ELEX 7660: Digital
System Design

Self-Driving Car

Kostiantyn Yushchak & Davneet Singh

Table of Contents

Kostiantyn YUShchak & DavN@ET SINGN ...c...viiiiiiiei et e e et e e e e e eabae e e s eabee e seeesabaeeeeanees 0
R Yol Vo VY] 1Yo Fed s o 1= o PSP 3
P O 1Y =T o= PSPPSRI 3
2.1 GOAIS AN MOTIVATIONeeitee ettt ettt st e st e st e e st e e s be e e sab e e sabees e sabeesabeesneeesareesnneens 3
2.2 27T =4 Lo 1V Vo IR SURPRPRN 3
2.3 Hardware and SENSOrS DESCIIPLIONSuviiiiiiiieeccieee ettt et e et e e e e e ette e e e sbteeeesbteeeeesteeeesbeneessnsteeasaesnns 3

S O 11 oo o = PP P PP 4
3.1 FINAI RESUIT ...ttt st b e e st e s bt e e s bt e e s be e e sabeesabeeesabee e nbeesabeesneeesabeeenneeas 5
3.2 FUBUIE IMPIOVEMEBNTS ... e s s s s s s s s s s s s s s e e e e e e e e e e aaaaaaaaaaaaaeaens 6

4 TEChNICAI DELAIIS ...ttt st e b e s b e s bt e s et e st e e bt e bt e s beesbeeeat e et e e nbeenanesaneeane 6
4.1 [BLI Fd o 21 (o T N DI T=d - [o[SR 6
411 Block Diagram of the overall deSigNuei it bee e e e 6
4.1.2 Steering flowchart (implemented iN A1 XreCTION . SV) tiviiiiiiiiiee e e et e e e eaaeee s 7
4.1.3 Flow Chart for the QTR-8RC Sensor (implemented in 1edSarray.SV) .eereeeceeescveeenenens 9
4.1.4 PWM Motor Control (implemented in MOt oOrCoONTrOl . SV) ciicieeecieeciee e e sree e sreeesveee e 10

4.2 (O T o0 Ao =T = =T o PSPPI 11
4.2.1 5V the Step-dOWN FEGUIATONeiii e e e ee e et e e e e ba e e e eeabae e e eeabaee e e e enres 11
4.2.2 MOTOE CONEIOL IC: L293D ...ttt ettt ettt sttt ettt e bt e s ae e st st et et e e s bt e sbeesaeeenteeeabeenbeennees 11
4.2.3 Y =] o T A o - 1V 12

4.3 LY=L] o -3 @e Lo [P 12
43.1 Y A=Y= T = d oo T f o] FO PP PPP 12
4.3.2 Receiving and Interpreting Data from the QTR-8RC SENSOFcccuviieeeiiieeeeciieee et ecitee e ecareee e 16
433 PWM t0 CONLIOL ThE MOTOT ..ot ettt sttt e b sneas 19
43.4 Top Level Module for this Project......cu i e e s sbre e e e eaes 23

