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Abstract

Background

Innovative wheelchairs allow individuals to change position easily for comfort and social situ-

ations. While these wheelchairs are beneficial in multiple ways, the effects of position

changes on blood pressure might exacerbate hypotension and cerebral hypoperfusion, par-

ticularly in those with spinal cord injury (SCI) who can have injury to autonomic nerves that

regulate cardiovascular control. Conversely, cardiovascular benefits may be obtained with

lowered seating. Here we investigate the effect of moderate changes in wheelchair position

on orthostatic cardiovascular and cerebrovascular reflex control.

Methods

Nineteen individuals with SCI and ten neurologically-intact controls were tested in supine

and seated positions (neutral, lowered, and elevated) in the Elevation™ wheelchair. Partici-

pants with SCI were stratified into two groups by the severity of injury to cardiovascular auto-

nomic pathways. Beat-to-beat blood pressure, heart rate and middle cerebral artery blood

flow velocity (MCAv) were recorded non-invasively.

Results

Supine blood pressure and MCAv were reduced in individuals with lesions to autonomic

pathways, and declined further with standard seating compared to those with preserved

autonomic control. Movement to the elevated position triggered pronounced blood pressure

and MCAv falls in those with autonomic lesions, with minimum values significantly reduced

compared to the seated and lowered positions. The cumulative duration spent below supine

blood pressure was greatest in this group. Lowered seating bolstered blood pressure in

those with lesions to autonomic pathways.
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Conclusions

Integrity of the autonomic nervous system is an important variable that affects cardiovascu-

lar responses to orthostatic stress and should be considered when individuals with SCI or

autonomic dysfunction are selecting wheelchairs.
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Introduction

Innovative variable positioning wheelchairs facilitate mobility and improve quality of life for

wheelchair users. Some of these new devices permit dynamic modification of seating position,

height, and tilt, to better navigate physical and social barriers. Seating positions can easily be

adjusted in real time to suit particular activities, maximizing function, efficiency and indepen-

dence [1, 2]. There may also be physiological benefits to dynamic seating, including reduction

of pain, improved comfort, relieving pressure points, increasing bone density and improving

baroreflex function [3–11]. However, altered seating positions likely also influence the physio-

logical stressors placed on the cardiovascular system.

More upright seating positions challenge blood pressure regulation due to increases in

orthostatic stress, which cause large fluid shifts to the lower body and abdomen, thus reducing

venous return to the heart. This would normally be mitigated by autonomically-mediated bar-

oreflex responses that increase heart rate and contractility, and increase sympathetic vasocon-

striction. However, if these reflexes are impaired then this compensation can be insufficient to

maintain blood pressure [12]. Indeed, impaired blood pressure regulation is a concern for

individuals with high-level (above T5) spinal cord injury (SCI) with damage to autonomic

(sympathetic) pathways that regulate the heart and vasculature [13]. In particular, sympathetic

control of the vascular resistance and capacitance regions in the splanchnic circulation is criti-

cal to regulate blood pressure [14, 15]. Damage to cardiovascular sympathetic pathways results

in low resting blood pressure and further hypotension can be triggered by positional changes

[16–18]. A drop in blood pressure of�20 mmHg systolic and/or�10 mmHg diastolic consti-

tutes orthostatic hypotension (OH) [19, 20]. OH is associated with low cerebral blood flow,

and this likely contributes to the chronic fatigue experienced by many individuals with SCI

[21–24]. Symptoms of OH limit individuals with SCI using standing frames and doing other

physiotherapy exercises [25, 26]. A lowered wheelchair position, conversely, which compresses

the abdominal area, could benefit venous return from the key vascular resistance and capaci-

tance regions in the splanchnic circulation—similar to the effect of using an abdominal binder

[27–29]. This might improve blood pressure and cardiac output [30].

