BCIT

ELEX 7660: Digital System Design
Project Report
Automatic Garage Door Opener

Armin Laghaee, Kevin Shu
April 15, 2017

Abstract

This report discusses the digital design of an automatic garage door system using RF technology.
The report will also explain both the hardware and software design processes used to implement
the model.

Table of Contents

1 Introduction
2 Background
3 Procedure

4 Circuit Design

4.1 Controller Circuit e e e
4.1.1 Voltage Regulator L
4.1.2 LED Power indicator e e e e
4.1.3 Encoder
4.1.4 RF-Transmitter e e e e e e

4.2 Garage System Circuit L
4.2.1 RF-Receiver. e
4.2.2 Decoder e e e e e
4.2.3 Optocoupler. L
4.2.4 Half-H Driver e
4.2.5 Stepper Motor

5 Modular Design

5.1 Project1 Module e
5.1.1 Overview e e e e
5.1.2 Clock Division e e
5.1.3 Instantiation e

5.2 garageDoorOpener Module
5.2.1 Module Behaviour
5.2.2 Describing the State Machine L oo
5.2.3 Range of the Counter

5.3 Stepper Module e
5.3.1 Module Behaviour
5.3.2 Motor Direction e

5.4 Button Module
5.4.1 Module Behaviour

5.5 Garage Model e

6 Conclusion

7 Appendix A: Frequency Datasheets

7.1 A.1: HT12E Oscillator Frequency,

7.2 A.2: HT12D Oscillator Frequency o
8 Appendix B: Code

8.1 B.1: projectl Module

8.2 B.2: garageDoorOpener Module o

8.3 B.3: stepper Module L

8.4 B.4: button Module

M

UL UL UL UL UL W W W W w wh

© 00 00 00 00 00 00~~~ Utot U

©

1 Introduction

This project was prepared for Dr. Eduardo (Ed) Casas for ELEX 7660 - Digital System Design
[1]. In this project, we modeled an auto garage door opener using the RF transmitter and receiver
technology. We used the DEO-Nano FPGA and System Verilog as the programming language. Our
goal was to simulate an everyday garage door.

2 Background

The garage door opener is a motorized device which will close or open the garage door of your
house. Most garage door openers are controlled by a remote controller. The remoter controller
sends a signal wirelessly to the garage door opener. The garage door revises the signal and does an
action. Specifically, if the garage door is closed and the home owner wants to get out or get in the
house, he/she will press the button on the controller so the garage opener will activate the motor to
open the door. The same action is done to close the garage doors. In addition, the garage door will
pause if the owner presses the button while closing or opening.

Figure 1: A modern garage door system

3 Procedure

Both hardware and software designs were used in this project. Circuits for the remote controller and
the garage system were designed and implemented. Specifically, components such as the HT12E,
the encoder, were used to transmit data. On the receiver side, the HT12D was used to decode the
signal and giving it to the FPGA. The DEO-Nano was the FPGA which we used for this project.
Later, the FPGA sends the appropriate 1’s and 0’s parallel to the stepping motor, so the motor
can rotate clockwise or counter-clockwise. We first used breadboards to check if the circuit was
working properly. After finding some mistakes and troubleshooting, we soldered the components of
the controller and the garage system on two different circuit boards.

Regarding the software, we programmed the FPGA with System Verilog. Different modules were
created to accomplish different parts of the objective. To illustrate, we used one module to control
the motion of the stepping motor, and one to track the time and create delay, and another which
indicates when to turn on or off the motor. After many research and studying, we concluded that
the best way to meet our objectives is to create and use state machines. After drawing flow charts
and diagram, we wrote our code on ModelSim. Making sure there are no syntax errors, we used
Quartus Prime 16.1 to compile and synthesize. In addition, a .gsf file was used to set the pins of
the FPGA. We were able to resolve many of our logic errors by creating test-bench for most of our
modules.

4 Circuit Design

As mentioned earlier we designed two circuits. One is for the controller which will send a signal
when the push button on the controller is pressed, and one is the garage system which will receive
the signal and runs the stepper motor.

4.1 Controller Circuit

The controller basically sees the position of the push button switch and can send a signal with
clock trough the transmitter. The controller circuit consists of a regulator, H12E, and RF Link
transmitter. Below we will describe each of them in detail.

