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a b s t r a c t

The feasibility of meeting emission targets is often evaluated using long range planning optimization
models in which the targets are incorporated into the system constraints. These models typically provide
one ‘optimal’ solution that considers only a deterministic representative value of emissions for each
technology and do not consider the risk of exceeding expected emissions for a given optimal solution.
Since actual emissions for any given technology are uncertain, implementation of such an optimal so-
lution carries inherent risk that emissions will exceed the given target. In this paper, we implement a
stochastic risk structure into the OSeMOSYS optimization model to incorporate uncertainty related to the
emissions of electricity generation technologies. For a given risk premium, defined as the additional
amount that society is willing to pay to reduce the risk of exceeding the cost optimal system emissions,
we determine the generation technology mix that has the lowest risk of exceeding this baseline. We
focus on emissions risk since the literature on emissions risk is sparse while the literature on other risks
such as policy risks, financial risks and technological risks is extensive.

We apply the model to a case study of a primarily fossil based jurisdiction and find that, when risk is
incorporated, solar and wind technologies are built out seven and five years earlier respectively and that
carbon free technologies such as coal with carbon capture and storage (CCS) become effective alterna-
tives in the energy mix when compared to the ‘optimal’ solution without consideration of risk, though
this does not include the risk of carbon leakage from CCS technologies. If nuclear is included as a gen-
eration option, we find that nuclear provides an effective risk hedge against exceeding emissions.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

At the Conference of the Parties 21 (COP21), 195 countries
affirmed their intentions to put in place measures to meet global
emissions targets. The feasibility of meeting emission targets is
often evaluated using long range planning models in which the
targets are incorporated into the system constraints. This is typi-
cally done either by implementing a cap on CO2 emissions [1e3] or
by adding constraints, such as renewable energy portfolio stan-
dards, renewable energy credits or carbon taxes, that push the
system to meet a given emissions target [3e6]. In all cases, an
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‘optimal’ solution is found that meets the target at the lowest cost.
Most of these studies do not incorporate uncertainty in the levels of
emissions from the modelled technologies. As a result, the risk of
exceeding the emissions target is not quantified, leaving a gap in
the literature as discussed in section 2.1. There are a number of
methods that have been used to incorporate uncertainty into long
term energy planning models, as discussed in detail in section 2.3.

In this study we apply a stochastic risk enabled version of the
Open Source Energy Modelling System (OSeMOSYS) [7,8] to the
Alberta, Canada electricity system. The Alberta system is fossil fuel
based, similar to many US states and countries such as China and
India, making our results more broadly applicable than those Par-
kinson and Djilali obtained for a hydro based jurisdiction. In addi-
tion, we consider how nuclear, a low carbon technology that is
often ignored due to political and social considerations, impacts the
emissions risk for the Alberta, Canada electricity system.

The stochastic risk enabled version of OSeMOSYS is developed
using the stochastic risk framework described by Krey and Riahi [9]
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Nomenclature

ai;j Performance parameters of technologies in the
model.

bi Limits on installed capacity and operating
parameters.

cj Vector of all cost parameters considered by the
model.

CðxjÞ Total cost of system for a given decision vector, xj.
Cðx�j Þ Total minimum cost of the system as determined by

deterministic optimization method.
rj Mean, or expected, value of the uncertain

parameter.
rjðunÞ Random sample of the uncertain parameter.
f Risk premium. The extra amount that society is

willing to pay to minimize risk.
FðxjÞ Sum of the system cost, CðxjÞ, and weighted risk.
xj Vector of installed capacities and operating

parameters.
x*j Optimal (lowest cost) decision vector as identified

by deterministic optimization method.
N Number of samples to consider when determining

the risk vector.
Rmax The maximum risk allowable.
Rðxj;unÞ Risk for a given decision, xj, for a single random

draw from the probability space, un.
RðxjÞ Total risk for a given decision vector, xj.
rr Risk aversion parameter. Used to convert risk into

an equivalent cost.
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and adapted by Parkinson and Djilali [10].We use this framework to
incorporate uncertainty in environmental performance of tech-
nologies into OSeMOSYS and assess the risk that emission targets
will be exceeded. While Parkinson and Djilali use a custom linear
programming model to apply the risk framework we implement
this framework in OSeMOSYS. We use OSeMOSYS as it is a widely
used energy system model that is open source and, by using this
model, we contribute to the code base available for modellers using
OSeMOSYS.

Although this study focuses on climate impact emissions risk,
there are many other environmental impact risks posed by energy
technologies that could be included in a risk framework including
air pollution, water use and/or contamination, waste stewardship,
wildlife impacts and land use. This study focuses on climate change
emissions risk as this is an area that has not been thoroughly
studied, as discussed in our literature review, and which has a
global impact.
2. Literature review

Uncertainty is of concern in energy planning because uncer-
tainty creates risk. Uncertain parameters in energy planning
include: capital cost of generation technologies; operation and
maintenance costs; fuel prices; availability of imported fuels;
construction schedules for new plants; demand projections; and
uncertainty in the emissions of a given generation technology or
generation mix [11e15]. These uncertainties are compounded by
the uncertainty of projecting over decadal time frames, as is typical
in energy system planning. Quantifying the risk associated with
these uncertain parameters requires an understanding of both the
methods available for addressing risk in models, as discussed in
section 2.3, and of the sources of uncertainty as discussed in section
2.1. One rarely considered source of uncertainty is environmental
performance risk, defined as the risk that a given technology's
environmental impact is greater than the expected impact. We
discuss this in section 2.2.

