REE-RO

A Responsive Autonomous Robot

Ree-Ro is a little robot that does not like loud noises or sounds. It will “eat” the sound, and
attempt to find where the sound is. In this implementation. It works best with sine waves.

Ree-Ro incorporates hardware, software, and mechanical parts. Inside Ree-Ro’s is a sound
envelope detector circuit that is connected to the ADC of the DEo-Nano FPGA board. Ree-
ro’s mobility is supported by two stepper motors connected to wheels.

The focus of this project is to give basic autonomy to a moving robot.

Bea Venzon, Lulu Li

4/16/2017

4/16/2017

Contents
L1 oo [0 e o SRR 4
PrOJECE GOAIS. ...t 4
BaSEIING GOQISeeei it a e e e aaaaaas 4
HIGh LeVel ... 4
[0 LY SRR 4
YA el N CTo =1 PSSRSOt 4
HIGh LeVel ... 4
SugQgestions FOr FUTUIE WOTK ... e 5
POWEr CONNECLIONS ... s e s e 6
System Design OVEIVIEWciiiiiiiii i 7
MOUIE DESCIIPLIONS ...ttt 8
YU o3 DY ¥ Y a o] o H SO PR OUPPPRROPUPPRIOt 9
Y ITal Y oo [N]SR P PR SOPPSRROP 9
(@0 = TP TP OO P PP EPTRPPP 10
Sound ENVelope DeteCtion CIFCUITieiuuieiuieeiiie ettt ettt ettt et eee e e emte et e e e e eneee s 11
150 1Y USSR 12
1 Fe] 01142 d o o USSR 17
Sy (=T o] o T gl oL PP PP O PP PPPPPPPPPPN 17
VOO BaSICS ...ttt e e e e 18
Motor Connection BlOCk DIagramisociuiiiiiiiiiiieii et 19
IMOTOT SCREIMATIC. ..ttt ettt bttt bbbt bt et enneeseeenne s 20
ISY (=T o o OSSO PO RO PRRRO PPNt 21
L5140 OO 21
Lo o [OSSP PP PP PP 22
BN e e 22
SystemVerilog/Verilog Coe ... s 24
TOP LEVEIIMOTUIE ...ttt ettt et e et e e e e et e enee e e s e enneeeas 24
Lo Ta=T ool o T | ol TSP UR PRSI 27
MOLOr CONTIOl MOTUIES ...ttt 31
PN ASSIGNMENTS ... e 34
IS5 1 01T o e o RSP PPPPPER 37
Steering Control Test BENCh ..o e 37
MECNANICAT DIGWINGS ...ttt ettt ettt e et e et e e 39

