B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

ELEX 7730: Digital System Design
Game Controller Using an FPGA

Prepared by: Prep Date:
Navtej Heir April 14, 2017
Andrew Ydenberg April 14, 2017

N.Heir, A.Ydenberg 1 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

Contents
List of Figures 3
1 Executive Summary 4
2 Objectives 4
3 Introduction 4
4 Background 5
4.1 UserInput e 5
42 FPGA Logic o 5
4.3 Serial Interface L 5
5 Design and Implementation 7
5.1 Game Control Hardware 7
5.2 Scanning Algorithm and Decoder 8
5.3 Keypad Decode e 8
54 UART . . o 8
55 PLL Clock and Pin Assignments 9
6 Future Work 10
7 Conclusion 11
8 Appendix A: Code 12
8.1 Top Level Module e 12
8.2 Scanning Algorithm 13
8.3 Keypad Decode Module 14
8.4 UART Module e 15
8.5 Pin Assignments L 16
8.6 PLL Clock 17
9 References 20

N.Heir, A.Ydenberg 2 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

List of Figures

1 Top Level Block Diagram 5
2 Datasnip Program [1] 6
3 Keypad Matrix [2] 7
4 Keypad Matrix [2] L 8
5 UART Data Framing [3] 8
6 Pin Assignments for Keypad [3] 9
7 Adafruit Resistive Touchscreen Overlay [4] 10

N.Heir, A.Ydenberg 3 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

1 Executive Summary

Using the DEO-Nano development board by Altera [5], we created a game controller that is capable of interfacing with a
computer. A simple 16-button keypad was used to demonstrate the use of the common W,A,S,D game keys. Our interface
proved successful in use, and is able to be implemented with a variety of other hardware modules such as touch-screens,

joysticks, or other serial interfaces.

2 Objectives

The objectives of this project were to:

e Design a UART interface from the development board to computer
e Design an interface from a keypad module to the development board

e Present the project playing the well-known snake game using a keypad

3 Introduction

This project was created using the DEO-Nano development board by Altera, with the EP4CE22F17C6 Cyclone IV FPGA.
Using the development board we developed a game-controller interface. This interface is capable of using different hardware
modules and sending there inputs to a computer. The computer is then able to interpret this command as a keyboard
input. The interfaces relied on serial communication and a scanning algorithm.

N.Heir, A.Ydenberg 4 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

4 Background

This project was developed in multiple stages. As seen in the top level block diagram, there is a different stage for each
interface. There is an interface for the user input, FPGA logic, and the output serial connection.

User Input 16-Key, 4x4 Parallel Bus DEO-Nano Serial Computer
S0 e
Keypad Development Board & Monitor

Figure 1. Top Level Block Diagram

4.1 User Input

The user input for our project was a 4x4 keypad. Each of the keys on the keypad correspond to a specific row and column.
By sequentially scanning each row and column, we are able to determine when a key is pressed. Each key is assigned a
value, and combinational logic within the FPGA processes this value.

4.2 FPGA Logic

After the value from the 4x4 keypad is detected, the FPGA uses combinational logic to determine the corresponding ASCII
character. The combinational logic uses a lookup table (synthesized multiplexer), and loads the selected ASCII character
into a temporary buffer. This temporary buffer is linked to a module of sequential logic, whose job it is to interface to the
computer.

4.3 Serial Interface

The serial interface between the development board and the computer uses the well-known UART interface. For our
purposes the following UART settings were used:

Start bits: 1

Data bits: 8

Baud rate: 19200

Parity bits: 0

Stop bits: 1

Handshaking: None

N.Heir, A.Ydenberg 5 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

The temporary buffer is loaded into an output buffer, which is shifted out over a hardware connection to the computer’s
USB port. The output buffer is shifted out at the specified UART settings. On the computers end, we used a simple
program called Datasnip, which converts USB input to a simulated key press within the operating system.

}9&5 DATASNIP Serial port to keyboard redirection Copyright 2012 PRIORITY 1 DESIGN - X
HELP

=

DATASNIP
Simple Serial to Keyboard Redirection Program

SELECT OPTIONS
COMsport. [com3 v| I~ {Translate CR to ENTER key
Baud rate [m I™ Translate LF to ENTER key
Parity None v| I~ Start Datasnip when computer starts
Stop bits m I™ Start redirection when Datasnip starts

Data Length [8 bits v|
Handshake [None .|

START STOP
REDIRECTION| REDIRECTION

Set Advanced | © Advanced options active
Options

Figure 2: Datasnip Program [1]

This simulated key-press allows the ASCII input character to interface with the various applications on the computer. For
the purposes of example within this program, we had the keyboard simulate the W,A,S,D keys to play the classic Snake
game [6]. The game was playable with slight latency, which was mainly due to the stiffness of the buttons on the keypad.
Less stiff buttons would have allowed the user to actuate each key faster.