2.1. Sources of uncertainty

As in all modelling, there are many sources of uncertainty in
energy system modelling. These include financial uncertainty,
resource availability, sensitivity of the climate system to emissions
and uncertainty in climate policies as well as uncertainty in future
demand for energy services. There has been significant work in
each of these areas.

Szolgayov�a et al. [16] use a portfolio analysis approach to
investigate financial uncertainties in a model that considers a
simplified set of four technology options. Hunter et al. [17] extend
the modelling tool TEMOA to include cost uncertainty. Other ex-
amples of models using portfolio analysis methods to consider
financial risks include work done by Krey et al. [18], Usher and
Strachan [19], Messner et al. [20], Webster et al. [21], Leibowicz [22]
and Arnesano et al. [23]. Each of these papers considered the
financial risks associated with future energy prices, carbon policies
and/or social costs and determined an energy system buildout that
hedged the risk of financial losses in the system. Wu and Huang
[24] consider the potential for zeromarginal cost technologies such
as wind and solar to hedge against fossil fuel price risk using a
similar method.

Variability in resource availability is a significant source of sys-
tem uncertainty, both in terms of the ability of renewable resources
to meet demand in the short term and in terms of resource con-
straints on generators in the longer term. Stoyan and Dessouky [25]
use a mixed integer programming approach to evaluate various
scenarios of resource availability to enhance system planning. Tan
[26] provides a method for incorporating inoperability risks into a
linear programming model in which the resource mix is optimised
to reduce the risk that demand is not met when energy sources
become inoperable due to supply constraints. Martienez-Mares and
Fuerte-Esquivel [27] use a robust optimization approach to
consider the impact of wind resource variability on the optimal
system. Each of these three studies is based on a stochastic evalu-
ation of the cost of this variability.

Studies by Loulou et al. [28], Ekholm [29] and Syri et al. [30]
investigate uncertainty due to variability in the sensitivity of
climate to carbon emissions, and calculate the costs associated with
meeting specified climate change temperature targets. Each of
these studies use a stochastic programming model to determine
the financially optimal system given this uncertainty in climate
sensitivity.

Uncertainties in climate policy also create risks for investors and
a number of studies have investigated how decision makers will
react to these risks [31e33]. These studies find that uncertainty in
policy can undermine the potential benefits of a policy, in particular
when policy decisions are short-term or if policy makers do not
consider the potential reaction of investors.

There are also a number of studies that consider a combination
of uncertainties. Most of these studies combine cost uncertainty
with policy uncertainty and evaluate the financial risk associated
with these uncertainties [34e44], either with stochastic program-
ming or interval programming.

However, none of these studies considers uncertainty related to
the environmental performance of energy technologies in fossil
based jurisdictions nor do any of these studies consider nuclear.
This is summarized in Table 1. It is important to fill this gap in the
literature since ignoring this uncertainty could lead to systemswith
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higher than predicted emissions, meaning jurisdictions could miss
their emissions targets.

2.2. Environmental performance uncertainty

As outlined above, few studies consider uncertain environ-
mental performance of alternative energy system realizations. In
this paper we define environmental performance uncertainty as
the uncertainty in the environmental impact of a given technology.
This could be due to variability in pollutant emissions such as
carbon dioxide, uncertainty in the amount of water use, uncertainty
about the impact of construction to name a few.

There are a small number of studies in the literature that address
environmental performance risk. Parkinson and Djilali [10] inves-
tigate the impact of uncertain environmental performance of en-
ergy technologies, as defined by their carbon dioxide emissions, on
the potential of these technologies to hedge against climate impact
risk in British Columbia, Canada, using a stochastic programming
approach. Li et al. [45] use a combined fuzzy and stochastic
approach to consider uncertain environmental performance, again
as defined by greenhouse gas emissions, in combinationwith other
uncertainties, to reduce the risk that a generic energy systemwould
fail to meet specified emission targets. Heinrich et al. [46] use a
multi-objective optimization technique to investigate how uncer-
tain technological parameters in their model influence environ-
mental impact risks for the South African energy system. They
specifically consider the uncertainty in emissions from power
plants for each technology as well as the efficiency of each tech-
nology and include these in their multi-objective optimization
model. Kanudia et al. [47] use a multi-scenario framework to
evaluate the impact of uncertainty in future policy on the overall
climate impact of the energy system in Quebec, Canada.

2.3. Risk methods in energy system models

Ascough et al. [48] provide an overview of different methods of
addressing risk in energy-economicmodels. Krey and Riahi [9] note
that most of these approaches are for ‘stylized models’ that lack an
explicit technology representation as defined as the ability to
model the efficiency and operating parameters of a specific tech-
nology. Examples of models that include technology-explicit rep-
resentations include multi-objective optimization [46], near
optimal techniques [49,50], monte-carlo simulation [51] and sto-
chastic optimization methods originally developed for financial
portfolio analysis [9].

Incorporating risk in a multi-objective optimization model re-
quires defining objectives for the model that are expected to reduce
the perceived risk. The multi-objective optimization then de-
termines a set of possible decisions that meet these policy objec-
tives. Near optimal techniques, including model generated
alternatives (MGA), do not explicitly take into consideration risk
and uncertainty, but allow for the policy decision maker to choose
from amongst a number of near optimal options that are all unique.
These unique solutions allow the decision maker to choose which
of the near optimal solutions meets non-specified constraints or
Table 1
Uncertainty studies in the literature.

