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INTRODUCTION  

Mobile devices such as phones and tablets are now 
ubiquitous and have become important tools in our daily 
lives. Our activities and behaviours are becoming 
increasingly coupled to these new devices with their ever 
improving sensor technologies. With current devices, 
mobility patterns and physical activity levels are particularly 
amenable to inference and analysis by leveraging the 
integration of GPS, accelerometers, and other sensors. 
Coupled with feedback through display screens, speakers, 
and vibration, mobile technology has reached a level of 
sophistication that it now presents as an attractive platform 
for assistive technology research and health-related 
applications. 

The electronic health movement has made great strides 
in improving access to health care information by using 
Internet technologies. An obvious next step in this 
progression is to leverage both Internet and mobile 
technologies and investigate mobile health, or mHealth, 
applications (Open mHealth, 2013) that move towards 
further personalization and assistive capabilities. In a more 
general sense, the quantified self movement (Quantified 
Self, 2013) aims to promote self-improvement through 
consistent data collection and analysis. The underlying 
philosophy of the quantified self movement is that 
consistent measurement of and reflection on important 
personal metrics leads to an almost instinctive improvement 
in behaviour. There are a growing number of quantified self 
tools for improving lifestyle or behavioural habits such as 
diet, exercise, and time management. Of particular interest 
to assistive technologists and rehabilitation scientists is 
measurement of a person's mobility, which is an important 
factor in assessing quality of life (Schenk et al., 2011). 

Several systems have been built in recent years that 
explored mobility sensing and reporting to varying degrees. 
UbiFIT (Consolvo et al., 2008) was designed to track 
physical activity (i.e. walking) and provide on-phone visual 
feedback with a simple intuitive display, although users 
wore a separate pedometer that communicated with the 
phone. FUNF, an open source sensing framework for 
Android (Pentland, Aharony, Pan, Sumter, & Gardner, 
2013), provided an extensible framework for capturing a 
wide variety of sensor data from a device and publishing it 
to a web service. HumansSense (Frank, 2013) is an open 
source data collection platform on Android, capable of 

logging sensor data and uploading to a web service. A proof 
of concept system for lifespace recording that utilized pre-
placed bluetooth beacons in the home and mobile phones 
has been demonstrated (Schenk et al., 2011). The open 
mHealth initiative (Open mHealth, 2013) recently proposed 
a standardized architecture for mHealth and reporting 
applications. Ohmage, the open mHealth sensing platform 
(Hicks et al., 2011), allows for data collection on a phone 
with the ability to upload data to a web service for 
summarizing and visualizing reports for users. The 
application has been used to track users' activity levels and 
has also been applied in other studies, e.g. monitoring stress 
levels in new mothers (Ohmage, 2013). 

Towards these ends, we investigated and designed the 
MobiSense system to track lifespace and monitor activity of 
both ambulating persons and wheelchair users using 
standard mobile phones (Dewancker, 2014). To fully report 
about a user's lifespace and activity, the system has three 
basic components: 1) outdoor mobility tracking; 2) indoor 
mobility and localization; and 3) activity level recognition. 
The focus was on techniques that perform well with 
available sensors and in real-world environments using 
standard mobile phones. 

The general goals of the MobiSense project are: 1) to 
collect mobility data in a simple to use manner; 2) to 
provide easily accessible summaries and analysis of daily 
behaviours; and 3) to enable further research and 
development by providing a sandbox environment for rapid 
prototyping and experimentation. The specific objectives of 
the research reported here are to leverage mobile data 
collection technology and centralized analysis to detail a 
wheelchair user's daily activity; thus, we developed a system 
based on Android phones, cloud computing and storage 
services, and custom web services. 

METHODS AND RESULTS 

The MobiSense system is capable of lifespace 
summaries relating to indoor and outdoor mobility as well 
as activity trends and behaviours. Indoor localization is done 
at roughly room level using the relative signal strengths of 
all nearby WiFi base stations.  Outdoor mobility summaries 
are captured by periodically recording GPS fixes. Activity 
classification uses a combination of accelerometer and GPS 
features, enabling differentiation between stationary, 
wheeling (in a wheelchair), walking, or vehicle motion. To 



capture the relevant sensor data, we extended an Android-
based open source logging application which records data 
streams locally on a mobile phone before uploading data to 
a custom web service to process and visualize results. The 
resulting summaries can be visualized either for each 
individual day or over a user-selected date range. A heat 
map visualization was used for display of outdoor lifespace 
to understand the geographic extent of a user's mobility. For 
indoor localizations and activity summaries, pie charts and 
temporal series display trends in a user's mobility. 