+12Vv
c
~
+5V
wx 5V
+5V
o
<
o
o
C
=
j=)
e}
&
S
[a)
lw |

VI - VO é 16 osct 0sc2
c1 Z c2 = 4| 3 a0s [0
100uF 7305 100uF 1 AD9 9
~ 2 A0 AD10 i3
Al AD11 |—=
YOS 3 5
g = A2
4
5 A3
GKD = a4 GKD
7 AS
GKD A6
A
21 vss

Designed with CadSoft EAGLE by
Kevin Shu

Figure 2: Controller Circuit Diagram

4.1.1 Voltage Regulator

We used 9V batteries to power our remote controller, but we need a constant 5V for the HT12E
IC. For this reason, we used the 7805 voltage regulator to output a constant 5V. The figure below
shows how the regulator was wired. We used capacitors for better performance and add safety to
the regulator.

4.1.2 LED Power indicator

In our controller, we simply used a LED to indicate if the controller has power. If the LED is not on,
it indicates that there is no voltage in our controller, or the amount of the voltage is not adequate.

4.1.3 Encoder

The HT12E was used to encode the information and transmit the addresses/data programmed with
the header bit via an RF by receipt of a trigger signal. In this design the HT12E is always activated;
thus, TFE is connected to the ground. The HT12E acts like a VCO. This means applying a specific
voltage and choosing a resistor value, we can obtain the desired frequency which we want to send
to the receiver. In our design, we used a 5V and 1M ohm resistor to create a 3kHz frequency clock.
For more information on how the frequency was chosen refer to Appendix A.1 or the data sheet.
We connected an active high push button to one of the address/data input pins, specifically ADS.
So when the PB switch is pressed it will output a high from pin 17 which will be connected to the
transmitter. The address pins were all left grounded.

4.1.4 RF-Transmitter

The RF transmitter (4800bps) is used to create a very simple wireless data link. This creates a
simplex channel. In other words, the transmitter can only send the signal, not receiving a signal.
4.2 Garage System Circuit

The garage system receives the signal and decodes it. Using the FPGA, the garage system will run
the stepping motor. The figure below is the overall circuit diagram of the garage system.

GARAGE SYSTEM

>
NN ANT o
g22gk wie
—|— AVAVAVAV
10| 0|~ o] 50K B z
u1 FAVAn ¥
> >
© o ¥ogxloxlioxly
* ol 18 1 vpp vr 2 S S % =
16 oscz |42 OKS > T 3T 3T 3
14 O oo 0 e o z 2
py L R6 P 5 + v +
. N p10 |12 vz 2 R2 Okl L1 j12eN veer |16
2 13 2 4 2 A 1 6
3 Al D11 o — VWV B 2 15
A2 - z P 1A 4
Z3 A 4N37 oln < S | V4
2 A4 GRD < = B s 2 4 3Ly q |14
7l [e 2 4 13
I »s 5 51| 6 4N37 A GND1 GND3 a
w 241, | 5
Xo . 0K2 G 51 G2 GND4 |12 ©
9 FPGA AAAA 1 6
Vss A 5 6 11
22 v 2 3y
Xp HTi2D 2 4 71 oA 3 |0
4N37 8 f vec2 34en |2
x L™
0K3 “SE 293D &
AVAVAVAV 1 6 > *
2 2l 8
7
é/\ U3 z 2 NZ 4 YV +
+ + Stepper Motor
11 v L Vo 3 4N37
Z 0K4
o
= VT S R 1 6
T~ -~ 5
100uF o 100uF 220 V4 _K
2 4
4N37
% Kb GRb
GND

Designed uith CadSoft EAGLE buy:
Kevin Shu

4.2.1 RF-Receiver

In this project, the RF receiver (4800bps) was used to receive the signal from the controller. It is
important to note that the receiver also requires a 5V supply voltage.

4.2.2 Decoder

The H12D was used to decode the received serial addresses and data from the encoder. Just like
the encoder, we used 5V and a resistor value, 50K{2 in this case, to generate the desired frequency.
We want our decoder frequency to be set to 150 kHz because it is recommended that our decoder
oscillator is 50 times the encoder frequency.

If the decoder gets a signal, DO (pin 10) will be high, and a LED will go on as it can be seen from
the circuit diagram above.

4.2.3 Optocoupler

We used the 4N35 optocouplers to isolate the circuits from both sides of the FPGA. This is to make
sure there is no high current that will damage the FPGA. The optocoupler consists of an IR-diode
and a phototransistor. The phototransistor will turn on if it sees the IR-diode lights up which will
activate its circuit.