Uncertainty considered Hydro based jurisdiction

Financial Yes [21]
Resource availability Yes [26]
Climate sensitivity Yes [28,30]
Climate policy No
Emissions levels Yes [10]
objectives of the decision maker. Neither multi-objective optimi-
zation and near optimal techniques take uncertainty and risk into
consideration endogenously therefore this method was not chosen
for this study.

Monte-Carlo simulation techniques do allow the modeller to
take risk into consideration endogenously, similar to financial
portfolio risk methods. However, Monte-Carlo methods find an
optimal solution to large number of random problems but do not
guarantee that all of these solutions are feasible and can be
implemented. This approach is useful for many energy system
modelling questions but is not directly applicable to the consider-
ation of increased risk of emissions.

Portfolio analysis uses a stochastic approach to develop ex-
pected distributions for the future value of the potential in-
vestments. A risk model is then used to choose an investment
portfolio that balances the financial risk of this uncertainty with the
initial cost of the investment. When applied to energy systems
modelling, this approach considers the uncertainty in the cost of
future energy supply rather than the uncertainty in future value of
investments. Krey and Riahi [9] demonstrate that the risk methods
applied to portfolio analysis can be incorporated into energy-
economic models. They provide three alternative formulations of
a risk-based stochastic linear programming problem and show that
these formulations are numerically equivalent. Parkinson and Dji-
lali [10] argue that, for policy decisions, the formulation that min-
imizes risk for a given risk premium provides the greatest benefit to
the policymaker by providing a direct link between the risk and the
cost of a policy decision. The risk premium is a factor that indicates
the additional cost that society is willing to pay to reduce the
exposure to risk. Parkinson and Djilali adapt the financial risk
structure to the quantification of environmental performance risk
and, more specifically, the risk of increased carbon dioxide emis-
sions. As this method has already been applied to the risk of
increased carbon dioxide emissions it fits well with the purpose of
this study.

Based on this review of the literature, we find that financial
portfolio analysis, as presented by Krey and Riahi [9], provides an
effective method for addressing risk in energy systems models. It
allows the modeller to quantify risks in the model structure and
determine generation portfolio decisions that hedge against these
risks endogenously. Furthermore, although many authors have
investigated cost and other uncertainties, little work has been done
to quantify the risk of excess emissions. Parkinson and Djilali [10]
adapt the financial portfolio analysis methodology to address the
risk of excess emissions. In this study, we extend the work of Par-
kinson and Djilali by implementing the method they use in the
OSeMOSYS Open Source Energy Modelling System, making it
available to anyone wishing to consider risk in energy systems
modelling. We apply the methods to a case study of the electricity
system in Alberta, Canada to investigate strategies bywhich the risk
of excess emissions can be reduced. While Parkinson and Djilali
focus on British Columbia, Canada, a jurisdiction with large hydro
resources, we look at Alberta, Canada, a jurisdiction that has pre-
dominantly fossil generation in the energy mix that is similar to
many US states and countries such as China and India. In addition,
Fossil based jurisdiction Consideration of nuclear

Yes [16e24] Yes [22]
Yes [25e27] No
Yes [28e30] No
Yes [31e33] Yes [31]
This study This study
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we expand the analysis to consider the risk mitigation potential of
nuclear energy and investigate how that impacts both risk and cost.

3. Methodology

We implement a techno-economic linear programming model
to investigate uncertainty and risk hedging strategies and tech-
nologies following on the work by Krey and Riahi [9] and Parkinson
and Djilali [10]. Such models are based on the generic linear pro-
gramming problem formulation:

Min C
�
xj
� ¼

X
j

�
cjxj

�
(1)

s:t:
X
j

�
ai;jxj

� � bici (2)

xj � 0cj (3)

The objective of the problem, as defined in Equation (1), is to
find the solution vector, xj, that minimizes the sum of cjxj, where j
represents the set of all possible decisions. In energy systems
models, cj, the vector comprising the cost parameters, is often
separated into capital, fixed and operating costs while xj, the vector
comprising the decision variables, is often separated into new ca-
pacity and operating decision vectors. The subscript j then repre-
sents new capacity and operating decisions for each technology in
themodel. The performance parameters for the technologies are ai,j
and the activity or installed capacities are restricted by bi as shown
in Equation (2).

This general formulation has been implemented in a number of
techno-economic energy system modelling tools, including MES-
SAGE [52,53], Times/MARKAL [54] and, more recently, the Open
Source Energy Modelling System (OSeMOSYS) [7,8].

The optimal deterministic system cost, Cðx�j Þ is defined as the
total minimized system cost, as determined by Equation (1), for the
system realization, x�j , with no consideration of risk. A risk measure,
R (xj) is then introduced that represents the total risk that a given
decision vector, xj, will result in higher total cost than, Cðx�j Þ. Three
different approaches to incorporate risk into linear programming
models are described by Krey and Riahi [9]:

� Minimize the weighted sum, F (xj), of the total system cost and
the riskmeasure. This is the approach implemented inMESSAGE
by Messner [20] and discussed by Dantzig [55]. A risk aversion
factor, rr, is introduced that, whenmultiplied by the risk, R (xj), of
the solution vector converts the risk into an equivalent cost, as
shown in Equation (4).

minF
�
xj
� ¼ C

�
xj
�þ rrR

�
xj
�

(4)
� Minimize the risk measure subject to a maximum expected total
system cost. In this case, a risk premium, f, is introduced that
represents the extra amount that society is willing to pay, above
the optimal deterministic system cost, Cðx�j Þ, to reduce risk
below that which is associated with the optimal deterministic
solution.

minR
�
xj
�
s:t: C

�
xj
� � ð1þ f ÞC

�
x�j
�

(5)
� Minimize the total system cost unssder constrained risk. In this
case, the cost of the system is minimized subject to a maximum
acceptable level of risk, Rmax.
minC
�
xj
�
s:t: R

�
xj
� � Rmax (6)

All three approaches use a risk parameterization that is sto-
chastically determined by successive draws from the probability
space, as discussed by Hazell [56]. Hazell's approach is based on
cost uncertainty, where the total absolute deviation of cost for a
single draw, from the expected value for each set of draws, is used
to measure the financial risk of the solution associated with that
draw.