N.Heir, A.Ydenberg 6 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

5 Design and Implementation

This section details the user input hardware, control hardware and the UART hardware.

5.1 Game Control Hardware

The input hardware consist of a 4x4 switch matrix keyboard. A switch matrix contains SPST switches at each intersection
of row and column lines. A switch matrix decoder scans the rows and columns to determine which switch is closed. The
FPGA is connected to the switch as per defined in pins.qgsf file as signals named kpr[3] through kpr[0] (rows, top to bottom)
and kpc[3] through kpc[0] (columns, left to right):

kpr(3] >~
kpr[2] >
kpr[1] =

kpr{0] =

kpc[3] kpc[1]
kpc[2] kpc[O]

Figure 3: Keypad Matrix [2]

N.Heir, A.Ydenberg 7 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

5.2 Scanning Algorithm and Decoder

The scanning algorithm (Appendix A) used for the project was identical to the one created in [2]. The FPGA was configured
with internal pull-up resistors on the kpr row input pins. The scan algorithm sets one column low at a time and checks
the row levels. If a switch connected to that column is closed it will pull the corresponding row line low. For example if
the pushbutton on the intersection of the third column and second row were pressed, then the second row output would
read low only when the third column was set low:

V(I(I
| pull-up
HHLH ::,j::,resistors
Y A
; H
; - L
; - H
: - H
switch | FPGA
matrix

Figure 4: Keypad Matrix [2]

5.3 Keypad Decode

When a row is found to be low, the scan algorithm suspends. At this time. The scanning algorithm, outputs the row and
column values to the decode module (Appendix A). Inside this module is a case statement which determines the key that
is pressed and writes the corresponding ASCII code to a buffer which is then read by the UART module.

The ASCII codes have already been constructed to the correct data framing when they are written to the buffer. Beginning

with the start bit "1", the 7 data bits with LSB first, one parity bit, and finishing with the stop bit "1". If any other keys
are pressed the module will output all ones to the buffer. An output of all "1's” represents a standby state.

_\startbitA bit 0 X bit 1 X bit 2 X bit 3 X bit 4 X bit 5 X bit 6 x bit 7 Ystcpbit

Figure 5: UART Data Framing [3]

5.4 UART

The UART module is used to send out each bit of the ASCII code for the four keys that were programed W,A,S,D. It does
this by outputting each bit of the ASCII code on every clock edge of the "bclk”. This clock is a 9600 Hz clock, which
corresponds with the baud rate of the UART.

The UART portion of the MSP430F5529 was used as the hardware UART interface between the output of the UART
module from the FPGA to the computer.

N.Heir, A.Ydenberg 8 of 20 April 14, 2017

B.Eng Electrical

ELEX 7730: Digital System Design

5.5 PLL Clock and Pin Assignments

Report for Term Project

The PLL clock wizard was used to generate both the system clock of 1 MHz and the 19200 Hz "bclk” used to output
data from the UART module. A 1 MHz was chozen as it would be able to poll the keypad very rapidly compared to a

lower clock. The output clock was set to 19200 Hz as the UART programed to this spec.

The pins for the Keypad to the DEO Nano development board were assigned as follows:

keypad signal color conn. GPIO FPGA
pin pin pin pin
kO kpr[3] brown 14 09 D5
k1 kpr[2] red 16 011 A6
k2 kpr[1] orange 18 013 D6
k3 kpr[0] yellow 20 015 Cé6
k4 kpc[0] green 22 017 Ee
k5 kpc[1] blue 24 019 D8
ke kpc[2] violet 26 021 F8
k7 kpc[3] gray 28 023 E9

Figure 6: Pin Assignments for Keypad [3]

The "kpc" pins were all linked to pull-up resistors, and PIN J14 was used as the " TX" (output) pin, and PIN J15 was set

as the reset pin and connected to The pins.qgsf file can be found in section 5 of the Appendix.

N.Heir, A.Ydenberg

9 of 20

April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

6 Future Work

Additional functionality that can be added to the project includes interfacing different kinds of hardware modules. These
kinds of modules may include but are not limited to:

e Touch Screens

Joysticks

Motion Sensors

Light Sensors

Camera Sensors

Figure 7: Adafruit Resistive Touchscreen Overlay [4]

Implementing these hardware modules does prove to be more complicated, hence we showed the interface of a keypad
for the purposes of this project. Many of these modules need some sort of setup procedure which is done by sending the
device serial commands. However after the device is setup, it follows the same procedure of sending the data over a serial
port and then having the computer interpret that command as you wish.