4/16/2017

o 0T o1 USSR 4Lt
PriNtiNgG PrOCESS ... s 45
... 46

Final Results

.©

4/16/2017

Figures

Figure 1: Power Connection to Parts of REE-RO ..o 6
Figure 2: Top Level Overview 0f REE-ROcc.iiiiiiiiiiiieii ettt 7
Figure 3: RTL VIEW Of REEIO ... 7
FIGUIE £4: REEIO IP BIOCK ...ttt ettt ettt 7
FIGUre 5: IMIC IMOAUIE [2] ..ottt ettt ettt 9
Figure 6: Cone —1SOMELIiC VIEWcoiiiiiiiiiiii s 10
Figure 7: Sound Level Detection Block Diagramccoiiiiiiiiiiiiiie e 11
Figure 8: Sound Level Detection CIrCUITFcciiiiiiiiiiiiieiiceie e 11
Figure 9: Ree-ro — Complete View (OUESIAE)ooiiiiiiiie e 12
Figure 10: Ree-ro, BOTTOM LEVELc..iiiiiiiiiiicii e 13
Figure 12: Ree-ro, TOP LeVel ... e 14
Figure 12: REE-10, BACK COVEI....c.uiiiiiiiiii it 15
Figure 13: Reero, BOttom VIEWoiiiii s 16
Figure 14: Stepper Motor and Breakout BOArdccoiciiiiiiiiiiiiic s 17
Figure 15: MOtOr Wiring diagram ...c..ooui oottt ettt nb et 18
Figure 16: Block Diagram of Motor CONNECTIONS.........ccuiiiiiiiiiii e 19
Figure 17: Schematic of motor connection t0 FPGAcoiiiiiiiiiiie e 20
Figure 18: Steering Control WavefOrmmo e 21
Figure 19: State Controller SCheMATIC ...c..iiiiiiii s 27
Figure 20: FIFO SCREMATICouviiiiiiici ettt 27
Figure 21: 3D Printing ProCess — BOGY........couiiiiiiiiiiieiiie e 45
Figure 22: 3D Printing Process —WHheels ..o 45
Figure 23: COmMPIete ASSEMDIYiiiiiiiii e 46
Figure 24: Re@-RO FroNt VIEWcooiii e 46
Figure 25: REE-RO ANGIE VIEWuiiiiiiiiieii ettt ettt ettt 47
FIGUre 26: REE-RO SIAE VIBW ...ttt bttt 47

4/16/2017

INTRODUCTION

The purpose of this project is to construct a mobile robot that can locate the source of a stationary sound
of a known frequency autonomously, while avoiding obstacles. One can conceive of many ways that
audio source localization on an autonomously roving robot can be applied in doing tasks that are
dangerous to the average human, such as locating the source of a ticking time bomb or finding the
source of the suspicious shuffling in the basement late at night. This robot accomplishes neither of these.

Introducing Ree-ro: a Responsive Robot with a vengeance. Ree-ro is equipped with two wheels that gives
it the ability to move forward and turn left or right. The wheels are powered by 28-BYJ-48 motors. To
explore the environment, Ree-ro is equipped with a sound sensor. A combination of hardware and
software is used to process the sound. The sound is pre-amplified and filtered, until ultimately passing
through an envelope detector an averager. If the sound is a sine wave, the expected waveformis a
relatively flat envelope with a voltage level that varies with sound level. Within the FPGA, some further
averaging is done in code.

PROJECT GOALS

Baseline Goals

High Level

% Arobot that responds to sound and locate the direction of the loudest sound, given that the
source is a sine wave.
o Turn left or right by comparing sound averages.

Low-Level

®,

% Design and build a circuit that can detect the envelope of a sine wave
% Get the motors to run

*

7
*

% Write a simple algorithm for approaching a sound source

Stretch Goals
High Level

% The robot (Ree-ro) should be able to avoid obstacles using ultrasonic sensors
o The sensor will detect the distance, and sends a stop signal
% When sound level goes below a certain threshold for a certain amount of time, Ree-ro will go
into a sleep state
“* Have a personality
o Play prerecorded voice clips for example:
= Upon finding sound source: FIGHT ME!
= Detect nosound: Good-night
¢ Have two displays that are the eyes
o Have different expressions depending on the situation
= When approaching an obstacle: O O
= Upon finding the sound source: = =

* Whengoingtosleep: * *

4/16/2017

Suggestions for Future Work

% Implementing the stretch goals.
% Experiment with using different mic shapes. Consider using a parabolic mic for better directional
properties.
Consider using multiple mics to triangulate the sound.
Instead of having Ree-ro react to sound level, make Ree-ro react to the tempo of the sound. The
sound envelope detection circuit would not be in use for this implementation, and the tempo of

the sound must be derived by some method with hardware and/or software.

X3

8

5

%

POWER CONNECTIONS

4/16/2017

5V DC Source from
Portable Battery

Bank
k.
Left Motor Right Motor FPGA Board
33V
provided
by the
FPGA
Mic Circuit

Figure 1: Power Connection to Parts of Ree-Ro

Ree-ro is powered by a portable battery charger for phones. To interface this, we used a stripped end of
an old USB cable. The left motor, right motor, and the FPGA then gets power from the prototype board.