Krey and Riahi show that these three approaches are numeri-
cally equivalent in that one can choose a risk aversion factor, a risk
premium or a limit on the level of risk which will result in the same
decision vector. For financial risk, the risk measure and the cost
parameter in the model are both monetary, so the structure with
the risk aversion factor provides insights for financial decisions. For
energy systems analysis, where the risk measure may correspond
to non-monetary risks, the structure with the risk premium allows
for a clear connection between the reduction of a given risk and the
monetary cost. Parkinson and Djilali [10] observe that the risk
premium can be considered the cost of hedging to reduce risk. The
third structure, where cost is minimized for a given level of risk,
allows the modeller to obtain marginal costs from the model which
is not possible with the first two formulations, but does not allow
for a direct link between increased costs and reduced risk [9]. As we
are interested in the increased cost to mitigate climate impact risk,
we utilize the risk premium structure to obtain insights into climate
impact risks.

To incorporate the risk premium model structure into a linear
programming model, Krey and Riahi provide a risk metric, the
“upper mean absolute deviation”, as defined in Equations (7) and (8).
Equation (7) provides a measure of the risk for a given decision
vector, xj, for one random draw from the probability distributions of
the performance variable, rjðunÞ for each element in the decision
vector. This risk measure is then summed, in Equation (8), to give
the risk based on N random draws from the probability distribu-
tions of each performance variable. This overall risk, as given by
Equation (8), corresponds, for financial risk, to the expected un-
derestimation of the system cost [20]. For our purposes, this can be
considered as the expected underestimation of the system emis-
sions of the deterministic model, which we term, “risk”, in the
remainder of this paper.

R
�
xj;un

� ¼ max

8<
:0;

X
j

�
rjðunÞ � rj

�
xj

9=
; (7)

R
�
xj
� ¼ 1

N

X
n

R
�
xj;un

�
(8)

When applied to the risk of increased carbon dioxide emissions,
as we do in this paper, rj is the vector of average values of carbon
dioxide emissions for each technology and rjðunÞ is the vector of
random draws from the probability distribution of carbon dioxide
emissions for each technology. The difference between these two
parameters is multiplied by the decision vector, xj, to find the risk
for that decision vector and random draw. Equation (8) gives the
risk based on N random draws from the probability distributions of
the emissions of each generation technology. A sufficient number of
random draws must be taken to ensure convergence of the model
while keeping it to a minimum to reduce computation time.

As discussed earlier, the decision vector, xj, for most energy
system models is comprised of new capacity and operating de-
cisions. Here, we consider only the portion of the decision vector, xj,
which corresponds to the operation decisions. rj is then the vector
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of average lifecycle emissions per unit of generation for each
technology while rjðunÞ is the vector of predicted lifecycle emis-
sions per unit of generation for a technology for random draw n.

For each random draw, n, we sum only the downside risk (i.e. the
chance that the emissions are higher than expected) to obtain,
Rðxj;unÞ, the risk of emissions exceeding the expected level. The
risk for each of the random draws are then summed to find the risk
based on N random draws, RðxjÞ. A single optimization is then
performed to minimize this risk.

For the linear programming GNU MathProg code, as imple-
mented in OSeMOSYS, please refer to Appendix A.

4. Case study -methods

The risk framework described above is incorporated into the
Open Source Energy Modelling System (OSeMOSYS) [7,8]. We then
implement into this risk-enabled version of OSeMOSYS, a model of
the electrical energy system for Alberta, Canada. The Alberta model
was originally developed in OSeMOSYS by Lyseng et al. [57] and
was recently updated to include policy announcements made by
the Alberta government in late 2015 [58,59]. This section provides a
brief description of the general model structure. For those param-
eters not described here please refer to Lyseng et al. [57].

Fig. 1 shows the general structure of the Alberta model, with
generators that contribute to the reserve margin shown on the left.
The reserve margin ensures that there is enough dispatchable
generation in the generation mix to meet the demand for times
when non-dispatchable generation such as wind and solar are not
available. It is also used to ensure the system has energy available to
meet projected peak loads since the time slice structure for long
term optimization averages out some of these peaks.

The generation options that contribute to the energy mix in
Alberta include coal fired generation (COAL), natural gas fired
combined cycle turbines (CCGT), simple cycle natural gas fired
turbines (SCGT), and natural gas fired cogeneration with heat
production plants for industrial loads (COGEN). Carbon capture and
sequestration (CCS) can be implemented on either a CCGT natural
gas plant or a coal plant and is implemented as two additional
technologies available in the model. Generator performance and
cost data are taken from the U.S. Energy Information Agency [60]
while capacity limits are based on data from the Alberta Electric
System Operator (AESO) [61]. Biomass is limited in the amount of
energy available each year while the other forms of generation are
limited in terms of maximum installed capacity.

Nuclear is currently not considered a generation option by the
Alberta Electric System Operator (AESO), as outlined in their long
term plan [61]. Accordingly, a first set of model runs was performed
without nuclear as a generation option. A second set of model runs
with nuclear enabled was then performed to compare the risk
profiles with and without nuclear.