Here we tested the effect of wheelchair seating position on cardiovascular and cerebrovas-

cular function using a variable positioning manual wheelchair. We aimed to determine the

effects of elevated, standard and lowered wheelchair seating positions on blood pressure, heart

rate and cerebral blood flow (Fig 1A). Responses were compared between individuals with SCI

who have cardiovascular autonomic dysfunction (autonomically-complete SCI), those with

SCI but no damage to cardiovascular autonomic pathways (autonomically-incomplete SCI),

and able-bodied controls. We hypothesized that elevated seating positions would exacerbate
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Fig 1. Blood pressure and cerebral blood flow responses to different wheelchair seating positions. A. Experimental

protocol outline of crossover design: individuals were randomly assigned to move from the standard seating position to the

maximally elevated or lowered position, and then returned to the standard seating position, followed by the opposite position

(each block lasting 15 minutes). Throughout testing we continuously recorded blood pressure and electrocardiogram (ECG)

waveforms using the Finometer device; end tidal oxygen (O2) and carbon dioxide (CO2) levels using a gas analyser; and

middle cerebral artery blood flow velocity (MCAv) using cerebral ultrasound. B-E. Grouped mean data (± SEM) are

presented in the supine, seated, elevated, and lowered wheelchair seating positions. Data were averaged over the last five

minutes of each 15-minute trial. B. Systolic arterial pressure (SAP); C. systolic blood flow in the middle cerebral artery

(MCAsys); D. diastolic arterial pressure (DAP); and E. diastolic blood flow in the middle cerebral artery (MCAdia) are

Wheelchair seating and cardiovascular function
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the orthostatic impairment in individuals with damage to cardiovascular autonomic pathways,

but not in neurologically-intact controls or those with autonomically-incomplete SCI. We also

hypothesized that lowered seating positions would ameliorate this effect.

Materials and methods

We certify that all applicable institutional and governmental regulations concerning the ethical

use of human volunteers were followed during the course of this research. This study con-

formed to the principles outlined in the Declaration of Helsinki [31], and received ethical

approval from the Simon Fraser University Office of Research Ethics, and the Vancouver

Coastal Health Research Institute. All participants provided written informed consent.

Participants

All participants were�18 years old, apparently healthy and free of hypertension, diabetes mel-

litus and other overt cardiovascular disease. Nineteen individuals with SCI (8 women) who

were regular wheelchair-users for at least one year participated. All participants with SCI and

ten healthy able-bodied controls (4 women) were studied in elevated, lowered, and standard

seating positions (Elevation™ wheelchair, PDG Mobility Technologies, Vancouver, BC) [1].

Neurological classification of level and severity of SCI was determined from the American

Spinal Injury Association Impairment Scale (AIS) [32]. Participants with SCI were subdivided

into two groups (autonomically-incomplete SCI and autonomically-complete SCI) based on

the presence or absence of cardiovascular autonomic dysfunction. We considered an individ-

ual to have severe injury to spinal cardiovascular autonomic pathways, and therefore an auto-

nomically-complete lesion, if they had: a) a lesion above T5; and b) low supine plasma

noradrenaline spillover (<0.5 nmol/L); and c) low systolic blood pressure variability in the low

frequency range (~0.1 Hz, Power < 2 mmHg2), as is standard in our laboratory [18, 33, 34].

Equipment

Beat-to-beat blood pressure and lead II electrocardiogram (ECG) were recorded continuously

(Finometer Pro, Finapres Medical Systems BV, Amsterdam, Netherlands). Middle cerebral

artery (MCA) blood flow velocity was measured bilaterally using transcranial Doppler ultra-

sound with 2 MHz probes through the temporal windows (Doppler Box, Compumedics DWL,

Singen, Germany) attached to a headband to maintain constant angles of insonation. Partial

pressures of expired oxygen and carbon dioxide (PETCO2) were recorded on a breath-by-

breath basis (O2Cap, Oxigraf Inc, Mountain View, CA). All recordings were sampled at 1 KHz

(Powerlab 16/30, AD Instruments, Colorado Springs, CO), acquired using LabChart (AD

Instruments), and stored for offline analysis.