We would recommend using a female micro-USB break out board to avoid stripping the wire of the USB

cable.

The FPGA provides a 3.3V output, which was used to power the mic circuit. The wire bringing out the

power from our FPGA is white and black, corresponding to 3.3V and ground respectively.

6©

SYSTEM DESIGN OVERVIEW

4/16/2017

FPGA
Motor
Left Stepper Motor Breakout
Modul Board and
o Uneste
Sound In Mic Breakout Board LEVE&?;‘J‘TF‘““ ADC Module Code (C code) Steering Module
Motor
Right Stepper Motor Breakout
Modul Board and
- e
Figure 2: Top Level Overview of Ree-Ro
ADC_SDAT[>
reero:uQ adcspi:a0
clke_clk dk data[31..0] 2Tl 11
CLOCK_50 > = - 1.0 :E >1LED[?..O]
KEY[1 ..U]D resetl_reset n state export[2..0] miso mosi D ADC_SADDR
stin_idata[31..0] stin_iready ready sclk [ADC SCLK
stin_ivalid reset ssn .
= = > ADC_CS_N
wvalid

[state[2.0]

steercontroller:st0

ck stepperL[3.0]

state[2_0] stepperr3.0]

D stepperL[3..0]

Figure 3: RTL View of Reero

[stepperR[3.0]

stin

- i
resel

statg

0 s . 0

YT —

ustom_jnstruction_master

i

1

ata_master

Hebug_reset_request

nstruction_master

onchip_memoryz_0

cpu

g

I_slave

System_i

1

inkerval_timer

Ton_tag_slave

awalon_streaming_source

Eag_uart

fon_slzve_0

myfifo_shim_0

lock

ondut_end_0

statecontroller_0

cin

in

strm_n

reery

Figure 4: Reero IP Block

Module Descriptions

4/16/2017

Module Description
Processor Code & This module handles taking samples from the ADC and sends control signals to
ADC Module the steering module (rest, move forward, left, right).

This is a modified version of Lab 5 (FIFO), with added outputs for the Steering

Module.

State Control

State control is a register that holds the value that corresponds to the motion and

direction of the motor.

Value Action
000 Rest
001 Forward
010 Turn Left
011 Turn Right
XX Reset
Steering The steering module is an interface between the processor and the left and right
stepper motor modules.
Stepper This module goes through the stepper sequence for each motor.

s©

4/16/2017

AUDIO DETECTION
Mic Module

The sound module that was used is an Electret Microphone Amplifier breakout board which uses the
MAX 4466 with an adjustable gain potentiometer. More gain was needed to maximize the resolution of
the detected sound, so additional circuitry was added (see section: Sound Envelope Detection Circuit).

Figure 5: Mic Module [1]

4/16/2017

Cone

To make the sound more directional, a 3D printed cone was used to direct the sound to the mic. Around
the mic, foam was used to further insulate the cone, and in the final build of Ree-ro, the mic is placed
inside the body to reduce the sound coming from the back.

The dimensioned mechanical drawings are included in the end.

Figure 6: Cone — Isometric View

100

4/16/2017

Sound Envelope Detection Circuit

Below is a functional block diagram of the sound level detection circuit, followed by the actual circuit.
The sound level detection circuit detects the envelope of the audio signal from the mic to a
corresponding DC level between o V to 3.3V.