System Architecture 
MobiSense builds on the HumanSense project (Frank, 

2013) and couples it with a new web service in the spirit of 
Ohmage (Hicks et al., 2011) and the open mHealth 
architecture (Open mHealth, 2013). The system uses a 
standard Android Nexus 4 phone with no hardware 
modifications; the web client can be viewed from any 
browser on any platform. The centralized processing and 
storage of the data streams lives on a single Amazon EC2 
instance running Ubuntu Linux. The Tornado web server is 
used to handle data uploads and requests for lifespace 
summaries.  

Phone Application and Sensor Logging 
The MobiSense phone application is a modification of 

HumanSense, which logs many of the sensors supported by 
Android. For our lifespace measurements, MobiSense only 
stores WiFi, GPS, and accelerometer readings. The data are 
stored as binary files compressed with gzip on the phone's 
SD card. The WiFi, GPS, and accelerometer sensors are 
polled every 10, 60, 0.05 seconds, respectively. For indoor 
localization and WiFi logging, MobiSense stores the 
number of WiFi access points observable, their signal 
strengths, and network and device identifiers (i.e. SSID and 
BSSID or MAC address). For outdoor localization and GPS 
logging, MobiSense stores only the longitude and latitude of 
each GPS fix. For activity monitoring, MobiSense uses the 
GPS data and the magnitude of the tri-axis acceleration 
adjusted for gravity, the same univariate signal used in 
(Hicks et al., 2011). 

A basic user interface for the phone was designed to 
provide hooks into the most important actions associated 
with the application. A central button starts the logging 
service. When pressed, the application begins recording 
sensor streams and storing the data locally on the device. To 
stop the service, the user presses the same button again and 
another service uploads the recorded files. Below the start 
button, an area of the interface is used for creating an indoor 
location model. The plus (+) button is used to name new 
rooms for training. Another button starts recording WiFi 
observations for training data on the currently selected 
room. It records observations every 800 ms and stores the 
training data for upload to the web service. A user can train 
the indoor model by lingering and moving within a 
particular room for a minute or two. Once the system is 

trained with each room of interest, no user input is needed 
other than charging the phone each night and physically 
carrying it throughout the day. 

Since the application is expected to collect data over the 
course of a full day, an important consideration is the 
amount of data that the sensor logging produces. For an 18 
hour recording period with full accelerometer, WiFi, and 
GPS logging, roughly 15 MB of compressed (50 MB 
uncompressed) sensor data is typically collected. The 
compressed files are uploaded to the web service only when 
the phone has a WiFi Internet connection. Once the data has 
been processed, its summarization format is quite compact, 
with each day producing only about 100 KB. Another 
important consideration for any mobile application is battery 
usage. With little screen use and no calls made or received, 
MobiSense was able to run on a single battery charge on a 
Nexus 4 phone for 22 hours.  

Data Processing: Feature Selection and Classification 
A probabilistic classifier scheme was used for indoor 

localization at the room level. Introduced in (Breiman, 
2001) and shown to be useful for WiFi localization in 
(Balaguer, Erinc, & Carpin, 2012), random forests are 
ensemble learners that use a collection of decision trees to 
classify test observations. Here, observations are the relative 
signal strengths of WiFi access points visible to the mobile 
device. For activity recognition, we fuse features derived 
from non-overlapping windows of accelerometry data, as 
proposed in (Frank, Mannor, Pineau, & Precup, 2012; Hicks 
et al., 2011), with an average speed estimate derived from 
the sequence of GPS fixes.  We consider the mean and 
Fourier series coefficients of the accelerometry time series 
combined with the GPS speed estimate to learn a single 
decision tree, similar to (Hicks et al., 2011), capable of 
distinguishing between stationary, walking, wheeling, and 
vehicle motion. 

To evaluate the indoor localization, we collected 5 
datasets in a variety of indoor environments including 3 
homes, 1 apartment and 1 office environment. To further 
test the robustness of the classifier five simulated datasets, 
that are modified versions of the originals, were created, 
where each observation vector had 20% of its access point 
observations set as if the access point was turned off (to 
simulate conditions with many fewer visible access points).  
Across all datasets, the random forests had an average 
classification accuracy of 91% (Dewancker, 2014). To test 
our activity classifier, training and test data was collected 
with the phone in four configurations. The user either 
walked or used a wheelchair and either had the phone 
placed in their front pocket or backpack. Across all classes 
on the test data the minimum accuracy for activity 
classification was 95% (Dewancker, 2014). 

Data Visualization 
A visualization component is present in many lifespace 

and actigraphy applications and is key to guiding data 



interpretation (Fitbit Inc., 2013; Hicks et al., 2011; Schenk 
et al., 2011). MobiSense provides user feedback and 
summarization visualizations through a custom web client. 
Many of the visualizations are styled after the lifespace 
visualizations presented in (Schenk et al., 2011). First a user 
specifies the date range to be summarized. A slide bar with 
two adjustable ends allows for selection over the range of 
dates that the user collected data. The user also has the 
option of visualizing each individual day over that range 
(Daily), or an aggregate summarization (Total). Once a 
range has been selected the site generates requests for the 
three summary streams from the MobiSense server.  