Experimental protocol

Participants were asked to abstain from caffeine or alcohol and avoid strenuous exercise for 12

hours before testing. Testing was carried out in a quiet room at 20˚C. Participants were instru-

mented while lying supine, and all parameters were recorded for 15 minutes. Participants then

transferred to the Elevation™ wheelchair (back height 30 cm) in the neutral seated position

(horizontal seat, 90˚ shin-to-seat angle, 90˚ seat-to-back angle) for 15 minutes. In a crossover

presented. Vertical adjoining lines denote significant differences between indicated groups; asterisk (*) indicates significant

difference from supine position; double dagger (‡) indicates significant difference from seated position; double S (§)indicates

significant difference from elevated position.

https://doi.org/10.1371/journal.pone.0180195.g001
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design, individuals were randomly assigned to move to the maximally elevated (seat back

raised, 120˚ shin-to-seat angle, 115˚ seat-to-back angle), or lowered position (seat back low-

ered, 75˚ shin-to-seat angle, 85˚ seat-to-back angle), and then returned to the neutral seated

position, followed by the opposite position, with each block lasting 15 minutes (Fig 1A). End

points for testing were determined a priori, and included any of: systolic arterial blood pressure

below 80 mmHg; symptoms of presyncope, such as dizziness; or participant request.

Data analyses

We applied a low-pass filter (<50 Hz) to remove electrical noise from the ECG signal and a

median filter (~51 samples, or 0.05 s) to remove artifacts from the MCA signal. Beat-to-beat

heart rate (HR), systolic (SAP), diastolic (DAP), mean (MAP) arterial pressure, as well as

MCA systolic (MCAsys), diastolic (MCAdia), and mean (MCAmean) cerebral blood flow veloci-

ties, and breath-by-breath PETCO2 were determined using cyclic peak detection measurement

algorithms in LabChart. For each individual, the most reliable and consistent signal from

either the left or right MCA was used for analysis (the side with the greatest number of beats

with faithful envelope detection). Stroke volume (SV) and cardiac output (CO) were derived

using the Modelflow™ technique [35]. In addition to reporting absolute values of cerebral

blood flow velocity, we also normalised these data with respect to the supine baseline (percent-

age change) to control for any differences in initial probe position between participants.

A five-beat moving average was applied across all variables. Average values were calculated

over the last five minutes of each condition (supine, seated, lowered, seated repeat, and ele-

vated). Values from the two neutral seated conditions were averaged as they were not signifi-

cantly different from each other.

In addition to the five minute averages, we computed three additional variables: minimum

blood pressure (nadir), the timing of the nadir, and the overall orthostatic burden. The timing

and size of the blood pressure nadir in response to orthostatic stress varies between individuals

and together this information can provide insight into the severity of sympathetic dysfunction

[36]. Nadir values were calculated from five-beat moving averages and the time at nadir deter-

mined. The duration of hypotension following postural change and ability to recover blood

pressure during orthostasis have been identified as key measures of severity of OH [36, 37].

We quantified the overall orthostatic burden of each position as the cumulative magnitude

and duration spent below resting supine SAP levels. The cumulative area under the curve

(AUC) was calculated as the sum of the difference between supine SAP and SAP at each beat

[37].

Statistical analyses

Data processing was conducted using R Version 3.0.1 and data were analysed using JMP Ver-

sion 10.0 and SigmaPlot Version 12. Descriptive statistics were calculated by group for the

supine variables. Non-parametric data were log transformed prior to statistical analyses. SCI-

specific measures such as duration of injury were compared using t-tests. Distribution of level

and severity of injury between groups was compared using Fisher’s exact test. One-way ANO-

VAs were used for comparison of demographic information and supine variables, with

Tukey’s post-hoc test to examine between group differences. Cardiovascular responses to dif-

ferent wheelchair positions were compared using a two-way ANOVA (participant subgroup

and seat position) with repeated measures on one factor (position). The dependent variable

was the absolute cardiovascular parameter. Where main effects were present, post-hoc com-

parisons were conducted using the Holm-Sidak method. Statistically significant differences

were assumed where α<0.05.
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Results

Participant characteristics are shown in Table 1. We did not detect any differences in sex dis-

tribution, age, height, or weight between groups. For comparisons between the two SCI

groups, we did not detect any differences in time since injury, but there were more participants

with cervical injuries in the autonomically-incomplete SCI group (p = 0.002), and there tended

to also be more participants with motor and sensory complete lesions (AIS A) in this group

(p = 0.057).