T 0] =T =T g Tol TP PP PSP S TUPO PP 24

file:///C:/Users/Kostiantyn/Desktop/final%20report.docx%23_Toc480193608

Table of Figures

= U I N o T o= Yol o T o ARV <1 Y TP 4
= U R N o T o= Yol (e LRV USSP 4
FIgure 3: The Car ON the traCK ..o.uiee e e e e st ee e s e s e e e s sabee e e s e essbeeesennbeeeesnaraeeesnnsees 5
Figure 4: Overall Design BIOCK DI@gramueiiiiiiiii e cetee et eette e e e e ette e e e ette e e e stae e e esaba e e e eeabaeeeseabaaaeaeennseeeeennsens 6
Figure 5: SENSOr Array FIOW CRart ...oouieii ettt ettt e e et e e st e e s e st ee e s st e e e e ssabeeeeaeesnbeeeesnnseeeeennsees 8
Figure 6: QTR-8RC Reflectance Sensor Operation FIOWCHhAIteiiiciiiieccie et 9
= U A VAV A\ I 1o 1YY Aol - o PRSI 10
Figure 8: 5V, 1A Step-Down Voltage ReguUIator D2AVIOFXccccuiiiiiiiieeeieiiee e esitee e eeieee e ssvree e s ssveeesssreee s ssabeeessnnees 11
Figure 9: L293D H-BridZE CIICUIT.....ciiicieeeiiciiiee ettt e eettee e eette e e s et tte e e s etteeesetteeeseabteeeseastseessnsaaeesanssssnsesasensesanseneesanns 11
Figure 10: QTR - 8RC SENSOF AITQYuitiitiieiieiiiittteeeeeeeaairrttteeesessaa s aerrtteeeeesssaanssraaeeesssssassssraeeeesssssasasanssssaeeeesssnnannns 12

file:///C:/Users/Kostiantyn/Desktop/final%20report.docx%23_Toc480191664
file:///C:/Users/Kostiantyn/Desktop/final%20report.docx%23_Toc480191666

1 Acknowledgments

We would like to thank our instructor, Ed Casas, for mentoring us in this project and providing us with
the parts required. We would also like to thank our friends and classmates for every bit of help they
provided.

2 Overview
2.1 Goals and Motivation

Our objective for this project was to build an autonomous car which follows a track using a
reflectance sensor array [1].

The self-driving car industry is rapidly developing, and it was our main motivation behind this project.
We wanted to recreate the product of this exciting industry on a small scale. It gave us an insight into
how much work, knowledge, and variables goes into building self-driving cars.

2.2 Background

In addition, we chose this project because it encompassed applications of theory that we learned
during lectures. We used an Altera DEO Nano board to interface the sensors, and control the DC motors
using a H-Bridge.

2.3 Hardware and Sensors Descriptions

QTR-8RC Reflectance Sensor Array was used in the project to track the location of the black line
and ultimately steer the car in the appropriate direction. This sensor module has 8 IR
LED/phototransistors, and each sensor provides a separate digital I/O-measurable output. Each IR LED
has an emitter and a receiver which are controlled by a MOSFET. Digital I/O line can drive the output
line high, and then measure the time for the output voltage to decay. The decay is slow with no
reflectance, and fast with high reflectance. The black tape provides low reflectance [2].

After the position on the line is determined, the algorithm provides “turn left” and “turn right” signals to
the motors to manoeuver the car back on track. Four DC motors are driven using L293D Dual H-Bridge
Motor Driver, and the speed is slowed down using PWM.

Components used:

Altera Cyclone IV FPGA

QTR-8RC Reflectance Sensor Array

5V, 1A Step-Down Voltage Regulator D24V10Fx
L293D Dual H-Bridge Motor Driver

Four 12V DC Motors

12V, 1.2 Ah Battery

Car frame and wheels

NowuhswNRE

3 Outcome

Figure 1: The car (front view)

Figure 2: The car (side view)

Figure 3: The car on the track

The above figures show our final product which includes a fully functional car on the track.

3.1 Final Result

We successfully implemented the QTR-8RC sensor on the car and programmed it to follow the
black line. It worked perfectly fine, and the car stayed on the track as planned. Some changes that we
had to make in our initial design were to replace the defective motor controller board with an
equivalent L293D IC to get the proper output voltage. With the original motor controller board, we were
only getting 5V out, instead of 12, which was not enough to drive the 4 motors. The minimum voltage
requirement for the motors was met using a L293D IC.

Overall, the result worked great and exceeded our expectations. Initially, we thought the car will have
difficulties turning right or left due to high speed of the motors. But this issue was fixed by using Pulse
Width Modulation (PWM) to control the speed of the motors. Also, the “tank” type steering was used,
where a pair of wheels on one side turns in one direction, and the other side turns in the opposite
direction. This type of steering allowed the car to steer almost on a 90-degree angle. We finished the

major portion of the project and some left over add-on features could’ve been done if we had little
more time. The team is proud of the result and considers this project a success.