The current Alberta system is reliant on coal and natural gas
Fig. 1. Diagram of generation options in the modelled Alberta system. Generators on
the left contribute to the reserve margin. Generators on the right (i.e. wind and solar)
do not.
with smaller amounts of wind and hydro making up the balance.
The natural gas in Alberta is split between cogeneration providing
heat and power to industry and conventional natural gas genera-
tors, both simple cycle and combined cycle, meeting much of the
remaining load. The model structure implemented by Lyseng et al.
is a lumped system model, with no consideration of transmission
which follows from the Alberta Electric System Operator (AESO)
mandate to, “plan for a transmission system that is free of con-
straints” [62]. We optimize over the period 2010 through 2060
using a high-demand, average-demand and low-demand time slice
for each season based on the AESO demand growth forecast [61].
Each season is three months long, for a total of 12 time slices per
year. The size of the time slices varies from 283 h for the shortest
peak time slice to 1201 h for the longest off peak time slice.

In fall 2015, Alberta made the announcement that existing coal
generation will be retired and that 30% of all generation will be
from renewable sources by 2030 [59]. A $30/tCO2 carbon tax will be
implemented and will be used to fund incentives for renewable
sources. The carbon tax will apply to any emissions from a gener-
ator that exceeds the level of emissions of a theoretical best in class,
high efficiency natural gas plant, expected to be 0.4 tCO2/MWh in
2018, decreasing to 0.3 tCO2/MWh in 2030.

We implement this policy by eliminating residual coal capacity in
2030 and applying the $30 carbon taxon emissions above the best in
class standard, starting in 2018 at 0.4 tCO2/MWh and decreasing
linearly to 0.3 tCO2/MWh in 2030. With these policies in place, we
increase the renewable energy credit (REC) until the 30% generation
level is met. Lyseng et al. [58] found that a REC of $25/MWh was
sufficient to obtain 30% generation from renewable sources by 2040
and we, therefore, implement a $25/MWh REC in this study.
Although there is no specified overall emissions limit applied, there
are emissions targets implied by these policies. Our model similarly
does not apply a specific emissions limit on the system but de-
termines the level of emissions with these policies in place.

Distributions of the emission intensities were created based on
the review of lifecycle emissions performed by the IPCC [63, Annex
II], as shown in Fig. 2. Lognormal distributions were fit to the per-
centiles published by the IPCC following the work by Parkinson and
Djilali [10]. For each random draw, n, we obtain the predicted
lifecycle emissions per unit of generation for each technology from
these distributions.

Three technologies shown in Fig. 2 require elaboration. First, the
emissions from solar are based on the IPCC study findings for Solar
Photovoltaic (PV) rather than Concentrated Solar Power (CSP). This
is consistent with the expectations that Alberta will have distrib-
uted PV rather than CSP. Neither the Alberta Electric System
Operator (AESO) nor the Canadian Solar Energy Industries Associ-
ation mention CSP in their plans for the foreseeable future, while
both mention Solar PV as a viable technology [61,64].

The IPCC study provides only a single emissions distribution for
each of coal and natural gas, although there aremultiple generating
technologies for each of these fuels. We assume that the IPCC fig-
ures are for the worst generator using a given fuel, namely existing
coal plants and typical SCGT plants. Emissions from other plants
that use the same fuel are scaled down based on their relative
conversion efficiency.

Data for carbon capture and storage (CCS) provided by the IPCC
is sparse since there are few systems in operation to quantify the
emissions. The IPCC provides simply a minimum and maximum
value for these technologies rather than a distribution. We assume
that the distribution of emissions from plants with CCS follow a
similar shape as for those without CCS. We linearly scale the dis-
tribution for plants without CCS such that the minimum of the
resulting distribution matches the minimum provided by the IPCC
for plants with CCS.



Fig. 2. Distribution of emission intensity for various generation technologies (after
[10]) The boxes show the 25th to 75th percentiles while the whiskers show the 95%
probability limits of the lognormal distribution.

Fig. 3. Installed generation capacity over time for systemwith no consideration of risk.

Fig. 4. Installed generation capacity over time for system with 5% risk premium.
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5. Case study-results

As noted above, two sets of analyses were performed. First,
following the Alberta Electric System Operator projections, we
consider the case without nuclear as a generation option. We then
allow nuclear as a generation option and compare the results. In
both cases, we constrain our model to meet the newly announced
Alberta policies discussed earlier.

5.1. System without nuclear

The analysis is first performed without implementation of the
risk framework. Fig. 3 shows the resulting installed capacity for
each technology, over time, as a stacked area plot.

As shown in this figure, coal is mostly pushed out of the system
in 2020 by CCGT with only a small amount of residual coal capacity
lasting until 2030. Due to reserve margin requirements, SCGT is
installed as backup for the large amounts of renewable generation
being installed. A large build out of wind begins in the year 2019,
with solar entering the generation mix in 2050.

When a 5% risk premium is applied, there is a clear shift in
generation technologies, as shown in Fig. 4. The build out of wind
starts four years earlier, and the build out of solar starts eight years
earlier. Co-generation expands slowly in the first 20 years, then
remains flat until approximately 2040, when it starts to be slowly
reduced due to coal with CCS entering the system, eliminating
CCGT entirely.

Fig. 5 shows the installed capacity in the year 2050 for each of
the modelled risk premiums. The increase in solar capacity is
clearly seene each increase in risk premium causes a clear increase
in the amount of solar installed. Also notable in this figure is that
small increases in risk premium cause coal with CCS to become
more attractive while combined cycle natural gas and co-
generation become less attractive. The use of SCGT to meet the
reserve margin is less prevalent at higher risk premiums due to
installation of coal with CCS.