  The outdoor summary data is a stream of GPS fixes 
displayed using the Google Maps API (Google Inc., 2013) 
to generate a heat map distribution of logged GPS locations. 
Frequently logged locations produce larger, darker heat 
centers. In addition, trace lines can be added to connect 
consecutive fixes. This is a fairly standard map 
visualization, so we do not include a screenshot here.  

 
Figure 1:  Pie Charts Summarizing Distribution of 
Activities and Rooms  

The visualizations for the activity and indoor timelines 
are closely related in that they are summarizing 
classifications over the course of a day. Pie charts 
visualizing the distribution of time spent in each activity 
class for the activity summarization and each room for the 
indoor summarization are created for the user (Fig.1). Users 
can also mouse over the sections of the pie chart and see 
absolute minutes logged for each activity class or room. 
Here, as for the outdoor summary, the visualization stays the 
same whether the user requests individual day summaries or 
the total aggregation over the entire timeline. 

The pie chart works well for a quick summary of the 
user's time; however, temporal trends are also likely of 
interest to users for behaviour analysis. The time series 
visualizations are designed to show specifically when 
classifications occur during the day as a color-coded 
timeline (Schenk et al., 2011). Figure 2 presents an example 
summary for one of the authors on May 19, 2013. There are 
only three classes of interest for the activity summary, while 
the number of rooms for the indoor summary depends on 
the training model. In this example we can see the 
descriptive power of this visualization. The user begins the 
day in the bathroom and bedroom for about 50 minutes, then 
spends some time in the kitchen and living room before 

leaving the house at around noon. The user returns to the 
house at 1 pm and then leaves by vehicle at 2 pm, returning 
around 9 pm. 

 
Figure 2: Activity and Indoor Daily Timeline Summary 

The previous visualizations were used to plot single 
days; however, if the user requests a total aggregation over 
the dates of interest, a different summary is presented. The 
MobiSense server aggregates over each day in the range and 
sends a single sequence that represents the entire date range. 
The timeline is populated with predetermined intervals of 10 
minutes over the course of 24 hours, and each interval stores 
a probability distribution of the classes for that time over the 
date range. For example, if the user selects a range of 10 
days and for 3 of those 10 days the user was classified as 
being in their bathroom from 8:10 to 8:20, then for that 
interval being in the bathroom would be visualized with a 
probability of 0.3. The total 24 hour timeline is visualized as 
a stacked line chart, where each interval is a distribution of 
classifications that add up to 1 (Fig. 3). 

DISCUSSION AND CONCLUSION 

We proposed MobiSense as a research platform for 
lifespace summaries using mobile phones. The combination 
of simple timeline selection with rich visualizations could 
act as powerful explorative tools for researchers as well as 
users interested in their own patterns and behaviours. 
Extensions and improvements to the system are relatively 
straightforward to implement. A test instance of the system 
is currently hosted at http://mobisense.ca. Readers are 
invited to demo the site using login ID: 71b82dc2885abaca. 

Current Limitations 
When proposing an entire system, many areas for future 

improvements arise. In particular, the development of a 
more robust classification scheme to distinguish between 
walking and wheeling activity classes is needed. In practice 
this may be less important since many users would typically 



either always walk or wheel. While the design of 
MobiSense was influenced by the system architecture of the 
open mHealth initiative, full adherence to the specification 
(once it becomes available) would be preferable to promote 
standards and collaboration. A serious aspect of any system 
is the concern about security and user privacy. Mobile 
health systems may potentially be storing sensitive and 
private user information and so great care must be taken to 
ensure that data is not compromised. Currently MobiSense 
does not have full security measures in place. 

 
Figure 3: Total Summary Timeline Visualization 
MobiSense and other systems are tools for exploring 

lifespace and behaviours. While passive summarization of 
information is an important step towards behavioural 
changes, future systems may also actively request 
information and make suggestions directly to users, 
incorporating assistive capabilities as an interactive agent. 
Ohmage (Hicks et al., 2011) and HumanSense (Frank, 2013) 
can query a user; however these requests are simple prompts 
for data or labeling. Extending the interactive abilities of 
MobiSense could, for example, enable the creation of very 
useful personalized reminders and alerts. Collaboration with 
other contextual systems would also be powerful; e.g. 
MobiSense could detect which room a user is in, as well as 
whether they are stationary or moving, and perhaps then 
displaying room-specific menus and commands. The 
introduction of Google Glass and other wearable systems 
presents another interesting future platform for data 
collection and visualization. With video recording and a 
small heads up display, interactions and data logging could 
potentially become much richer. We are beginning to see 
devices and systems that are more personalized and 
responsive than ever before. It is an exciting opportunity to 
apply some of these new systems to assistive technology 
and possibly improve quality of life and overall health.  
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