3.2 Future Improvements

Although we finished the major objective of the project, which was making the car follow the line,
we were unable to finish the add-on features. The features include connecting the distance sensor
which checks for the obstacles ahead, and putting the speaker on the car which makes different sounds
depending on the distance. Also, there could be an improvement of the steering algorithm by using PID
control.

4 Technical Details

4.1 Design Block Diagrams
4.1.1 Block Diagram of the overall design

- Motors
12-volt Battery

A A

Switch

4)

— 100

5VOLT
Regulator

FPGA

f 33V | B)
/ g
Ground M l
otor Ground
Control IC
LC293D
__/
VYV VVVY
[QTR-8RC Sensor }

Figure 4: Overall Design Block Diagram

4.1.2

Steering flowchart (implemented in direction.sv)

If distance
sensor
Hsto pll

If line to
the left

If line to
the
right

If line in
the
middle

If bad
reading

Go Straight

<
4

v

Figure 5: Sensor Array Flow Chart

4.1.3 Flow Chart for the QTR-8RC Sensor (implemented in 1edsarray.sv)

A

Set I/0 pin to Output
and drive high

Wait 10us for output to
rise

Set |/0O pit to Input

Time how long it takes
for pin to go low

If decay
time more
than 1ms

Reflectance No reflectance
(Sensor not on the line) (Sensor on the line)

A

Figure 6: QTR-8RC Reflectance Sensor Operation Flowchart

4.1.4 PWM Motor Control (implemented in motorcontrol.sv)

Set the appropriate

motor signals to 1

Wait 80/ of the 10ms
period 1

Set the appropriate
motor signals to 0

Wait 20/ of the 10ms
period 1

I

Figure 7: PWM flow chart

10

4.2 Circuit diagrams
4.2.1 5V the step-down regulator

+12V +5V

VIN VOUT

—ANM T W

PG

SHDN

Scematic credit: Pololu Datasheet [3]

Figure 8: 5V, 1A Step-Down Voltage Regulator D24V10Fx

4.2.2 Motor Control IC: L293D

sV
-w
——1]e VSSE [
i3——A2n M e =5
- 3o o)1
[4|enoD GND|[13
L [5]eno GND:EI
8]0z os[11] R
«E 12 13{10
|V —8]vs E E——

Note: 1,2,3,4 are the control logic signals from the FPGA
Left and Right motors encompass 2 motors in parallel

Schematic credit [4]

Figure 9: L293D H-Bridge Circuit

11

4.2.3 Sensor Array

LED On Vecc GND

Pololu IRS0ZA

Sensor inputs/outputs

Picture Credit: Pololu Datasheet [2]

Figure 10: QTR - 8RC Sensor Array

4.3 Verilog Code
4.3.1 Steering control

The purpose of this code is to examine the output of each of the reflectance sensor, and tell how
motors need to engage to get the car back on track. Depending on the relative position to the black line,
the code will decide which way to turn. For instance, if the right most sensor is engaged, it means that
the car is on the left side of the track, and needs to turn right to stay on track. The steering is done by
one side of the car going in one direction, and the other side going in the opposite direction (like a tank).

This part helps us achieve the correct motion of the car by telling which motors need to engage, and in
what direction. This is a decision-making algorithm for the car, and is equivalent to a human steering the
wheel in the appropriate direction.

12

// Kostiantyn Yushchak & Davneet Singh

//

// April 4, 2017

//

// direction.sv - module for direction control.
//

// Depending on which sensors are engaged, determine the
// steering direction required.

module direction(input logic [7:0] ledso, // reflectance sensor binary output
output logic [1:0] Lmotor, Rmotor, // motor binary signals
input logic clk, reset // clock, reset
)
// Direction variables.
logic straight, turnRight, turnleft, stop;

// Output motor directin bianry signals.

