times where the reactions with 
XOAc and MO are nearly complete.

2. With the reaction occurring at room temperature to 
examine the proposed ash neutralization scheme.

3. At typical reaction temperatures found for prehy-
drolysis as a function of initial pH.

Methods
Bamboo chips, provided by the Lee & Man Paper Manu-
facturing Ltd., were stored at 4  °C until used for experi-
mentation. The chips were air dried for approximately 24 
h and re-chipped using a Wiley mill (Thomas Scientific, 
NJ, USA) and screened with a 45–16–9.5 mm stacked 
sieve system. Chips retained on the 9.5 mm pan were 
designated as accepts for experimentation. The accepts 
were washed twice (6 and 4 min, respectively) with dis-
tilled water at a liquid to wood (based on the oven dry 
weight of wood) ratio of L:W =  20:1 using a laboratory 
mixer. The washed chips were air dried for approximately 
24 h and stored at 4 °C until used.

(15)





[XOAc]o − [XOAc]
�

1+
[H+]

KAcOH

�



+
Kw

[H+]
+ [H2A]0

�

[H+] + 2Ka

[H+] + Ka

�

= [H
+
] + 2





[MO]0 − [MO]
�

1+
K2
w

Km[H+]2

�





(16)

d

dt
[XOAc] = − k1[XOAc][H

+
] [XOAc(0)] = [XOAc]0

(17)

d

dt
[MO] = − k2[MO][H+

] [MO(0)] = [MO]0,

Before starting, the chemical composition of the 
accept chips were analyzed following National Renew-
able Energy Laboratory (NREL) standard protocols [36]; 
see Table 1 for a summary of the results. Briefly, the chips 
were air-dried and ground to pass through 40-mesh using 
a Wiley mill. The powdered samples were then digested 
by a two-step H2SO4 hydrolysis protocol. For polysac-
charide analysis, acid hydrolysates (liquid samples) were 
recovered by filtration through medium-porosity filter-
ing crucibles (Fisher Scientific Co., ON, Canada), and 
an internal standard, fucose, added. These samples were 
re-filtered using 0.2 μm syringe filters (Chromatographic 
Specialties, Inc. ON, Canada) for HPLC. A Dionex ICS 
5000+ HPLC system fitted with an AS-AP autosampler 
was used to separate the monomeric sugars in the sam-
ples at 45 °C, against sugar standards, on a Dionex Car-
boPac SA10 analytical column. 1 mM NaOH at 1 mL/
min flow was the mobile phase, and the sugars were 
quantified using electrochemical detection and Chrome-
leon software (Thermo Fisher Scientific, MA, USA). 
High-purity monomeric sugar standards, arabinose, 
galactose, glucose, xylose and mannose were purchased 
from Sigma-Aldrich (ON, Canada).

A portion of the filtrate recovered after the two-step 
acid hydrolysis was analyzed for acid soluble lignin fol-
lowing [37]. Acid insoluble lignin was determined gravi-
metrically according to Sluiter et  al. [36]. TAPPI test 
method T211 om-02 was followed to determine the total 
ash content. Detailed analysis of the metal composition 
of ash was done using inductively coupled plasma time of 
flight mass spectrometry (ICP-TOFMS) [38]. The α- and 
β-cellulose content of bamboo were determined accord-
ing to TAPPI test method T203 om-09.

Four separate studies were conducted in this work, as 
summarized in Table  2. In all cases, bamboo chips and 
water were mixed at defined liquor to wood ratios (L:W, 
see Table 2) and placed in a 300-mL stainless steel reac-
tor. The total mass of the chips and water for all L:W 
ratios was kept constant at 217 g; this slurry filled about 
80 % of the available volume of the reactor. The purpose 
of the first study (series 1–10) was to characterize the 
reactor temperature response over time. The reactor was 
immersed in an oil bath set at a defined temperature, Tb . 
The temperature of the mixture was continually moni-
tored with two thermocouples mounted in the middle 
of the reactor, on the central plane but at two different 
radial positions. Upon completion of a run, the reactor 
was cooled by immersion in an ice-water bath.