In our project this interpretation happened to be an ASCII character, therefore we we're able to use one of the many widely
available programs called Datasnip [1]. However as the complexity of these modules increases, so does the way the data
must be interpreted. For a device such as a camera or motion sensor, software may be more difficult to find, or you may
need to write it yourself in the language of your choice.

N.Heir, A.Ydenberg 10 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

7 Conclusion

In conclusion, we succeeded in meeting our objectives of creating hardware to interface with a keypad, and hardware to
interface with a computer over UART. Thus we were able to use the the keypad and control a Snake game on a computer.

In addition to the system working we learned a great deal about the nuances of System Verilog and how to think in terms
of hardware rather than regular sequential programing.

N.Heir, A.Ydenberg 11 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design

8 Appendix A: Code

8.1 Top Level Module

// Top-Level Module ELEX 7660 Term Project
// Created by Ed.Casas 2017-1-11
// Modified by Navtej Heir and Andrew Ydendberg 2017-03-25

module Project (output logic [3:0] kpc, // column select, active-low
(* altera_attribute = "-name WEAK_PULL_UP_RESISTOR ON" *)
input logic [3:0] kpr, // rows, active-low w/ pull-ups

output logic [3:0] ct, // " digit enables
output logic TX,
input logic reset_n, CLOCK_50) ;

logic clk ; // 1 MHz clock for keypad scanning
logic bclk ; // 9600 Hz output clock

logic kphit ; // a key is pressed

logic [9:0] num ; // value of pressed key

assign ct = { {3{1'b0}}, kphit } ;
pll pl10 (.inclkO(CLOCK_50), .c0(clk), .cl(bclk)) ;

// instantiate of scanning algoritthm, decode, and UART module

colseq colseq_O(.kpr, .clk, .reset_n, .kpc);
kpdecode kpdecode_O(.kpc, .kpr, .kphit, .num);
UART UART_O(.DataIn(num), .clk(bclk), .TX(TX));

endmodule

N.Heir, A.Ydenberg 12 of 20

Report for Term Project

April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

8.2 Scanning Algorithm

// colseq.sv ELEX 7660 Term Project
// Navtej Hetir and Andrew Ydendberg 2017-03-25

module colseq(input logic [3:0] kpr,
input logic clk,
input logic reset_n,
output logic [3:0] kpc);

logic [3:0] column_hold; // Temp hold for column bits
logic [3:0] row_hold; // Temp hold for row bits
logic hold; // 1 - hold, 0 - scan (mode)

// Initialize kpc bit sequence

initial begin
kpc = 4'b0111;
end

// Controller
always@(posedge clk) begin // Controller holds shift sequence if Tow %is activated
if (reset_n)begin
if (kpr < 15) hold = 1;
else hold = 0;
end
end

// Datapath Regtisters
// Datapath scans keypad columns and outputs to kpc

always@(posedge clk) begin // In hold mode kpc and kpr are output, else scans
if (hold)begin
column_hold = kpc;
row_hold = kpr;
end

// Settings outputs for kpc and kpr if in hold mode

else begin //kpc = column_hold;
if (kpc == 4'b1110) kpc = 4'b0111; // Set to col 3 if col O selected
else if (!reset_n) kpc = 4'b0111;
else kpc = (kpc >> 1) + 8; // Scanning col by bit shifting

end
end
endmodule

N.Heir, A.Ydenberg 13 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

8.3 Keypad Decode Module

// kpdecode.sv - ELEX 7660 Term Project
// Navtej Hetir and Andrew Ydendberg 2017-03-25

module kpdecode(input logic [3:0] kpc, // Keypad Column
input logic [3:0] kpr, // Keypad Row
output logic kphit, // Keypad Hit Bit
output logic [9:0] num); // Value to be output to display

always_comb begin

case (kpr) // Determine Keypad Row Htit

7:
unique case (kpc) // Check Columns...
7: num = '1
11: num = 10'b1011101110; // biinary equivalent for ASCII w
13: num = '1;
14: num = '1;
endcase
11:

unique case (kpc)
7: num = 10'b1011000010; // biinary equivalent for ASCII a
11: num = 10'b1011100110; // biinary equivalent for ASCII s
13: num = 10'b1011001000; // biinary equivalent for ASCII d

14: num = '1;
endcase
13:
unique case (kpc)
7: num = '1;
11: num = '1;
13: num = '1;
14: num = '1;
endcase
14:

unique case (kpc)
7: num ='1;