The large amount of SCGT capacity installed by the model is
rarely used for generation, as shown in Fig. 6. It is installed to
ensure that generation for peak periods is always available even
when variable resources such as wind or solar are unavailable. It is
important to highlight that our model lacks the short time-scale
resolution to show the operational characteristics for short term
peak generators but does include the requirement to install peak-
ing generation. Other than the clear absence of any generation by
SCGT, as shown in Fig. 6, the operational capacity factor for each
generator remains approximately the same for each risk premium
level.

As the risk premium increases, the amount of potentially
asynchronous generation such as PV and Wind in the system in-
creases to nearly 50% of the total generation. We expect that, if
there was such a large build out of wind and PV in Alberta, that
many of the wind turbines installed would be installed with syn-
chronous generators as this is both technically feasible and done in
some existing wind turbine installations [65]. In addition, PV in-
stallations could be connected to the grid with synchronous in-
verters, further mitigating this impact. Finally, the SCGT
installations, though not used for significant generation, would
likely be called upon for grid balancing duties which should allow
for grid stability even with such a large amount of wind and PV
generation.

The current risk framework considers only the risk associated
with generation emissions, and not the risk associated with con-
struction emissions. Given the large quantity of new construction



Fig. 5. Installed capacity by technology at various levels of risk premium in the year
2050.

Fig. 6. Generation by technology at various levels of risk premium in the year 2050.

Fig. 7. Total model period emissions for each random realization at various levels of
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predicted by the model, these emissions and their associated risk
may be significant. In addition, our model does not quantify all of
the uncertainty related to the technical potential of carbon capture
technologies nor the long term stability of the stored carbon.

The Alberta average load in 2050 is under 19 GW, with a peak
near 30 GW, whereas the total installed capacity in 2050 varies
from approximately 55 GW for the base model to over 60 GW for
the 5% risk premium. This apparent over-building results from the
requirement for dispatchable generation to meet the reserve
margin combined with the lower risk of carbon dioxide emissions
from wind and solar. To reduce the emissions risk, more solar is
installed, but the same level of dispatchable generation is installed
to ensure system reliability.

Fig. 7 shows the distribution of realized emissions for each of the
risk premiums simulated, showing a clear trend of reduced emis-
sions with increased risk premium. The distribution of emissions is
compressed at higher risk premium indicating a reduced risk of
exceeding expected emissions.
5.2. Nuclear available as a generation option

Fig. 8 shows the installed capacity for each technology on a
stacked area graph with no consideration of risk, but with nuclear
enabled.

When compared with Fig. 3, the major change with nuclear
available is the absence of solar generation from the mix. Other
notable changes include the reduction of SCGT buildout after 2040
which is replaced by nuclear capacity and the complete elimination
of CCGT capacity by 2055.

When a 5% risk premium is applied, there is a significant shift in
the generationmix, as shown in Fig. 9, relative to themodel with no
consideration of risk. Wind comes on line approximately five years
earlier while nuclear replaces cogeneration and coal entirely. The
additional nuclear is installed as nuclear has very low emissions
and very low variability in terms of the predicted emissions. This
means it is a cost effective risk hedge for the model to choose.
Additional SCGT is installed to meet the reserve margin.

Fig. 10 shows the installed capacity in 2050 for each of the risk
premiums considered. In the existing AESO projections case, where
nuclear is unavailable, the installation of solar increases steadily
with the risk premium, as shown in Fig. 5. When nuclear is avail-
able, solar is installed in 2050 and only when the risk premium
rises to 4%.

Fig. 10 shows that the generation mix changes little with in-
creases in the risk premium over 1%. The generation mix, once coal
and natural gas are pushed out, remains largely nuclear and wind,
with SCGT meeting the reserve margin. Small amounts of other
technologies comprise the remaining generation mix.

In comparison to the case where nuclear is not available in the
model, the total installed capacity for the system is quite different
with nuclear available. As shown in Fig. 5, the 2050 installed ca-
pacity rises from 55 GW for the base model to over 60 GW for the
5% risk premium under the current no nuclear policy. When nu-
clear is available the total amount of generation is reduced to
around 50 GW, and an increase is seen only when the risk premium
rises to 5%. With nuclear available it is more sensible to use nuclear
to replace natural gas generation up to a 4% risk premium rather
than installing more wind and/or solar. Since nuclear meets the
system reserve margin, it can replace natural gas rather than add-
ing to the installed capacity of the system.

As is the case without nuclear in the mix, when nuclear is
risk premium.



Fig. 8. Installed generation capacity over time for system with no consideration of risk
and nuclear as a generation option.

Fig. 9. Installed generation capacity over time for system with 5% risk premium and
nuclear as a generation option.

Fig. 10. Installed capacity by technology at various levels of risk premium in the year
2050 for system with nuclear available.

Fig. 11. Generation by technology at various levels of risk premium in the year 2050 for
system with nuclear available.
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enabled, SCGT technologies are installed to meet the reserve
margin, but do not significantly contribute to the energy produced,
as shown in Fig. 11. This figure shows that two types of generation,
nuclear and wind, dominate across all risk premium levels. For the
case with no consideration of the emissions risk, co-generation
remains as a generation option meeting a portion of the heat de-
mand for the oil sands. However, this is pushed out with only a 0.5%
risk premium and is replaced by nuclear. Nuclear would likely also
be able to supply this heat demand, so would be a reasonable
replacement for co-generation. As the risk premium increases,
small amounts of other technologies such as biomass and solar
come in to the mix, but wind and nuclear comprise the majority of
the generation in the system in all cases.