In the second study (series 11 and 12), conducted to 
investigate the equilibrium proton concentration after a 
long period of time, the pH of bamboo chips–liquid mix-
ture having a liquor-to-wood ratio of L:W = 6.5:1 (wt/wt) 



Page 6 of 10Kapu et al. Biotechnol Biofuels  (2016) 9:224 

was measured as a function of initial acid content after a 
minimum of 6 h (in some cases 10 h). In the third study, 
this was repeated but conducted at room temperature for 
more than 10 h (series 13–16). In the fourth study (series 
17–21), the time evolution of the proton concentration 
was measured as a function of time, temperature and ini-
tial acid addition. In this case, the L:W = 6.5:1 (wt/wt).

Results and discussion
Before proceeding to the main findings, it is instructive to 
first examine the temperature profile in the reactor after 
immersion in the oil bath. For each experimental condi-
tion, the temperature of the reaction mixture (chips and 
liquid phases) was recorded using two temperature trans-
ducers located at different radial positions in the reactor. 
In all conditions (series 1–21) there was no significant 
difference between the two transducer signals, and the 
reactor seemingly behaved as if there were no spatial gra-
dients in the system, i.e. it was at a uniform temperature. 
Two results representative of all runs are shown in Fig. 3. 
The trend with all data sets was that the heat-up period 
was 15~20  min, i.e. the heat-up rate was essentially the 
same. The cool-down rate was approximately ~25 °C.

It curious that there are no strong radial temperature 
gradients in the system. This result is evident in both the 
pure water case (series 1–2) and cases with L:W ratios as 
low as 6.5:1 (series 3–6). We offer two speculative argu-
ments to explain this. In the first case, we argue that the 
thermal mass of the steel reactor, i.e. the product of its 
mass and heat capacity, to be significantly larger than the 

reactants. As a result, the temperature response of the 
reactants is dictated by the heating or cooling of the reac-
tor. The second argument is somewhat more delicate. It is 
also possible that convection occurs due to difference in 
density of the fluid near the outer wall in comparison to 
the bulk. Convective currents in the reactor would tend 
to diminish the radial gradients.

With the notion of uniform spatial temperature gradi-
ents, we pose a second toy model to understand the tem-
perature evolution throughout the reaction. We propose 
the temperature profile follows an equation of the form

where c is the product of the effective mass and heat 
capacity of the reactor and reactants; and h is the over-
all heat transfer coefficient. The utility of this equation is 
tested by plotting series 1–10, shown in Table 2, in Fig. 4 
using the scalings indicated in Eq. 18. What is evident in 
this figure is that the system displays nearly exponential 
behavior as the experimental data (the red dotted lines) 
somewhat follow Eq.  18, shown as the thick black line. 
However, we were unable to achieve a similar scaling 
during the cool-down period.

At this point, we begin to explore the utility of the toy 
model. The first aspect of the model that we will explore 
is the long-time behavior and examine if a steady-state 
proton concentration is possible. Experimentally, the pH 
was measured at long time by simply allowing the reac-
tion to proceed for at least 315 min at an elevated tem-
perature. From the toy model, we see that a steady-state 
concentration for [H+] exists and can only be achieved 
when both the deaceytlyation and neutralization reac-
tions are complete, i.e.

Indeed, at steady state the proton concentration may be 
estimated directly from Eq. 15, i.e.

which is a sixth-order polynomial in [H+]. The steady-
state concentration is given by the roots of this polyno-
mial and the behavior of this function is given in Fig. 5. 
This equation was solved for [H+] in MATLAB using the 

(18)

c
dT

dt
= h(Tb − T ) ⇒ T̄ =

Tb − T

Tb − T0
= exp

(

−
h

c
t

)

(19)

d[XOAc]

dt
=

d[MO]

dt
= 0, thus, [XOAc] = [MO] = 0.

(20)

[XOAc]0
(

1+
[H+]

KAcOH

) +
Kw

[H+]
+ [H2A]o

(

[H+] + 2Ka

[H+] + Ka

)

= [H
+
] + 2

[MO]0
(

1+
K 2
w

Km[H+]2

)
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T
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C
)
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Fig. 3 Temperature evolution for two representative cases. Both 
thermocouple signals are presented and replicate runs are shown 
but the difference between them is not perceptible on this scale. The 
thermocouples are place at the same elevation in the reactor but at 
two different radial positions. The experimental conditions for each 
series are given in Table 2
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built-in root finding procedure. Superimposed on this 
is the experimental data given as series 11 and 12. Two 
observations are clearly evident. The first observation 
that can be made is that we find a remarkably similar 
trend with the toy model. The second observation is that 
there are two distinct regions. Under autohydrolysis con-
ditions, i.e the right-hand potion of the graph, the steady-
state (or long time) pH is independent of the initial pH. 
Here, the steady-state pH is governed by the weak-acid 
equilibrium and by ash neutralization or buffering. With 
increasing levels of added acid, we find that the long-time 
pH approximately equals the initial pH. This is shown on 
the left-hand portion of Fig. 5.