Envelope Over/Under-

Microphone .
. o : Adjustable .
Sound In—»{ Amplifier —> AC Coupling [—» Gain Detection —>» Low-Pass Filter _’antage Brotection [10 FPGA—>

Module

Figure 7: Sound Level Detection Block Diagram

=
> ; i
v v2 &) v3
£33 =5 =<0

Sound-in C||1
]
MIC 33,F

o5/2

300k

.tran 30ms

Sound Envelope Detection Circuit, Rev. 4
Designed by: Bea Venzon

Figure 8: Sound Level Detection Circuit*

* Application Notes:

e R3orR2is apotentiometer to make the gain adjustable. R4 is also a potentiometer, to make the
low pass filter adjustable.

e Ceramic capacitors were used; there’s no guarantee that an electrolytic one would work.

e (ajust hasto be a suitably large capacitor, to be used for AC coupling. (Note that C1 and R1
form a high pass filter).

e Thelow pass filter stage at the final stage is not as important; only use it if the diode detector
circuit does not filter enough. If a larger capacitor than .33uF is available, add one too.

e The FPGA’'s 3.3V output is sufficient for powering this circuit. If, for whatever reason, the user
decides to increase the supply voltage of the mic and the op amps to a value greater than3.3V
(the mic can have an input voltage between 2.7 V to 5.5V), it will be important to have the
over/under voltage protection diodes at the final stage of the circuit, with the positive reference
tied to a 3.3V source.

11@

4/16/2017

BoDY

Ree-ro’s was modeled in CAD and was 3D printed. The features were designed to have an
anthropomorphic appearance — having eyes and a mouth, to show an expressive personality.

The following figures below show a functional overview of Ree-ro’s mechanical build. The dimensioned

mechanical drawings are shown in the end.

Figure 9: Ree-ro — Complete View (Outside)

12@

4/16/2017

Inside Ree-ro, there are two levels. The bottom level houses the charger and the stepper motors. There
are mounting holes for the stepper motors, which are secured with a screw and a nut. The stepper motor
drivers breakout boards, which are not shown, were placed on standoffs and attached on the side walls.

Figure 10: Ree-ro, Bottom Level

13@

4/16/2017

On the top level, there is a removable shelf where the FPGA and the sound level detection board is
placed. The mounting holes are for the FPGA and the sound level detection board was placed on stand-
offs and attached to the shelf with double sided tape. The mic is encased in cylindrical foam, and the
pointed stand-offs are meant to pierce through the foam.

Figure 11: Ree-ro, Top Level

1,©

4/16/2017

The width of the back cover panel fits into the slits in the back.

Figure 12: Ree-ro, Back Cover

150

4/16/2017

Stand-offs were placed on the bottom for balance.

Figure 13: Reero, Bottom View

16@

MOBILIZATION
Stepper Motor

4/16/2017

Ree-Ro’s mobility comes from two wheels attached to its sides. The motors we used are two small 5V DC

stepper motors that could be purchased from Amazon. The chip we use with the motor is ULN2003A. On

Amazon, the breakout board mounted with the ULN2003A comes with the motors.

The inner dimensions of the holes in the wheel were sized to fit the stepper motor shaft.

Figure 14: Stepper Motor and Breakout Board

Stepper Motor Properties:

5

%

Model:

Rated Voltage:
Number of Phase:
Speed Variation Ratio:
Stride Angle:
Frequency:
DCresistance:

7
°

7
°

7
°

7
°

e

%

e

%

e

%

e

%

7
°

In-traction Torque:

7
°

7
°

Friction torque:
Pullin torque:
Insulated resistance:

5

A

5

A

KD
£

5

A

Insulation grade:
Rise in Temperature:
Noise:

7
°

7
°

Self-positioning Torque

28BYJ-48
5V DC
4
1/64
5.625°/64
100Hz
508} +7%(25°C)

Idle In-traction Frequency: > 600Hz
Idle Out-traction Frequency: > 1000Hz

> 34.3mN.m(120Hz)
>34.3mN.m
600-1200 gf.com
300gf.com
>10MQ(500V)

Insulated electricity power: 600VAC/1mA/1s

A
<40K(120Hz)
<35dB(120Hz, No load, 10cm)

170

4/16/2017

Motor Basics

2~ Pink

4 Orange ~—
s

5. Red —

Lol

1 ‘l Blue

Figure 15: Motor wiring diagram

Table 1: Alternate Naming Used

Blue A Bit [o]

Orange B/ Bit [3]

Table 2: Stepping Sequence

0: 1 2: 3: 4: 5: 6 7:
A 1 0 o) o) o} o} 1 1
B 1 1 1 o] o] o] 0 o]
Al o] o] 1 1 1 0 0 o]
B/ o (o) 0 0 1 1 1 o

The stepping sequence displayed in Table 2 is used in our motor.sv module. Table 2 shows from top to
bottom the least significant bit (LSB) to most significant bit (MSB) corresponding to the decoder in
motor.sv.