always_ £ffQ (posedge clk)

begin

if (straight)begin
Lmotor <= 1;
Rmotor <= 1;

end

else if (turnRight)begin
Rmotor <= 0;
Lmotor <= 1;

end

else if(turnlLeft)begin
Rmotor <= 1;
Lmotor <= 0;

end

else if(stop) begin
Rmotor <= 0;
Lmotor <= 0;

end

else begin
Rmotor <= Rmotor;
Lmotor <= Lmotor;

end

end

// Output the direction based on the reflectance sensor outputs.

always_comb begin
if (ledso == 8'b00011000 || ledso == 8'b00010000 || ledso ==
8'b00001000)
begin
straight = 1;
turnRight = 0;
turnLeft = 0O;
stop = 0;
end
else if (ledso == 8'b00001100 || ledso == 8'b00000100 || ledso ==
8'b00001000)
begin

13

turnRight =
straight =
turnlLeft =
stop = 07
end
else if (ledso ==

)

begin
turnRight =
straight =
turnleft =
stop = 0y
end

else if (ledso ==
begin
turnRight =
straight =
turnlLeft =
stop = 07
end
else if (ledso ==
begin
turnRight =
straight
turnlLeft
stop = 0y

end
else if (ledso ==

)

begin
turnLeft =
turnRight =
straight =
stop = Uy
end

else if (ledso ==

)

begin
turnlLeft =
turnRight =
straight =
stop = 07
end

else if (ledso ==
begin
turnlLeft =
turnRight =
straight =
stop = 0y
end
else if (ledso ==
begin
turnlLeft =
turnRight =
straight =
stop = 0y
end

// 3 SENSORS ENGAGED

else if (ledso ==

|| ledso ==

|| ledso ==

|| ledso ==

|| ledso ==

e
14

ledso

ledso

ledso

end
endmodule

begin
straight =
turnRight =
turnleft =
stop = 07

end

else if (ledso ==

begin
turnRight =
straight =
turnleft =
stop = 0y

end

else if (ledso ==

begin
turnRight =
straight =
turnlLeft =
stop = 07

end

else if (ledso ==

begin
turnLeft =
turnRight =
straight =
stop = 0y

end

else if (ledso ==
begin
turnleft =
turnRight =
straight =
stop = 07

end

else if (ledso ==

begin

turnleft =
turnRight =
straight =
stop = 0y
end
else
begin
turnlLeft =
turnRight =
straight =
stop = 17
end

15

4.3.2 Receiving and Interpreting Data from the QTR-8RC Sensor

The purpose of this code was to drive the QTR-8RC Reflectance Sensor Array. It drives each of the
sensor pins high, and then measures the time it takes for each pin to decay. Short decay time indicates
good reflectance (white surface), and long decay time indicates poor reflectance (black surface).
Ultimately it provides an 8-bit array that is composed of binary bits, where 0 stands for a sensor being
on the white surface, and 1 stands for the sensor being on the black surface.

This piece of code is a vital component of the project since it provides the information about the
position of the car. All the later algorithms are based on the information from the 8-bit array outhunted
by this code.

// Kostiantyn Yushchak & Davneet Singh

//

// April 4, 2017

//

// ledsarray.sv - code for the led array sensor
//

// Determines if each sensor is on the line or not.
// If on the line, outputs a 1 on ledsout[sensor#].

module ledsarray(inout tri [7:0] leds, // reflectance sensor inout
output logic [7:0] ledso, // reflectance sensor binary signal
input logic reset, clk); // reset and clock

enum logic [2:0] // enumeration for the states
{
ledsout, // set pins as output
ledsin, // set pins as input
waitl, // wait 10 us for sensors to charge
wait2, // wait x amount before reading sensors
test // read sensors

} state, state next;

enum logic [1:0]
{infinite,
in,
out

} direction; // enum for pin direction, and loop the program forever

logic signed [31:0] countl, count2; // count register

parameter tenu = ; // 10us dealy for sensors to chrage up. (500 clk
cycles)

parameter hunu = ; // 100us dealy before checking sensors. (5000 clk
cycles)