Supine cardiovascular and cerebrovascular recordings showed that the autonomically-

complete SCI group had significantly lower SAP, DAP, MCAdia and MCAmean compared to

the autonomically-incomplete group (Table 2, all p<0.05). MCAdia was also significantly lower

in the autonomically-complete SCI group compared to the controls (p<0.05). The autonomi-

cally-incomplete SCI group had higher DAP (p = 0.015) and MAP (p = 0.035) compared to

the control group. The remaining supine cardiovascular and cerebrovascular parameters were

not significantly different between groups.

Movement from a supine to seated position had different effects on SAP depending on

autonomic completeness of injury (p = 0.0014, Fig 1B, Table 2), as we have previously reported

[34, 38]. SAP increased in controls (p�0.001), and in autonomically-incomplete SCI

(p = 0.024), and failed to increase in the autonomically-complete SCI group. Movement from

the seated to elevated position did not further affect SAP in autonomically-incomplete SCI and

control groups. In the elevated position, mean SAP was lower in the autonomically-complete

SCI group compared to resting supine levels (p = 0.037). Conversely, the lowered position

increased SAP compared to both standard seating and elevated seating in the autonomically-

complete SCI group (p = 0.029). Movement to the lowered position did not change SAP in

autonomically-incomplete SCI and control groups. Compared to the other two groups, SAP

was lower in the autonomically-complete SCI group during seated, elevated, and lowered posi-

tions (Fig 1, Table 2).

Similarly to SAP, DAP and MAP increased from supine to seated, elevated and lowered lev-

els in control and autonomically-incomplete SCI groups (all p<0.05, Fig 1D, Table 2). There

were no significant differences in DAP or MAP between positions in the autonomically-

complete SCI group except for the MAP in the lowered position, which was increased com-

pared to supine.

Table 1. Participant demographics and baseline cardiovascular parameters.

Control Autonomically-incomplete SCI Autonomically-complete SCI

Sample size 10 12 7

Age (years) 31.9 (8.3) 42.6 (10.7 37.0 (8.1)

Sex (male:female) 6:4 6:6 5:2

Time since injury (years) - 18.9 (4.1) 16.6 (3.6)

Lesion level Cervical - 1 6*

Thoracic - 11 1*

AIS grade A - 8 1

B/C/D - 4 6

Height (cm) 174 (6) 170 (8) 176 (12)

Weight (kg) 73 (11) 67 (10) 68 (12)

Data are presented as group means with standard deviation shown in brackets. SCI groups were divided according to autonomic completeness of injury.

Cardiovascular variables were recorded in the supine position for 15 minutes. Asterisk (*) indicates significant difference from autonomically-incomplete

SCI (p<0.05). Abbreviations: AIS, American Spinal Injury Association Impairment Scale; SCI, spinal cord injury.

https://doi.org/10.1371/journal.pone.0180195.t001
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Table 2. Mean cardiovascular variables in different wheelchair positions.

Control Autonomically-incomplete SCI Autonomically- complete SCI

Raw % supine Raw % supine Raw % supine

SUPINE SAP (mmHg) 120 (10) 128 (11) 113 (16) I

DAP (mmHg) 64 (7) I 73 (7) 65 (6) I

MAP (mmHg) 71 (12) I 83 (9) 80 (8)

MCAsys (cm.s-1) 96 (18) 99 (18) 87 (15)

MCAdia (cm.s-1) 48 (11) 47 (7) 39 (5) C, I

MCAmean (cm.s-1) 66 (14) 67 (12) 56 (9) I

HR (bpm) 65.1 (8.2) 67.0 (9.1) 63.8 (13.7)

SV (mL) 96.1 (12.6) 90.9 (14.8) 88.4 (12.8)

CO (L.min-1) 6.2 (0.9) 6.0 (1.1) 5.8 (1.3)

SEATED SAP (mmHg) 131 (13)* 138 (13)* 112 (13) C, I

DAP (mmHg) 71 (10)* 81 (10)* 68 (9) I

MAP (mmHg) 82 (16)* 93 (13)* 85 (7)