These results support the kinetic modeling for xylan 
removal under dilute-acid conditions. As discussed in the 
introduction, a number of authors have assigned the pro-
ton concentration to be constant and equal to its initial 
value (see [11, 12, 24, 31] for example). However, under 
autohydrolysis conditions, this does not occur. There is 

a vast difference between the initial and the steady-state 
pH of the system.

We continue the discussion of the toy model and exam-
ine a second limiting case when the reaction proceeds 
at room temperature, see Fig.  6. Here, four cases were 
examined in which the amount of acid initially added was 
varied. At room temperature, it can be assumed that the 
deacetylation reaction proceeds at a much slower rate in 
comparison to the ash neutralization scheme. Under this 
assumption, the toy model reduces to

which has been solved numerically in MATLAB using 
a Runge–Kutta scheme (ODE23s) coupled with a root-
finding procedure for the proton concentration. The 
equations are solved simultaneously. As shown in Fig. 6, 
at low initial pH (series 13), pH is constant as the con-
centration of added acid is in excess of the neutraliza-
tion potential of the ash. With decreasing initial added 
acid (series 14–15), the neutralization reaction proceeds 
until all the ash is reacted. With series 16, no added acid, 
the pH varies weakly with time. We interpret this result 
through the toy model, and advance the argument that 
the neutralization reaction proceeds but the kinetics are 
extremely slow due to the low proton concentration.

(21)
d

dt
[MO] = −k2[MO][H+

]

(22)

Kw

[H+]
+ [H2A]0

�

[H+] + 2Ka

[H+] + Ka

�

= [H
+
] + 2





[MO]0 − [MO]
�

1+
K 2
w

Km[H+]2

�





Table 2 A summary of the experimental conditions tested

In series 1 through 10, the temperature was sampled at a frequency of 1 Hz. In 
series 11–12 a total of 18 samples were measured at times ranging from 315 to 
390 min. In series 13–14, four different initial pHs were tested and approximately 
11 samples, obtained at different times, were measured. In this case Tb is defined 
as the oil bath temperature. L:W and t refer to liquid to wood ratio and time

Experiment Series L:W 
(wt / wt)

[H+]o (pH) Tb (°C) t (min)

Temp. meas-
urement

1 water only 7.1 120 0 < t <45

2 water only 7.1 150 0 < t <45

3 6.5:1 7.1 140 0 < t <45

4 6.5:1 7.1 150 0 < t <45

5 6.5:1 7.1 160 0 < t <45

6 6.5:1 7.1 180 0 < t <45

7 8:1 7.1 120 0 < t <45

8 8:1 7.1 150 0 < t <45

9 10:1 7.1 120 0 < t <45

10 10:1 7.1 150 0 < t <45

Long-time 
behavior

11 6.5:1 1.3–6.8 160 t >315

12 6.5:1 1.5–7.1 180 t >315

Room tem-
perature

13 6.5:1 1.5 23 0 < t < 1155

14 6.5:1 2.9 23 0 < t <1155

15 6.5:1 5.0 23 0 < t <1155

16 6.5:1 6.0 23 0 < t <1155

Elevated 
tempera-
ture

17 6.5:1 1.7 160 0 < t <360

18 6.5:1 1.5 160 0 < t <390

19 6.5:1 7.2 160 0 < t <390

20 6.5:1 7.2 180 0 < t <390

21 6.5:1 3.5 160 0 < t <360
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t (min)
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0.2
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1
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Fig. 4 The temperature evolution during the heat up period for 
series 1–10. The results have been scaled using the form advanced in 
Eq. (18) with h/c set to be 0.15/min
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We now move to perhaps the main findings of this 
work and examine the evolution of pH during prehydrol-
ysis treatment. In our final set of experiments, we exam-
ine the evolution of the proton concentration at elevated 
temperatures. Here we must include the effect of deacet-
ylation and as a result, the full toy model must be solved 
numerically using MATLAB. We treat Eqs.  16–17 as a 
system of equations and solve this initial value problem 