This stepping sequence combined with the ULN2003A rotates the motor shaft clockwise. For Ree-Ro to
move forward, the right wheel should turn clockwise while the left wheel should turn counter-clockwise.
To do that, we need to reverse the step sequence in our left motor by counting downwards, instead of
upwards.

18@

4/16/2017

Motor Connection Block Diagrams

33V

Micorphone and
Microphone Breakout

Board
L
FPGA
5\ Battery
Pack
¥YY¥YY hA A A J
Stepper Matar Stepper Mataor
Breakout Board Breakout Board
Stepper Stepper
Motar Motaor

Figure 16: Block Diagram of Motor Connections

19©

4/16/2017

Motor Schematic

Table 3: Pin Connections

ULN2003 Pins Breakout Board
Pins
Pin 16: IN2

Pin 15: IN2
Pin 14:
Pin 13:

r)
| |
| T PAA

skpperk Sepper R |
o) £ 23 £33 o) €3 r2) 131

il G i

Figure 17: Schematic of motor connection to FPGA

The breakout board internally connects the common (Pin g) of the chip to the positive power pin of the
board. The red (common wire) of the motor is also internally connected to the power pin. So, by
connecting 5V to the supply pins of the board, power is supplied to the board and the motor.

The connector on the board that is used to connect to the motor is keyed, so don’t worry about
connecting the motor backwards.

200

4/16/2017

Simulation Results

Steering
Waveform

L e
T+l it ¢

+

amonoonnn

e e 44 u

Figure 18: Steering Control Waveform

Note: for simulation, the clock division is only 2, as we only needed to test if the clock division works as it
should be.

Stepper sequence is also simulated in the waveform above.

Testing

For testing, we brought out our data[2:0] and write signal out into four unused GPIO_o pins for testing
the logic of our steercontrol.sv. We then connected the four signals to a SPDT Grayhill switches to
manually simulate the data signals.

21@

CODE

Firmware

4/16/2017

/* REERO CONTROLLER

reero.c

Determines the direction that the motor will move by comparing a
previous average of sound samples with the current one.

Written by: Bea Venzon

Date: March 20, 2017

Modified: April 5, 2017

*/
#include <stdlib.h>
#include "unistd.h" /* for usleep() */
#include "..\reero c bsp\system.h"
// Timing constants
#define NSAMPLES 1000

// Do NOT exceed 65,535 ; will overflow !!!
#define msDelay 1000
// usec --> 1000 usec = 1 msec
#define MOTOR_RUNTIME 4000 // msec
#define TURN_RUNTIME 1500 // msec
#define WAIT 1000 // msec
#define SAMP usleep 100 // usec
// Control signals for steering module
#define REST 0
#define FORWARD 1
#define RIGHT 2
#define LEFT 3
#define RESET 4
#define SETDIR (x) (* (int*) STATECONTROLLER 0 BASE) = (x)
int main ()
{
SETDIR (RESET); // reset

unsigned int n ;
unsigned int totSound,
prevDir ;

currentSound, prevSound, currentDir,

totSound = currentSound = prevSound = 0 ;
int *padc = (int*) STRM IN BASE ;

while (1) {

currentDir = REST ;

SETDIR (currentDir) ;

// Allow robot to stabilize before taking samples

for(n = 0; n < WAIT ; n++)
usleep (msDelay) ;
// Sample and average sound

totSound = currentSound = 0 ;