4.2.4 Half-H Driver

The L293D was used to provide bi-directional current to the stepping motor. In other words, it will
cause the motor to run clockwise or counter-clockwise. The half-H driver requires a 5V and a 12V
to drive the stepper motor. In general, when an input is high, the associated output is high, and
when the input is low the output is low [2].

4.2.5 Stepper Motor

In this project, we used an ST-PM35-15-11C stepper motor. The motor is a bipolar stepper motor,
which consists of 4 wires. To make the motor to rotate clockwise we have to follow the pole excitation
order in Figure 3.

Lead Wire | Terminal
Color Code 1 2 3 4
Black 1 - -
Orange 3 - -
Brown 2 - -
Yellow 4 - -

Figure 3: Pole excitation required to rotate stepper motor clockwise

Note that in Figure 3, a “~” means a logic 1. Also, if you want to rotate the motor counter-clockwise,
you have to reverse the order, which means you have to do terminal code 4,3,2,1 in order.

5 Modular Design

As mentioned earlier we used System Verilog to program the FPGA. We created the following
modules for the automatic garage door. Their codes can be found in Appendix B of the report.

5.1 Projectl Module
5.1.1 Overview

This is the top-level entity, main module, that has the following inputs:

A input pin on the FPGA to receive the signal from the controller (the transmit-
ter)

KEY [0] push button on the FPGA used to reset the program

KEY[1] If we are not using the controller (not in RF mode), we can use the push button
on the FPGA

CLOCK_50 | Using the 50 MHz of the FPGA as our initial clock

In addition, we are using the following outputs:

out is a 4-bit output to run the stepping motor

clk2kHz is a 2kHz clock created by the PLL

clk48Hz | is a 48Hz (60RPM) clock that the stepper is running at

because we are using push button on the controller, we need a synchronize the
PB to our 48Hz clock

PB_sync

Figure 4 shows the overall block diagram of the top-level module. We will describe some of the input
and output logics in more detail below.

plt:pllo
CLOCK_50[> LSkl {0 1 [clk2kHz
KEY[1.01[> button:button_0
clkDivider.clkDivider_0
1 PB PB_sync D PB_sync
inclk clkOQut clk
0 reset ‘
{ > clk48Hz
stepper:stepper_0
garageDoorOpener:garageDoorOpener_0
clk
PB motor_down motor_down out[3.0] D out[3.0]
clk motor_up motor_up
0 reset ‘

Figure 4: Block Symbol of Project1

5.1.2 Clock Division

A 50MHz clock is too fast for the stepper motor to run. In other words, the motor cannot get 1’s
and 0’s that fast. The stepper motor needs 48 steps or pulses to complete 1 revolution. In other
words, 48 pulses applied in 1 sec, the motor will complete 1 revolution, this is equivalent to 60 RPM.
Please refer to Section 5.2.3 on how we got 48 steps.

So in our clkDivider module, we used the Altera Phase Lock Loop (PLL) to convert the 50MHz
down to a 2kHz clock because the PLL has a limited divider range. Therefore, we used a counter to
further divide the clock to 48Hz.

This means it will take 20.83ms to do a step and therefore requires to divide the 2kHz clock by
41.66. The number of bits required for count would be 6 bits (shown in equation 3). We need to
make sure to have the duty cycle of the clock at 50%. Thus, the period was divided in half where
half of it was set high and other half was set low.

1
delay = Y 20.83ms (1)
frequency divider = 2000H z x 20.83ms = 41.66 (2)
log(41.66)

number of bits = = 5.38 = 6 bits (3)

log(2)

5.1.3 Instantiation

Our project! is our top-level module where we instantiate all of the other modules here (stepper,
garageDoorOpener). The input, output, and other variables defined in the project! module, such as
motor_up and motor_down, are assigned to the inputs and outputs of different modules. Below is an
example of how we instantiate a module.

button button_0(
.clk(clk48Hz) ,
.PB(KEY[1]),
.PB_sync (PB_sync)
);

In the example, we put the 48Hz clock we created and the KEY[1], input of projecti, as the button
module’s input, and PB_sync, the output of project! module, as button module’s output.

5.2 garageDoorOpener Module
5.2.1 Module Behaviour

Based on the clock and the input signal received from the push button, this module indicates which
state our stepping motor is at. This module is basically a state machine. The logic of this state
machine is shown in Figure 5.

reset

downPausad

mount==MAX

Figure 5: State Diagram of the garageDoorOpener module

5.2.2 Describing the State Machine

When resetting, the garageDoorOpener module will go to the initialization (init) state, which will
make sure that motor is off. We programmed it so after init state it will go to the closed state.