// Register

always_ ffQ (posedge clk)
begin

if (state == ledsout)begin
leds <= ; // set pins high
direction = out;

e
16

end

else if (state == ledsin)begin
leds <= ; // read from pins
direction = in;

end

if (state == waitl) // 10us counter
countl <= countl + ;
else
countl <= 0; // if not counting counter should remain at zero

if (state == wait2) // 100us counter
count?2 <= count2 + ;
else
count2 <= 0; // if not counting counter should remain at zero

if (state == test)
begin

direction = infinite;

// Tell the posiotion of each sensor (if on the line or not)

if(leds[0] ==)

ledso[0] <= ;
else

ledso[0] <= ;

if(leds[1] ==)

ledso[l] <= ;
else

ledso[l] <= ;

if(leds[2] ==)

ledso[?2] <= ;
else

ledso[2] <= ;

if(leds[3] ==)

ledso[3] <= ;
else

ledso[3] <= ;

if(leds[4] ==)

ledso[4] <= ;
else

ledso[4] <= ;

if(leds[5] ==)

ledso[5] <= ;
else

ledso[5] <= ;

if(leds[6] ==)

ledso[6] <= ;
else

ledso[6] <= ;

if(leds[7] ==)

ledso[7] <= ;

e
17

else
ledso[7] <= ;

end

end
// Controller register

always_ £ffQ (posedge clk)
begin

state <= state next;
end

always_comb begin
state next = state;

if ((reset == 0) || (direction == infinite))
state next = ledsout;
if (direction == out)
state next = waitl;
if (countl >= tenu)
state next = ledsin;
if (direction == in)
state next = wait2;
if (count2 >= hunu)
state next = test;
end
endmodule

18

4.3.3 PWM to control the motor

The purpose of this code is to control the speed of the motors using pulse width modulation (PWM),
and send those signals to the L293D dual H-bridge motor driver. By trial, we chose a 10ms period with
80/ duty cycle as the parameters for the adequate maneuvering of the car on the track.

This code helps us achieve a smooth car motion. If we were to directly connect the motors to the 12-V
battery, the speed would be too fast, and the car would be moving in the “zig-zag” motion, or
completely drive off the track.

// Kostiantyn Yushchak & Davneet Singh

//

// April 4, 2017

//

// motorcontrol.sv - motor speed controller

//

// Control the speed of left and right car motors using PWM.

// Set "highduty" and "lowduty" for number of cycles for each portion
// of the period.

module motorcontrol (
output logic [1:0] LmotorPW, RmotorPW, // motor PWM signals
input logic [1:0] Lmotor, Rmotor, // motor logic signals
input logic reset, clk) ; // reset and clock

// Use 100HZ frequency. 10ms

// 50% dcycle

// CLock is 50MHz = 20n. 10ms/20ns = 500 000 cycles in 10 ms
// 5ms/20ns = 250 000 cycles 1.

logic [1:0] LmotStatus, RmotStatus; // Tells if motors are engaged

logic signed [31:0] countl, count2; // count register
parameter highduty = ; // Number of cycles output is 1
parameter lowduty = ; // Number of cycles output is 0
enum logic [2:0] // enumeration for the states

{

high, // positive duty cycle

low, // 0 duty cycle

waitl, // positive duty cycle wait

wait?2 // 0 duty cycle wait

} state, state next;

enum logic [1:0] // enumeration to swith between states. names are not
significant
{infinite,
in,
out

} direction;

always_ ff@ (posedge clk)
begin

// Applly positive PWM to the appropriate motor.

e
19

if (state == high)begin
direction = out;

// Left motor

if (Lmotor

begin
LmotorPW[0] <=
LmotorPW[l] <=
LmotStatus <=
end
else if (Lmotor == 2)
begin
LmotorPW[0] <=
LmotorPW[l] <=
LmotStatus <=
end
else if(Lmotor == 0)
begin
LmotorPW[0] <=
LmotorPW[0] <=
LmotStatus <=
end