One consideration for this generation mix would be the inter-
action between nuclear and wind generation. Nuclear is not
generally considered agile, so the coupling with variable wind
generation might be technically challenging. Fig. 10 shows that
there is a significant amount of SCGT installed to meet peaking
loads, but this generation is never used in the model due to the low
resolution of the time slices, as seen in Fig. 11. In actual operation
the SCGT might be called upon to meet the ramping requirements
in the system. It is also possible that, with new nuclear technolo-
gies, that nuclear could meet the ramping requirements. Adapta-
tions in existing plants and design features of new plants promise
to allow nuclear to follow loads [66,67] and reactors in France have
been used for load following for many years [68,69].

Fig. 12 shows the distributions of realized emissions for all 2000
random realizations of the generation emissions profiles. As was
the case with the current no nuclear AESO projection, there is a
clear trend of reduced average emissions with an increased risk
premium. There is, however, notable difference between the trend
with nuclear available and the trend with the current AESO pro-
jections without nuclear (Fig. 7).

For the case with no nuclear (Fig. 7), as the risk premium in-
creases, average emissions and the high emission outliers follow
the same decreasing trend and the maximum high emissions case



Fig. 12. Total model period emissions for each random realization at various levels of
risk premium for system with nuclear available.

Fig. 13. Model calculated risk versus system cost for all risk premium levels for the
system with and without nuclear.
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is approximately 3500MtCO2.When nuclear generation is available
(Fig. 12), the trend of average emissions show this same decreasing
trend, with the average at each risk premium around 500 MtCO2

lower than that without nuclear available. However, there are a
number of high emissions outliers, which are as high as
4500e6000 MtCO2. Both risk and average emissions are reduced,
but there is a low probability (i.e. less than 10 in 2000 or less than
0.5%) that the emissions are higher. This is because the system re-
lies on only two generation technologies. If either of the technol-
ogies produces emissions toward the upper end of its distribution,
for a given random realization, the total emissions for that reali-
zation are high.
5.3. Cost and risk comparison

It is illustrative to compare the cost and risk for each risk pre-
mium for the systems with and without the option of nuclear
generation. Fig. 13 shows the Pareto optimal risk versus cost curves
with and without nuclear available. This figure shows that the risk
and cost are significantly lower for all situations where nuclear is
available.

Fig. 13 shows that the risk with nuclear, at a 0.5% risk premium,
is lower than the risk without nuclear at a 5% risk premium.
Although there is much public controversy about nuclear safety,
nuclear generation provides a cost effective hedge against climate
emissions risk.

6. Discussion

We have used a stochastic risk framework and applied it to
carbon emissions in an electrical system represented by the prov-
ince of Alberta, Canada, a predominantly fossil based system, and
have included nuclear as a risk mitigation technology.

We find that, for the systemwithout the availability of nuclear in
the generationmix, a 5% risk premium starts the build out of wind 5
years earlier, and the build out of solar photovoltaic 7 years earlier
than the base model, ending up with significantly more installed
solar in 2050 thanwithout the risk premium. In the year 2040, coal
with carbon capture and storage comes into the energy mix and
replaces co-generation as a less risky alternative. Parkinson and
Djilali [10] did not include carbon capture technologies in their
model so the results cannot be compared directly, but their model
also showed an increase in wind generation with increased risk
premium and, similar to our results, they found an increase in SCGT
to meet the reserve margin. Their model showed run of river and
pumped hydro taking up the bulk of the generation while, in our
model, CCS came in at higher risk premiums and pushed out CCGT.
Since they analysed a primarily hydro based jurisdiction, using
pumped storage and run of river technologies is possible. In the
Alberta context, there is no significant potential for either run of
river or pumped storage. This shows that jurisdictions with
different potential energy sources need to be analysed separately.
Our analysis could be extrapolated to similar fossil based jurisdic-
tions such as many US states and countries such as India and China.

Although current climate policies eventually incent additions of
renewables, additional policies that provide for earlier adoption of
solar power and wind could provide a risk hedge against future
emissions if nuclear is not considered an option. A policy to
encourage earlier wind adoption would need to be implemented
almost immediately, while the policy to encourage solar adoption
would need to take effect in the early 2040s. Investments in the
development of coal with CCS or other unproven low carbon
technologies that can meet baseload with lower emissions risk
could provide future benefits. Although this technology is not
installed by the model until the early 2040s, similar to solar, the
potentially lengthy research and development timelines would
indicate that policy action sooner rather than later is needed. Using
a risk framework to look at carbon dioxide emissions could allow
decisionmakers to implement policies that aremore effective given
the timelines for some technologies.

With nuclear available for the system there is little power
generated by any technology other than wind and nuclear, though
some flexible generation in the systemwould be needed for system
stability. This could be met by building nuclear generation able to
ramp and follow load though we acknowledge that this could in-
crease costs. If nuclear is considered an option for Alberta, the focus
should be on getting the best performance out of the combination
of wind and nuclear. Evenwithout a risk premium applied, allowing
nuclear reduces costs and reduces the risk of increased emissions
and is installed starting around 2040. With a significant shift in
social/political will, having nuclear generation operational in
Alberta as early as 2020, and contributing significantly by 2030
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reduces the emissions risk significantly if a 5% risk premium is
applied. This is consistent with the results found by Kanudia et al.
using a multi-scenario framework [47], who found that, when
nuclear was available, it was always fully utilized in their model.
We realize that a significant political and social shift would be
required to allow nuclear to contribute to the Alberta power system
in 2020 so early policy action would be needed to realize the full
benefit of nuclear as a risk hedge if a 5% risk hedge is implemented
as policy.