When the garage door is opened or closed, it will indicate it by using a flag (atTop, atBottom). In
addition, it tells the stepper module to output 0 so the motor will not move. Using an if-statement
(if the push button is pressed) it will go to the next state of the state machine.

In the closing and opening state, the FPGA will turn the motor clockwise or counter-clockwise. In
our setup, when the door is closing, the motor turns counter-clockwise, and if the motor is opening,
the motor turns clockwise. During the time that the door is closing or opening, if you press the
push button the door will stop moving. If you press the push button again, the door will move in
the opposite direction.

In general, in each state, we indicated the flags and used if-statements to transition to the next
state.

5.2.3 Range of the Counter

It is also important to note that we wanted our stepping motor to rotate a complete cycle either
clockwise or counter-clockwise. To do so, we need to know each step moves by how many degrees.
The stepping motor we used is rated to have a stride angle of 7.5 degrees for each step and therefore
require 48 steps to complete a revolution.

o

7.5°
Our counter counts down from maxGarageStep to zero in closing state and counts up from zero
to maxGarageStep in the opening state. From trial and error, we determined it takes 400 steps to
completely open our garage door.

maxGarageStep = = 48 steps per revolution (4)

5.3 Stepper Module
5.3.1 Module Behaviour

This module consists of a simple if-else statement. Basically, this module checks if motor_up or
motor_down flag is set. If motor_down is set the motor will move counter-clockwise, as a result, we
will see that the door is closing. If the motor_up is set the motor will move clockwise, and so the
door is opening.

5.3.2 Motor Direction

To make the motor to move, a sequence of a 4-bit value is applied to the motor, since we are using
a 4-wire bipolar stepping motor. The sequence of ones and zeros applied to the stepping motor was
mentioned in Section 4.2.5 of the report.

To apply this logic in System Verilog, a 4-bit variable called out was defined which gets each row
of the up and sends it out of the FPGA to turn the motor. Each row consists of a 4-bit value. As
it can be seen from the Figure 6 below, if we go from up[0] to up[3] the motor will go clockwise,
and if we go from up[3] to up[0] the motor will go counter-clockwise.

Up[0] 1001) Out
Upll] 0011
Up[2] 0110
Up[3] 1100

Figure 6: Sequence of bits to make the motor to move

5.4 Button Module
5.4.1 Module Behaviour

This module ensures that the push button is in synchronous with the clock at 48Hz. 48Hz is fast and
since our states change on every positive edge of the clock, we have to make sure that the moment
you push the button happens on the edge and stays high till the end of the clock cycle. Or else, the

state machine will go through multiple states as you hold onto the push button.

As we used the pushbutton on the FPGA (active low), we invert the signal as shown below in
Appendix B.4.

5.5 Garage Model

Figure 7 shows our model of the garage system where we used thin wooden panels to construct the
walls and roof. The stepper motor was positioned above and centered so that the garage door can
move up with ease. There was also plastic guide rails to help guide the door up. The door was cut
from cardboard as it was light. We used tooth floss as the string.

Figure 7: Our Garage System Model

6 Conclusion

This report has shown the hardware and software design of the automatic garage door opener using
RF technology. However, more future work can be added to the project such as a timer where
it counts down the time in case the homeowner forgets to close the door. Also, sensors can be
incorporated into the system where can detect for any objects in the way of the garage door. A
LED display can be used to show messages and information.

References

[1] E. Casas, Elex 7660 course notes. 2017.

[2] T. Instruments. (). L293x quadruple half-h drivers, [Online]. Available: http://wuw.ti.com/
lit/ds/symlink/1293.pdf.

[3] Holtek. (). Ht12a/ht12e series of encoders, [Online]. Available: https://www.engineersgarage.
com/sites/default/files/HT12E_O.PDF.

[4] ——, (). Ht12d/ht12f series of decoders, [Online]. Available: http: //www . farnell . com/
datasheets/1525377.pdf.

7 Appendix A: Frequency Datasheets
7.1 A.1: HT12E Oscillator Frequency

Rosc (£2)

6.00

5.00

4.00

(3kHz)3.00

2.00

The recommended oscillator frequency is foscp (decoder) = 50 foscg (HT12E encoder)
E 3 foscg (HT12A encoder)

Figure 8: Oscillator frequency vs supply voltage of HT12E [3].