in conjunction with a root-finding procedure to estimate 
[H+] from Eq. 15. The results are shown in Fig. 7. Again 
at low initial pH, proton concentration varies weakly 
with time (cf series 17 and 18) and remains essentially 
at its initial value. This was the expected result as dem-
onstrated earlier through steady-state analysis under 
excess acid conditions, the pH should remain essentially 
constant. Below this limit complex behavior is observed. 
Under autohydrolysis conditions (series 20 and 21), there 
is a rapid initial drop in pH followed by a diminished 
rate at longer times. However, the most curious result 
is given by series 21 where non-monotonic behavior, i.e. 
the pH initially rises and then falls, is observed. We base 
our interpretation on the toy model which indicates that 
the neutralization reaction is initially proceeding faster 
than deacetylation. At longer times, the ash is completely 
reacted and the pH diminishes from deacetylation.

These results can now be used to interpret the form of 
the rate constant used for xylan removal. As seen in Eq. 3, 
the rate constant under dilute acid conditions is related 
to the initial pH. This is quite reasonable as we have 
shown that the pH should be essentially constant during 
the course of the reaction. We, however, cannot make any 
comment on the value of n in this equation. Below this 
limit, the behavior of [H+] is very complex. Simple lin-
ear functions may indeed apply for a particular systems 
of interest. However, this cannot be generalized as the pH 
response depends strongly on the rate of ash neutraliza-
tion in comparison to the rate of deacetylation.

Summary and conclusions
In this work, the evolution of the proton concentration 
was examined during the hydrolysis of bamboo chips. At 
issue was the seemingly disparate model descriptions in 
the literature which treat dilute acid differently than auto-
hydrolysis conditions. We have attempted to address this 
issue by posing a “toy model” in which we have included 
a number of chemical components to help describe the 
reaction. We advance that the proton concentration is 
governed by a charge neutrality in the solution and influ-
enced by the:

1. weak-acid equilibrium formed from the deacetylation 
of the acetyl group from the xylan,

2. equilibrium created by water dissociation,
3. ash neutralization and the associated equilibrium in 

solution,
4. added acid.

There are a number of outcomes from the toy model 
which have been tested experimentally. The first, 
and perhaps most significant outcome, is that the toy 
model predicts the existence of a steady-state solution. 
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Fig. 5 The effect of initial pH on the steady-state pH measured after 
long-time prehydrolysis. The dashed line represents the toy model 
with the equilibrium constant given in the text previously. The value 
of Km is not stated in the text and is taken to be small. For practi-
cal purposes Km = 10

−17
M for this calculation. The two remaining 

parameters are set to be [XOAc]o = 0.025M and [MO]o = 0.001M 
and were determined through regression. Series 11 represents the 
reaction at 160 °C and series 12 at 180 °C
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Fig. 6 Examination of the pH when the reaction proceeds at room 
temperature. To evaluate the toy model, the same values for the 
constants given in the caption of the previous figure are used. In 
addition, k2 = 10M

−1
min

−1 as determined by regression
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The steady-state value is dictated by the equilibrium 
constants, and the initial added acid and acetyl group 
levels. The model qualitatively follows the trend given 
by experiment. It is difficult to perform a quantitative 
comparison as auxiliary relationships, such as the vari-
ation of equilibrium constant with temperature, are 
not known. The model was tested at room temperature 
to examine the changes in pH when ash neutralization 
is the dominant mechanism. Under these conditions 
we find, surprisingly, that the pH remains essentially 
constant both at low initial pH and under autohydroly-
sis conditions. Acid is likely in excess of the neutraliza-
tion potential of the ash, in the former case, and the 
kinetics of neutralization become exceedingly small 
in the latter case due to the low proton concentration. 
Finally, when the hydrolysis reaction proceeded at ele-
vated temperatures, we found one case of non-mono-
tonic behavior in which the pH initially increased, and 
then decreased at longer times. This is attributed to 
the difference in rates between the neutralization and 
deacetylation reactions.

As described in the introduction the evolution of the 
proton concentration during prehydrolysis is poorly 
modeled using empirical functions [Eq. (5)] which are 
not rooted in a proper chemical reaction scheme. With 
our toy model, we propose a chemical reaction pathway 
that satisfactorily describes experimentally determined 
proton concentration under both autohydrolysis and 
dilute-acid hydrolysis conditions. Accurate modeling of 
the proton concentration would significantly improve 
the existing kinetic models of hemicellulose hydrolysis 
and facilitate more efficient process optimization and 
scale-up.
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