MCAsys (cm.s-1) 91 (12) 96 (10) 96 (17) 97 (6) 77 (14)* I 90 (9)*

MCAdia (cm.s-1) 44 (5) 95 (16) 43 (6) 91 (8) 29 (4)* C, I 73 (10)* C, I

MCAmean(cm.s-1) 61 (8) 95 (14) 62 (11) 93 (7) 45 (8)* C, I 81 (6)* C, I

HR (bpm) 71.1 (9.6)* 74.5 (10.4)* 70.7 (17.6)*E

SV (mL) 85.2 (11.2)* 74.8 (14.4)* 74.9 (10.0)* E

CO (L.min-1) 6.1 (0.8) 5.6 (1.2) 5.0 (1.3)

ELEVATED SAP (mmHg) 131 (13)* 142 (12)* 107 (14)* C, I

DAP (mmHg) 72 (11)* 85 (12)*C 67 (8) I

MAP (mmHg) 81 (14)* 98 (16)* C 82 (7) I

MCAsys (cm.s-1) 88 (13) 93 (8) 94 (18) 95 (5) 75 (16)* I 87 (12)*

MCAdia (cm.s-1) 42 (5) 92 (14) 43 (7) 90 (9) 31 (7)* C, I 79 (17)* C, I

MCAmean(cm.s-1) 58 (8) 91 (11) 61 (11) 91 (5) 45 (12)* C, I 80 (13)* C, I

HR (bpm) 74.7 (12.1)* 76.6 (11.2)* 79.4 (17.3) * S, L

SV (mL) 80.2 (13.0)* 69.3 (12.6)* 62.3 (12.0)* C, S, L

CO (L.min-1) 5.9 (0.9) 5.3 (1.0)* 4.5 (0.8)* C

LOWERED SAP (mmHg) 136 (17)* 140 (18)* 119 (17) S, E, C, I

DAP (mmHg) 75 (12)* 84 (13)* 72 (12) I

MAP (mmHg) 85 (18)* 96 (15)* 89 (4) *

MCAsys (cm.s-1) 87 (9) 96 (13) 94 (18) 95 (8) 75 (12)* I 87 (8)*

MCAdia (cm.s-1) 43 (6) 95 (18) 42 (8) 88 (8) 30 (4)* C, I 76 (7)* C, I

MCAmean(cm.s-1) 59 (8) 95 (16) 61 (12) 91 (6) 45 (7)* C, I 81 (7)* C, I

HR (bpm) 71.3 (10.3)* 75.9 (13.2)* 71.7 (13.6) * E

SV (mL) 85.4 (11.2)* 69.3 (17.0)* C 76.5 (10.4)* E

CO (L.min-1) 6.0 (0.7) 5.2 (1.3)* 5.0 (0.5)

The last five minutes of each position were averaged for each subject. Data for the two seated positions (90˚ shin-to-seat angle) were averaged. Data are

presented as group means, with standard deviation in brackets. Both raw values and percentage of supine values are presented (% supine). Asterisk (*)

indicates significantly different from supine position (p<0.05);
S indicates significantly different from seated position;
L indicates significantly different from lowered position;
E indicates significantly different from elevated position;
C indicates significantly different from able-bodied control group (p<0.05);
I indicates significantly different from autonomically-incomplete SCI group (p<0.05).

Abbreviations: CO, cardiac output; DAP, diastolic arterial pressure; HR, heart rate; MAP, mean arterial pressure; MCA, middle cerebral artery; MCAdia,

MCA diastolic blood flow; MCAsys, MCA systolic blood flow; MCAmean, MCA mean blood flow; SAP, systolic arterial pressure; SCI, spinal cord injury; SV,

stroke volume.

https://doi.org/10.1371/journal.pone.0180195.t002
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HR increased from supine values during seated, elevated and lowered positions in all three

groups (all p<0.05). In the autonomically-complete SCI group only, the HR in the elevated

position was higher than in the seated and lowered positions.