10

HT12D Oscillator Frequency

7.2 A.2

(Scale)

{

p IS, S

&
f amgderos BF wa y e, heemmaar, e To. o (Rl b
] 1 I ’
] L} I |
] 1 I
[|, R 5 . ()
1
] L\ [}
] 1 [} 1}
| S TR TYTATY
] 1 I [}
] L} [} 1}
1 1 | 1
| bt obbetialis bl Infiatis W indls fedod v Gt fladh ‘el
] 1 |
| I
| 1
[achadedoi-fod Sohfatics RACE
1] 1 I
] L} I
] L} |
 Zetiodoce iy o ko e E
] 1 i 1}
] L} I J
] 1 [}
ity okt baf it Vi i
] L} I 1}
] L} I]
B i e I
' 1 [} [}
1] 1 I
] L} I
[| O, brae e A
] 1 I 1}
] 1 I]
] L} I 13
Bz [e L
] 1 [} [
] 1 I]
] L} I 1}
Vot i e Loosamad =
] 1 I Ll
1] 1 I]
] L} I 13
bcewaad | RS, desesas s
] 1 I 1}
] 1 I]
] L} i 13
b & wcim it & s R [
] 1 I I}
] 1 I]
] L} I 1}
| PSR dane e { PR {5
T T | [
8 2 8 g
“t L] ” o

2.00

{100kHz)1.00 |-

13 VDD (Vv DC)

12

50 fosce (HT12E encoder)

Note: The recommended oscillator frequency Is fosco (decoder)

fosce (HT12A encoder).

e
~ig

Figure 9: Oscillator frequency vs supply voltage of HT12D [4].

11

8 Appendix B: Code
8.1 B.1: projectl Module

1 // projectl.sv — Automatic Garage Door Opener top—level module
2 // Armin Laghaee & Kevin Shu

s // Date: 2017—04—14
a4

module projectl (output logic [3:0] out, // motor output
6 output logic clk48Hz,
7 output logic clk2kHz,
8 output logic PB_sync,
input logic A, // I/P for from RF RX
input logic [1:0] KEY,
input logic CLOCK_.50
)

! logic motor_up, motor_-down;
6 // instantiate your modules here...

s pll pllo(
9 .inclk0 (CLOCK.50) ,
0 .c0(clk2kHz)

)

3 clkDivider clkDivider_-0 (
4 .inclk (clk2kHz) ,

5 .reset (KEY[0]) ,

6 .clkOut (clk48Hz)

7 E

9 button button_0(

30 .clk (clk48Hz) ,

31 .PB(KEY[1]) ,

32 .PB_sync (PB_sync)

33 B

34

35 garageDoorOpener garageDoorOpener_0 (
36 .clk (clk48Hz) ,

37 .PB(PB_sync) ,

38 .reset (KEY[0]) ,

39 .motor_up (motor_up) ,

10 .motor_down (motor_down)
41);

42

43 stepper stepper_0 (

14 .clk (clk48Hz) ,

15 .motor_up (motor_up) ,

16 .motor_down (motor_down) ,
a7 .out (out)

b
19 endmodule

1
52 module clkDivider (input logic inclk , reset,
53 output logic clkOut);

parameter period = 48; //48Hz = 60 RPM creating 20.83ms clock
56 parameter N = 5; // bits — 1

58 parameter halfPeriod = period / 2;
59 logic [N:0] count;

61 always_ff @(posedge inclk)
62 begin

63 if (!reset) begin

64 count <= 0;

65 clkOut <= 0;

66 end

67 else begin

68 if (count > halfPeriod — 1) begin
69 count <= 0;

70 clkOut <= "clkOut;
71 end

12

99
100
101
102
103
104
105
106
107
108

109

111

135
136
137
138
139
140
141

142
143
144
145
146

147

else count <= count + 1;

end
end

endmodule

module pll (inclk0, c0);
input inclkO;
output cO;
wire [0:0] sub_wire2 = 1'hO;
wire [4:0] sub_wire3;
wire sub_wire0 = inclkO;
wire [1:0] sub_wirel = {sub_wire2, sub_wire0 };
wire [0:0] sub_wire4 = sub_wire3 [0:0];
wire ¢0 = sub_wire4;
altpll altpll_component (.inclk (sub_wirel), .clk
(sub_wire3), .activeclock (), .areset (1'b0), .clkbad
(), .clkena ({6{1'b1}}), .clkloss (), .clkswitch
(1'b0), .configupdate (1'b0), .enable0 (), .enablel (),
.extclk (), .extclkena ({4{1'bl}}), .fbin (1'bl),
.fbmimicbidir (), .fbout (), .fref (), .icdrclk (),
.locked (), .pfdena (1'bl), .phasecounterselect