11: num = '1;
13: num = '1;
14: num = '1;
endcase
default: num = '1; // default output "1", standby mode
endcase
kphit = (kpr < 15) 7 1 : 0; // output "1" 4if key ts detected
end
endmodule
ewpage

N.Heir, A.Ydenberg 14 of 20 April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design

8.4 UART Module

// UART.sv - ELEX 7660 Term Project
// Navtej Heir and Andrew Ydendberg 2017-03-25

module UART (input logic [9:0] Dataln,
input logic clk,
output logic TX
)3

logic [9:0] Data_Next;
logic [3:0] Count = 4'h00;

always_ff@(posedge clk) begin

if(Count != 10) begin
TX <= Data_Next[Count];
Count <= Count + 1;

end

else begin
Count <= 0;
Data_Next <= Dataln;
end
end
endmodule

N.Heir, A.Ydenberg 15 of 20

Report for Term Project

April 14, 2017

B.Eng Electrical

8.5 Pin Assignments

set_location_assignment
set_location_assignment

set_location_assignment PIN_J15 -to KEY[0]

set_location_assignment

set_location_assignment
set_location_assignment
set_location_assignment
set_location_assignment

set_location_assignment
set_location_assignment
set_location_assignment
set_location_assignment
set_location_assignment
set_location_assignment
set_location_assignment
set_location_assignment

N.Heir, A.Ydenberg

ELEX 7730: Digital System Design

PIN_J14 -to TX
PIN_R8 -to CLOCK_50

PIN_J15 -to reset_n

PIN_A12 -to ct[0]
PIN_C11 -to ct[1]
PIN_E11 -to ct[2]
PIN_C9 -to ct[3]

PIN_D5 -to kpr[3]
PIN_A6 -to kpr[2]
PIN_D6 -to kpr[1]
PIN_C6 -to kpr[0]
PIN_E6 -to kpc[0]
PIN_D8 -to kpc[1]
PIN_E9 -to kpc[3]
PIN_F8 -to kpc[2]

// Output Pin
// Clock Pin
// Reset Pin

// Output Enable

// Key Pad Pins

16 of 20

Report for Term Project

April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

8.6 PLL Clock

This code for the PLL Clock is auto-generated with Altera’s Quartus PLL Clock [7] Wizard.

// synopsys translate_off
“timescale 1 ps / 1 ps
// synopsys translate_on
module pll (

areset,

inclkO,

cO,

cl,

locked);

input areset;
input inclkO;
output c0;
output cl;
output locked;

“ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
“endif

tri0 areset;
“ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
“endif

wire [0:0] sub_wire2 = 1'h0;

wire [4:0] sub_wire3;

wire sub_wire6;

wire sub_wireO = inclkO;

wire [1:0] sub_wirel = {sub_wire2, sub_wireO};
wire [1:1] sub_wire5 = sub_wire3[1:1];

wire [0:0] sub_wire4 = sub_wire3[0:0];

wire <¢cO = sub_wire4;

wire ¢l = sub_wireb;

wire locked = sub_wire6;

altpll altpll_component (
.areset (areset),
.inclk (sub_wirel),
.clk (sub_wire3),
.locked (sub_wire6),
.activeclock (),
.clkbad (),
.clkena ({6{1'b1}}),
.clkloss (),
.clkswitch (1'b0),
.configupdate (1'b0),
.enable0 (),
.enablel (),
.extclk),
.extclkena ({4{1'b1}}),
.fbin (1'bl),

N.Heir, A.Ydenberg 17 of 20 April 14, 2017

B.Eng Electrical

defparam

N.Heir, A.Ydenberg

altpll_component

altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
.operation_mode
.pll_type = "AUTO",

.port_activeclock = "PORT_UNUSED",

altpll_component
altpll_component
altpll_component

altpll_component.
.port_clkbad0O =
.port_clkbadl
.port_clkloss
.port_clkswitch
.port_configupdate
.port_£fbin =

altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component

.port_pfdena
.port_phasecounterselect = "PORT_UNUSED",
.port_phasedone
.port_phasestep

ELEX 7730: Digital System Design

.fbmimicbidir (),
.fbout (),

fref (O,

.icdrclk (O,
.pfdena (1'b1),
.phasecounterselect ({4{1'b1}}),
.phasedone (),
.phasestep (1'bl),
.phaseupdown (1'b1),
.pllena (1'b1),
.scanaclr (1'b0),
.scanclk (1'b0),
.scanclkena (1'b1l),
.scandata (1'b0),
.scandataout (),
.scandone (),
.scanread (1'b0),
.scanwrite (1'b0),
.sclkout0 (),
.sclkoutl (),
.vcooverrange (),
.vcounderrange ());