Our results show that nuclear is a cost effective risk hedge
against increases in carbon dioxide emissions even without a risk
premium applied. The 0% risk premium with nuclear case has the
same emissions risk as the 3% risk premium without nuclear case,
but at a 5% lower cost. As discussed in the literature review, there
has been significant research into the cost uncertainty of nuclear
but our results indicate that there is room for capital cost escalation
in nuclear and it would still provide an effective risk hedge against
increased emissions.

As noted in the literature review, very little work has been
published on the risk of increased emissions in energy system
modelling. More studies that investigate this space would provide
more comparisons and allow for more detailed policy direction.

7. Future work

The model described above has a number of limitations that
could be addressed in future work. The main limitation is that
emissions from a number of technologies such as wind and solar
occur only at the installation phase and not when the technology
generates electricity. The current implementation of the model
uses expected emissions per kWh generated, or levelized emis-
sions, and therefore disadvantages these technologies. Separating
out the risk associated with construction emissions will allow us to
address this limitation.

The model implementation above uses Coal with CCS as a proxy
for a low-emissions dispatchable/baseload generator. At this point
CCS technology is still developing and there are unknown risks
with the technology including the possibility of leakage from the
stored carbon. Incorporating this risk into the model could alter the
results and provide interesting insights.

In this study we investigated how to hedge against the risk of
increased emissions while most studies on risk consider only
financial risks. Developing a framework for incorporating both
financial and emissions risks into the model would potentially
provide insights into how to mitigate both financial and emissions
risks and allow for more nuanced policy decisions.

Finally, expanding the study to include the entire energy system,
not just the electricity system, would make the analysis more
general. There may be some interesting trade-offs in terms of how
to meet the given demand for these three services within this
model framework.
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Appendix. : OSeMOSYS Code

To incorporate risk into OSeMOSYS the following sets, parame-
ters, variables and constraints were added to OSeMOSYS.

Sets:
set RANDOMDRAWS;
Randomdraws is a sequential set from 1 to N, the number of
random draws in the model run.

Variables:
var Risk >¼<Roman> ¼ </Roman>0;
var RiskNUp{n in RANDOMDRAWS} >¼ 0;

var RiskNDown{n in RANDOMDRAWS} >¼ 0;

Risk is the risk measure, which is comprised of only the upside
risk as defined below. Two variables, RiskNUp and RiskNDown are
used to allow the model to sum only the upside risk.

Parameters:
param BaseEmissionIntensity{t in TECHNOLOGY};

Baseline emissions intensity for each technology. This is the
deterministic expected average emissions intensity for this tech-
nology with no consideration of uncertainty.

param EmissionsIntensity{n in RANDOMDRAWS,t in

TECHNOLOGY};

The emissions intensity for each technology for each random
draw. This is used to calculate the upside/downside risk.

param OptimalCost;

Cost of the 'optimal' system, without any risk hedging
considerations.

param RiskPremiumFactor;

The risk premium factor for the model. How much more we are
willing to pay to hedge against the risk.

Objective:
minimize risk: Risk;

We minimize the risk, which is calculated as the upside risk in
constraint EQRiskSum.

Constraints:
s.t. EQRiskDraws{n in RANDOMDRAWS}: sum{y in YEAR, t

in TECHNOLOGY, l in TIMESLICE,r in REGION, m in MOD-

E_OF_OPERATION} (RateOfActivity [r,l,t,m,y] *

(BaseEmissionIntensity [t] - EmissionsIntensity

[n,t])) - RiskNUp [n] þ RiskNDown [n] ¼ 0;

For each random draw, this equation calculates the upside or
downside risk for the given technology mix and operational
decisions.

s.t. EQRiskSum: sum{n in RANDOMDRAWS} RiskNUp [n] ¼
(max{nn in RANDOMDRAWS} max (nn)) * Risk;

This equation sums the upside risk to calculate the overall risk in
the system.

s.t. Cost: sum{r in REGION, t in TECHNOLOGY, y in

YEAR} (((((sum{yy in YEAR: y-yy < OperationalLife

[r,t] && y-yy>¼<Roman> ¼ </Roman>0} NewCapacity

[r,t,yy])þ ResidualCapacity [r,t,y])*FixedCost

[r,t,y] þ sum{m in MODE_OF_OPERATION, l in TIME-

SLICE} RateOfActivity [r,l,t,m,y]*YearSplit [l,y]

*VariableCost [r,t,m,y])/((1 þ DiscountRate
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[r,t])^(y-min{yy in YEAR} min (yy)þ0.5))þCapital-

Cost [r,t,y] * NewCapacity [r,t,y]/

((1 þ DiscountRate [r,t])^(y-min{yy in YEAR} min

(yy)))þDiscountedTechnologyEmissionsPenalty

[r,t,y]-DiscountedSalvageValue [r,t,y])þ sum{s in

STORAGE} (CapitalCostStorage [r,s,y] * NewS-

torageCapacity [r,s,y]/((1 þ DiscountRateStorage

[r,s])^(y-min{yy in YEAR} min (yy)))-Capital-

CostStorage [r,s,y] * NewStorageCapacity [r,s,y]/

((1 þ DiscountRateStorage [r,s])^(y-min{yy in YEAR}

min (yy)))))<¼ (1 þ RiskPremiumFactor) *

OptimalCost;

We restrict the cost to being less than the optimal cost plus an
additional risk premium factor.
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