// Right motor

if (Rmotor ==
begin
RmotorPW[0] <=
RmotorPW[1l] <=
RmotStatus <=
end
else if (Rmotor == 2)
begin
RmotorPW[0] <=
RmotorPW[1] <=
RmotStatus <=
end
else if (Rmotor == 0)
begin
RmotorPW[0] <=
RmotorPW[0] <=
RmotStatus <=
end

end

// to move to the next state

) // left motor forward

// left motor backwards

’

//left motor don't move

’

) // left motor forward

’

// left motor backwards

’

//left motor don't move

// BApplly 0 to the appropriate motor.

if (state == low)begin

direction = in;

// Left motor

if (LmotStatus == 1)
begin
LmotorPW[0] <=
LmotorPW[1l] <=

// to move to the next step

// left motor forward

’

’

20

end
else if (LmotStatus == 2) // left motor backwards
begin

LmotorPW[0] <= ;

LmotorPW[l] <= ;

end
else if (ILmotStatus == 0) //left motor don't move
begin
LmotorPW[0] <= ;
LmotorPW[0] <= ;
end

// Right motor

if (RmotStatus == 1) // left motor forward
begin

RmotorPW[0] <= ;

RmotorPW[1l] <= ;

end
else if (RmotStatus == 2) // left motor backwards
begin
RmotorPW[0] <= ;
RmotorPW[1l] <= ;
end
else if (RmotStatus == 0) // left motor don't move
begin
RmotorPW[0] <= ;
RmotorPW[0] <= ;
end
end
if (state == waitl) // high duty cycle counter
countl <= countl + ;
else
countl <= 0; // if not counting counter should remain at zero
if (state == wait?2) // low duty cycle counter
count?2 <= count2 + ;
else

count2 <= 0; // 1f not counting counter should remain at zero
end

// Controller register

always_ ff@ (posedge clk)
begin

state <= state next;
end

always comb begin
state next = state;

if (reset == 0)
state next = high;
if (direction == out)
state next = waitl;
if (countl >= highduty)

e
21

state next = low;
if (direction == in)
state next = wait2;
if (count2 >= lowduty)
state next = high;
end
endmodule

22

4.3.4 Top Level Module for this project

The code instantiates all the modules for proper operation, as well as defines the common clock and
reset.

// Kostiantyn Yushchak & Davneet Singh

//

// April 4, 2017

//

// cartop.sv - top-level module for ELEX 7660 Project.

module cartop (
input logic CLOCK_ 50, // clock
input logic [1:0] KEY, // reset
inout tri [7:0] leds, // reflectance sensor inout
output logic [1:0] LmotorPW, RmotorPW // motor PWM signals
)

logic [7:0] ledso; // reflectance sensor binary signal
logic [1:0] Lmotor, Rmotor; // motor binary signals

// Instantiate reflectance sensor module.

ledsarray u0 (
.clk (CLOCK 50),
.leds (leds),
.ledso(ledso),
.reset (KEY[0])
);

// Instantiate PWM module.

motorcontrol ul (
.clk (CLOCK 50),
.reset (KEY[0]),
.Lmotor (Lmotor),
.Rmotor (Rmotor),
.LmotorPW(LmotorPW) ,
.RmotorPW (RmotorPW)
)

// Instantiate direction module.

direction u2 (
.ledso(ledso),
.Lmotor (Lmotor),
.Rmotor (Rmotor),
.c1k (CLOCK_50),
.reset (KEY[0])
);

endmodule

23

5 References

[1] "Line Following Robot," [Online]. Available: https://circuitdigest.com/microcontroller-projects/line-follower-
robot-using-arduino.

[2] "QTR-8RC Reflectance Sensor Data Sheet," [Online]. Available: https://www.pololu.com/docs/pdf/0J12/QTR-
8x.pdf.

[3] "1A Step-Down Voltage Regulator," [Online]. Available: https://www.pololu.com/file/0J843/d24v10fx-
schematic.pdf.

[4] "H-Bridge Circuit," [Online]. Available: http://www.ti.com/lit/ds/symlink/I293.pdf.

24