.bandwidth_type = "AUTO",

clkO_divide_by = 50,

clkO_duty_cycle = 50,
clkO_multiply_by = 1,
clkO_phase_shift = "O",
clkl_divide_by = 2604,
clkl_duty_cycle = 50,

clkl _multiply_by = 1,
clkl_phase_shift = "O",
compensate_clock = "CLKO",
inclkO_input_frequency = 20000,
intended_device_family = "Cyclone IV E",
lpm_hint "CBX_MODULE_PREFIX=gggg",
lpm_type = "altpll",

"NORMAL",

port_areset = "PORT_USED",
"PORT_UNUSED",
"PORT_UNUSED",
"PORT_UNUSED",

= "PORT_UNUSED",
"PORT_UNUSED",
"PORT_UNUSED",

.port_inclk0 = "PORT_USED",
.port_inclkl = "PORT_UNUSED",
.port_locked = "PORT_USED",

"PORT_UNUSED",

"PORT_UNUSED",
"PORT_UNUSED",

18 of 20

Report for Term Project

April 14, 2017

B.Eng Electrical

endmodule

N.Heir, A.Ydenberg

altpll_component.
.port_pllena

.port_scanacl
.port_scanclk
.port_scanclk

altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component
altpll_component

altpll_component.
.width_clock

altpll_component

ELEX 7730: Digital System Design

port_phaseupdown = "PORT_UNUSED",

.port_scandon

.port_scanwri
.port_clkO =
.port_clkl =
.port_clk2
.port_clk3 =
.port_clk4
.port_clkb
.port_clkenal
.port_clkenal
.port_clkena?2
.port_clkena3
.port_clkena4
.port_clkenab
.port_extclkO
.port_extclkl
.port_extclk?2
.port_extclk3
self_reset_on_loss_lock = "OFF",

= "PORT_UNUSED",

r = "PORT_UNUSED",

= "PORT_UNUSED",

ena = "PORT_UNUSED",
.port_scandata = "PORT_UNUSED",

.port_scandataout = "PORT_UNUSED",
e = "PORT_UNUSED",
.port_scanread = "PORT_UNUSED",
te = "PORT_UNUSED"

"PORT_USED",
"PORT_USED",
"PORT_UNUSED",
"PORT_UNUSED",
"PORT_UNUSED",
"PORT_UNUSED",

= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",
= "PORT_UNUSED",

= 5;

19 of 20

Report for Term Project

April 14, 2017

B.Eng Electrical ELEX 7730: Digital System Design Report for Term Project

9 References

[1] (2007) Datasnip keyboard wedge. http://www.priorityldesign.com.au/datasnip.html. Accessed 42835.
[2] E. Casas, “Lab 2 matrix keypad decoder,” , 2017, accessed 42826.

[3] (2017) Universal asynchronous reciver/transmitter. https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/
transmitter. Accessed 42834.

[4] Adafruit resistive touchscreen. https://www.adafruit.com/product/1676. Accessed 42839.

[5] (2013) De0 nano datasheet. http://www6.in.tum.de/pub/Main/TeachingWs2016HSCDLegoCar/DE0_Nano_User_
Manual_v1.9.pdf. Accessed 42826.

[6] J. Gordon. (2011) Snake game. http://codeincomplete.com/games/snakes/. Accessed 42835.

[7] Pl clock ip. https://www.altera.com/downloads/download-center.html. Accessed 42830.

N.Heir, A.Ydenberg 20 of 20 April 14, 2017

http://www.priority1design.com.au/datasnip.html
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://www.adafruit.com/product/1676
http://www6.in.tum.de/pub/Main/TeachingWs2016HSCDLegoCar/DE0_Nano_User_Manual_v1.9.pdf
http://www6.in.tum.de/pub/Main/TeachingWs2016HSCDLegoCar/DE0_Nano_User_Manual_v1.9.pdf
http://codeincomplete.com/games/snakes/
https://www.altera.com/downloads/download-center.html

	List of Figures
	Executive Summary
	Objectives
	Introduction
	Background
	User Input
	FPGA Logic
	Serial Interface

	Design and Implementation
	Game Control Hardware
	Scanning Algorithm and Decoder
	Keypad Decode
	UART
	PLL Clock and Pin Assignments

	Future Work
	Conclusion
	Appendix A: Code
	Top Level Module
	Scanning Algorithm
	Keypad Decode Module
	UART Module
	Pin Assignments
	PLL Clock

	References