SV decreased in all groups from supine to all seated positions (Table 2). In the autonomi-

cally-complete group only, movement from the seated to elevated position further reduced SV

(p<0.05). In the control group, the reduction in SV was compensated by HR increases, so CO

was unchanged. However, both SCI groups showed a decrease in CO in the elevated position;

in the autonomically-complete group CO during elevated seating was significantly lower than

in controls (Table 2).

Group average cerebrovascular parameters in different wheelchair positions are also

reported in Table 2. In all seating positions, MCAsys was reduced compared to supine in those

with autonomically-complete SCI (p = 0.02), but not in those with autonomically-incomplete

SCI or controls (Fig 1C). In all seated positions, MCAsys was significantly lower in the auto-

nomically-complete SCI group compared to the autonomically-incomplete group (p<0.05).

Diastolic cerebral blood flow velocity (MCAdia) was particularly affected by orthostatic chal-

lenge in the autonomically-complete SCI group, similar to our previous report [34] (Fig 1E).

MCAdia was significantly lower in the autonomically-complete SCI group compared to both

groups in the seated, elevated, and lowered positions (all p<0.05). Movement from the seated

to the elevated position did not further decrease MCAdia in the autonomically-complete SCI

group. Similar group results and changes with position were seen in MCAmean. Significant

changes in PETCO2 were not detected and do not explain these results.

In the seated and elevated positions, nadir SAP was significantly lower in the autonomi-

cally-complete SCI group compared to both autonomically-incomplete (p<0.05, Fig 2) and

control groups (p<0.05). There were no significant differences in minimum SAP in the low-

ered position between the three groups (p>0.05). Within the autonomically-complete SCI

group, minimum SAP was significantly lower in the elevated position compared to seated

(p<0.05). In all positions, there was no statistical difference in the timing of the SAP nadir

between groups over the 15-minute period (all p>0.05). The nadir MCAdia was lower in the

autonomically-complete SCI group compared to both groups in all wheelchair positions (all

p<0.05, Fig 2). Considering the change from seated to elevated, MCAdia was significantly

lower in the autonomically-complete SCI group (p = 0.039).

The cumulative orthostatic burden in each position is shown in Fig 3. There was no signifi-

cant difference in AUC between groups in the seated position (p>0.05). However, the AUC of

individuals with autonomically-complete SCI was greater in the elevated position compared to

both seated and lowered positions, and was significantly different from autonomically-incom-

plete SCI and control groups (all p<0.05). There were no significant differences in orthostatic

burden between the seated, elevated, and lowered positions in either the control or autonomi-

cally-incomplete SCI groups. Fig 3B shows an example of the OH burden in each condition

from one representative individual in each group.

Discussion

Wheelchair technologies continue to improve to meet the needs of individuals living with dis-

ability. Our results show that caution is warranted before encouraging all individuals to adopt

and use new wheelchairs without prior education and planning. Individuals with high-level

SCI and damage to autonomic pathways tend to have low resting blood pressure, particularly

when seated. In this population, moderate changes in body position can result in periods of

low blood pressure and cerebral blood flow that can potentially trigger symptoms of presyn-

cope or even syncope [18, 34]; lowered seating positions may somewhat mitigate these effects.

Wheelchair seating and cardiovascular function

PLOS ONE | https://doi.org/10.1371/journal.pone.0180195 June 30, 2017 8 / 16

https://doi.org/10.1371/journal.pone.0180195


We showed that cardiovascular homeostasis in individuals with autonomically-complete

SCI is perturbed by positional changes. Similar to our previous work [18, 34], averaged data

showed lower seated blood pressure in this group compared to individuals with autonomi-

cally-incomplete SCI and controls. Movement to an elevated wheelchair position further

Fig 2. Nadir systolic arterial pressure and cerebral blood flow in seated, elevated and lowered wheelchair

positions. A. Nadir systolic arterial pressure (SAP) and time at nadir in each wheelchair position. B. Diastolic middle

cerebral artery blood flow (MCAdia) at nadir systolic arterial pressure. Vertical adjoining lines denote significant differences

between indicated groups; double dagger (‡) indicates significant difference from seated position.

https://doi.org/10.1371/journal.pone.0180195.g002
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Fig 3. Cumulative orthostatic burden in seated and elevated wheelchair positions. A. Cumulative orthostatic

burden was calculated as the cumulative area under the curve (AUC) for the duration of each wheelchair position:

the difference between baseline systolic arterial pressure (SAP) and SAP multiplied by the duration of each beat. B.