({4{1'p1}}),

.phasedone (),

.phasestep (1'bl),

.phaseupdown (1'bl), .pllena (1'bl), .scanaclr (1'b0),

.scanclk (1'b0), .scanclkena (1'bl), .scandata (1'b0),

.scandataout (), .scandone (), .scanread (1'b0),

.scanwrite (1'b0), .sclkoutO (), .sclkoutl (),

.vcooverrange (), .vcounderrange ());

defparam
altpll_.component . bandwidth_type = 7AUTO” |
altpll_component.clkO_divide_by = 25000,
altpll_.component .clkO_duty_cycle = 50,
altpll_component.clkO_multiply_by = 1,
altpll_component.clkO_phase_shift = 70”7,
altpll_.component .compensate_clock = "CLKO0” ,
altpll_.component .inclkO_input_frequency = 20000,

altpll_.component .
altpll_component.
altpll_.component .
altpll_component .
altpll_.component .
altpll_.component .
altpll_.component.
altpll_.component .
altpll_component.
altpll_.component .
altpll_component .
altpll_.component .
altpll_component .
altpll_.component.
altpll_.component .
altpll_.component.
altpll_.component .
altpll_component.
altpll_.component .
altpll_component .
altpll_.component .
altpll_.component .
altpll_.component.
altpll_.component .
altpll_component.
altpll_.component .
altpll_component .
altpll_.component .
altpll_component .
altpll_.component.
altpll_.component .
altpll_component.
altpll_.component .
altpll_component .
altpll_.component .
altpll_component .
altpll_.component.

intended_device_family

Ipm_hint
lpm_type

”Cyclone IV E”

» CBX_MODULE_PREFIX=lablclk” ,
" altpll”

operation_mode = "NORMAL” ,

pll_type = "AUTO

3
)

port_activeclock = "PORT_.UNUSED” ,
port_areset = "PORT_UNUSED” ,

port_clkbad0 = "PORT_-UNUSED” ,
port_clkbadl = "PORT_.UNUSED” ,
port_clkloss = "PORT_UNUSED” ,

port_clkswitch = "PORT_.UNUSED” ,
port_configupdate = "PORT_-UNUSED” ,
port_fbin = "PORT_.UNUSED” ,

port_inclkO
port_inclkl
port_locked
port_pfdena

port_phasecounterselect
"PORT_UNUSED” ,
"PORT_UNUSED” ,
= "PORT_UNUSED” ,

port_phasedone
port_phasestep
port_phaseupdown
port_pllena

»PORT_USED” ,
» PORT_UNUSED” ,
»PORT_UNUSED” ,
»PORT_UNUSED” ,

= "PORT_UNUSED”

?PORT_UNUSED” ,

port_scanaclr = "PORT_UNUSED” ,
port_scanclk = "PORT_UNUSED” ,
port_scanclkena = "PORT_.UNUSED” ,
port_scandata = "PORT_-UNUSED” ,
port_scandataout = "PORT_UNUSED” ,

port_scandone = "PORT_UNUSED” ,
port_scanread = "PORT_UNUSED” ,
port_scanwrite = "PORT_.UNUSED” ,
port_clk0 = "PORT_USED” ,
port_clkl = "PORT_.UNUSED” |
port_clk2 = "PORT_UNUSED” |
port_clk3 = "PORT_.UNUSED” |
port_clk4d = "PORT_UNUSED” |
port_clk5 = "PORT_.UNUSED” |
port_clkena0 = "PORT_.UNUSED” ,

13

)

148
149
150
151
152
153
154
155
156
157

158

altpll_.component .
altpll_.component .
altpll_.component .
altpll_component .
altpll_.component .
altpll_component .
altpll_.component .
altpll_.component .
altpll_.component .
altpll_.component .

endmodule

port_clkenal
port_clkena?2
port_clkena3
port_clkena4
port_clkenab
port_extclkO
port_extclkl
port_extclk?2
port_extclk3
width_clock

?PORT_UNUSED” ,

"PORT_UNUSED”

= "PORT_UNUSED”

”PORT_UNUSED”
”PORT_UNUSED”

= "PORT_UNUSED” ,
= "PORT_UNUSED”

?PORT_UNUSED” ,

”PORT_UNUSED”
53

14

8.2 B.2: garageDoorOpener Module

1 // garageDoorOpener.sv — This module is a state machine for the garage door opener.
It cycles through the states when PB is pushed

2 // Armin Laghaee & Kevin Shu

3 // Date: 2017—04—14

1

¢ module garageDoorOpener (input logic clk, PB, reset,
7 output logic motor_up, motor_.down, paused);
9 parameter maxGarageStep = 400; // 48 steps per rev., motor has 7.5 stride angle

11 logic atTop, atBottom = 0;

12 enum logic [6:0] {init, opened, closed, opening, closing , upPaused, downPaused}
state, state_next;
13 logic [31:0] count, count_next = 0;

15 // controller state

16 always_ff @(posedge clk or negedge reset) begin
17 if (!reset)

18 state <= init;

19 else begin

20 state <= state_next;

21 count <= count_next;
22 end

23 end

24

25 // datapath logic

26 always_comb begin

27 state_next = state;

28 count_next = count;

30 case (state)
31 init: begin

32 atTop = 0; atBottom = 0;

33 motor_up = 0; motor_.down = 0;
34 state_next = closed;

35 end

37 opened: begin

38 atTop = 1; atBottom = 0;

39 motor_up = 0; motor_.down = 0;
10 count_next = maxGarageStep;
11 if (PB)

12 state_next = closing;

43 else

44 state_next = opened;

15 end

47 closing: begin

18 atTop = 0; atBottom = 0;

19 motor_up = 0; motor_.down = 1;
50 if (PB)

51 state_next = downPaused;

52 else if (count = 0)

53 state_next = closed;

54 else begin

55 count_next = count — 1;

56 end

57 end

59 downPaused: begin
60 atTop = 0; atBottom = 0;

61 motor_up = 0; motor_-down = 0;
62 if (PB)

63 state_-next = opening;

64 else

65 state_next = downPaused;

66 end

67

68 closed: begin

69 atTop = 0; atBottom = 1;

70 motor_up = 0; motor_-down = 0;
71 count_next = 0;

15

if (PB)

state_next = opening;
else
state_next = closed;

end

opening: begin
atTop = 0; atBottom = 0;

motor_up = 1; motor_.down = 0;

if (PB)
state_next = upPaused;

else if (count = maxGarageStep)
state_next = opened;

else begin
count_next = count + 1;

end

end

upPaused: begin
atTop = 0; atBottom = 0;

motor_up = 0; motor_.down = 0;
if (PB)
state_next = closing;
else
state_next = upPaused;
end
endcase

end
endmodule

8.3 B.3: stepper Module

1 // stepper.sv — This module allows the stepper motor to rotate clockwise or counter—
clockwise according to the pole excitation order

2 // Armin Laghaee & Kevin Shu

3 // Date: 2017—04—14

1

5 module stepper (input logic clk, motor_up, motor_down,
6 output logic [3:0] out);

8 logic [1:0] step, step-next;
9 logic [3:0] out_next;
1 logic [3:0] up[4] = '{ 4'b1001, 4'b0011, 4'b0110, 4'b1100};

12 always_ff @(posedge clk) begin

13 step <= step-next;
14 out <= out_next;
5 end

17 always_comb begin

18 out_next = out;

19 step_next = step;

21 if (motor_up) begin

2 if (step < 4) begin

23 out_next = up[step];
24 step_-next = step + 1;
5 end

26 else

27 step-next = 0;

28 end

else if (motor-down) begin
if (step < 4) begin

31 out_next = up[step];
32 step-next = step — 1;
33 end

34 else

35 step_-next = 0;

36 end

37 end

33 endmodule

8.4 B.4: button Module

1 // button.sv — This module syncs the button to clock and gets the rising edge
2 // Armin Laghaee & Kevin Shu
s // Date: 2017—04—14

5 module button (input logic clk, PB,
6 output logic PB_sync);

8 logic a, b, c;

10 always_ff @Q(posedge clk) begin

11 a <= "PB;

12 b <= a;

13 c <= b;

14 end

16 always_comb begin

17 PB_sync = ("c) & b; // get rising edge
18 end

20 endmodule

17