Example traces from a representative individual in each group. Dotted horizontal line indicates supine SAP for that

individual and shaded area indicates regions below supine SAP. Vertical adjoining lines denote significant

differences between indicated groups; double dagger (‡) indicates significant difference from seated position;

double S (§) indicates significant difference from elevated position.

https://doi.org/10.1371/journal.pone.0180195.g003
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challenged blood pressure, triggering pronounced falls in SAP and cerebral perfusion, with

nadir values significantly lower than in the seated or lowered positions. There may be

some concern about the cumulative burden of hypotension—and potentially cerebral hypo-

perfusion—over long periods in the elevated position. Hypotension in individuals with SCI

has been associated with deficits in memory and attention processing speed [39, 40], as well as

increased risk of cardiovascular disease and other secondary complications of SCI [41].

We found that lowered seating improved SAP, HR and SV compared to elevated seating in

those with autonomically-complete SCI (Table 2) and could, therefore, be used as a counter-

maneuver for individuals to bolster blood pressure. In fact, a lowered position is often the pre-

ferred seating position for individuals with high-level SCI because it improves trunk stability

[1, 42]. These results highlight the importance of regularly returning to lowered seating posi-

tions for individuals using elevated seating options to limit overall time spent with low resting

blood pressure. Dynamic wheelchairs facilitate frequent position changes that can help with

blood pressure control and hopefully limit orthostatic symptoms and fatigue. While there was

an improvement in SAP in the lowered position, this was not the case for MCAsys. This failure

to improve cerebral perfusion despite improvements in blood pressure could be an indicator

of impaired autoregulation, as we have previously reported in this population [34].

The benefit of the lowered seating position may be more apparent during dynamic exercise.

However, we focused on static positioning and did not test cardiovascular function while

wheeling. Body movement and dynamics during wheeling may accentuate the differences in

cardiovascular parameters between positions. For example, the lowered position provides

improved ergonomics for wheeling compared to the seated or elevated position, and individu-

als often lean forward to move the center of gravity forward [43]. This would further compress

the abdomen and increase venous return to the heart [44]. Certainly, the increases in stroke

volume, and blood pressure, and decreases in heart rate, that we observed in the lowered seat-

ing position would likely be beneficial during exercise, particularly in a population known to

have difficulty mounting an appropriate cardiovascular response to exercise [16]. Therefore,

the functional cardiovascular benefits of the lowered position might be enhanced during exer-

cise; future work should evaluate the cardiovascular impact of lowered seating positions during

exercise.

While not the main focus of this study, our results reiterate the dissociation between AIS

Score, which classifies motor and sensory injury impairment, and the autonomic completeness

of injury [18, 33, 34]. It is not always possible to predict autonomic injury from the status of

motor and sensory pathways.

Given the disruption of sympathetic nerve pathways in those with autonomically-complete

injuries, we might have expected greater impairments in cardiovascular control during ortho-

static stress in this group; however, compensatory physiological adaptations, such as changes

in the renin-aldosterone-angiotensin system [45] and antidiuretic hormone release [46],

may occur over time. The extent of spasticity may also play an important role in these adapta-

tions—muscle contractions associated with lower extremity spasticity can activate the skeletal

muscle pump and improve venous return [47]. Conversely, muscle atrophy and flaccid paraly-

sis might minimize lower limb blood flow and limit venous pooling and subsequent capillary

filtration [48, 49]. Indeed, reduced arterial diameter and blood flow in the distal limbs has

been noted in those with SCI [50], and might actually mitigate orthostatic intolerance. We did

not evaluate the contribution of lower limb spasticity to cardiovascular control, but its role as

an explanatory variable is of interest for future studies.

Here we considered only the acute impact of dynamic seating and associated orthostatic

stress on cardiovascular control. However, there may be a training effect of repeated exposure

to orthostatic stress [51]. This could explain, in part, the modest reduction in incidence and

Wheelchair seating and cardiovascular function

PLOS ONE | https://doi.org/10.1371/journal.pone.0180195 June 30, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0180195


severity of OH with time after injury [52]. Whether this reflects a true reduction in the ortho-

static burden through improved cardiovascular reflex control, increased tolerance to the symp-

toms of OH, or optimized treatment and management of OH is unclear. If orthostatic training

is possible in individuals with SCI exposed to repeated orthostatic stresses, the potential con-

cerns associated with dynamic seating might be mitigated over time, and could be considered

a form of conditioning to improve cardiovascular responses [11].

We employed well-used techniques to assess cardiovascular function. However, the assess-

ment of cerebral blood flow from indirect measurements of velocity using Doppler ultrasound

relies on the assumption that the insonated vessel diameter remains constant [53]. Although

we did not measure MCA diameter, it is thought to remain fairly constant [53]–except with

large changes in PETCO2 [54, 55], which did not occur in our study. The absolute values of

MCA blood flow velocity can also be affected by angle of insonation and probe positioning.

We minimized the effect of changes in probe positioning and angle of insonation within sub-

jects during testing by clamping the probe in place with a headband. Because of the anatomical

position of the vessel, the angle of insonation with respect to the middle cerebral artery is close

to zero, so any small differences in the insonation angle between participants would have little

effect on the resulting Doppler shift, and hence on the velocities recorded. Nevertheless,

because of the theoretical impact of the angle of insonation on the absolute values of MCA

blood flow velocity, we report both absolute values and percentage changes in MCA parame-

ters (Table 2), with qualitatively similar results.

One limitation of this study is the smaller number of participants with cervical SCI—who

comprise about half of all individuals living with SCI [56]. Given that individuals with high

injury levels are most likely to experience abnormal blood pressure regulation, the current

results may underestimate the severity of cardiovascular compromise. It is possible that this

reflects self-selection of these individuals, because of known orthostatic intolerance or diffi-

culty completing the transfers inherent in this study. In practice, it is likely that many individu-

als with high-level SCI would not elect to use wheelchairs with dynamic seating due to trunk

instability; for those who do, cardiovascular complications should be taken into consideration.

Several new powered mobility alternatives have recently been developed for individuals

with high-level SCI that pose similar challenges to cardiovascular control. These power wheel-

chairs permit a wide range of position flexibility, spanning from supine to standing [57, 58],

enabling even individuals with very high-level SCI to access the benefits of standing. However,

it may also make them vulnerable to severe orthostatic decreases in blood pressure. It would

be interesting to investigate the effects of these wheelchairs on blood pressure and cerebral

blood flow in individuals with high-level SCI—who are both the target user group and at the

highest risk for cardiovascular dysfunction. Furthermore, exoskeletons have recently been

approved by the FDA [59] and will soon be viable alternatives for individuals with mobility

impairments [60]. Devices that incorporate lower limb locomotion, either partially-assistive or

passive (e.g. using an exoskeleton), may bolster orthostatic blood pressures through lower limb

skeletal muscle pumping activity [27]. Studies on these new devices and their impact on car-

diovascular control will be critical to ensure appropriate design configurations that mitigate

the orthostatic cardiovascular deficit.

The integrity of the autonomic nervous system is an important variable that affects cardio-

vascular responses to orthostatic stress and should be considered when individuals are select-

ing and configuring wheelchairs with dynamic seating options. These results have implications

for individuals with SCI and also non-SCI wheelchair users with cardiovascular autonomic

impairment such as individuals with multiple sclerosis, diabetic neuropathy, and autonomic

failure syndromes. We hope this research will encourage clients, physicians and seating spe-

cialists to consider cardiovascular stressors when they are selecting possible wheelchairs.
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Discussion and education around identification of early symptoms of OH and presyncope

should be included when individuals are making wheelchair decisions. The ability to make

rapid position changes to recover blood pressure if individuals begin to feel symptoms of pre-

syncope is an important consideration for wheelchair users—especially for those with severe

autonomic impairment. With modest education and key contingency procedures in place, all

wheelchair users should be able to access the myriad benefits of dynamic position changes to

their health, independence, and quality of life.
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