22@

4/16/2017

for(n =0 ; n < NSAMPLES ; n++) {
int data = padc[0] ;
totSound += data&Oxffff ;
usleep (SAMP usleep) ;

currentSound = totSound / NSAMPLES ;

// Direction control
if (prevSound > currentSound) {

if (prevDir == LEFT) {
currentDir = RIGHT ;
SETDIR (currentDir) ;

}

else{
currentDir = LEFT ;
SETDIR (currentDir) ;

}

else{
currentDir = FORWARD ;
SETDIR (currentDir) ;
}
if ((currentDir == LEFT) || (currentDir == RIGHT)) {

for(n = 0; n < TURN_RUNTIME; n++)
usleep (msDelay) ;

SETDIR (FORWARD) ;

// Store previous value before next cycle
prevDir = currentDir ;
prevSound = currentSound ;

// The time that the motor is running
for(n = 0; n < MOTOR_RUNTIME; n++)
usleep (msDelay) ;

}

return O;

230

4/16/2017

SystemVerilog/Verilog Code
Top Level Module

// labb5top.sv - top-level module for ELEX 7660 lab 5
// Ed.Casas 2017-2-14

// This module was modified to be the top level module for Reero
// Modified by: Bea Venzon
// Modified date: April 4, 2017

module lab5top
(
input logic CLOCK 50,
output logic [7:0] LED,
input 1logic [1:0] KEY,

// ADC SPI interface

output logic ADC CS N, // ssn
output logic ADC SADDR, // mosi
output logic ADC SCIK, // sclk
input logic ADC_ SDAT, // miso

output logic [3:0] stepperL,
output logic [3:0] stepperR,
output logic [2:0] state // state output
)

// instantiates a Nios 2 processor with SDRAM memory and
// ready/valid input for 'myfifo'. System defined in
// lab5.gsys.

reero u0
(
.clk clk (clk), // clock _50.clk
.reset reset n (reset n), // reset.reset
.stin idata(data), // connected to myfifoshim stream inputs

.stin iready(ready),
.stin ivalid(valid),
.state_export (state) // state register

);

steercontroller st0
(
.clk (clk), // connect clock
.state (state),
.stepperlL (stepperl),
.stepperR (stepperR)
)

// Instatiate an SPI master for the DEO-Nano ADC. Reads from
// ADC SPI pins, outputs to a ready/valid interface that feeds
// 'myfifo'.

logic ready ;
logic valid ;

2,©

4/16/2017

logic [31:0] data ;
logic reset n, clk ;

assign clk = CLOCK 50 ;
assign reset n = KEY[O0O] ;

adcspi a0
(
.sclk(ADC_SCLK), .mosi(ADC_SADDR), .ssn(ADC_CS N), // SPI master
.miso (ADC_SDAT) ,

.ready (ready),

.valid(valid), // data out
.data(data),

.clk(clk), .reset(~reset n)) ;

// copy MS ADC bits to LEDs for debug
assign LED = { data[27:24], data[11:81 } ;

endmodule

// -- start of adcspi.sv ---

// SPI master interface for TI ADC128S022

// for ELEX 7660 201710 Lab 5

// Ed.Casas 2017-2-16

// reads channels 0 and 1

// sclk is clk is divided by 16

// output is 16-bit samples from channels 0 and 1
// samples packed into 32 bits (ch 0 in MS byte)
// ADC128S0022 interface:

// 16 bit transfers

// mosi and cs* change on falling edge of sclk

// mosi bits 13:11 are (next) channel number

// miso sampled on rising edge of sclk

// miso data is on 1s 12 bits of miso

// sample rate is sclk rate / 16

// sample rate must be 50 to 200 kHz

// sclk rate must be 800 kHz to 3.2 MHz

// e.g. 50 MHz / 32 = 1.5625 MHz sclk, ~98kHz sampling
// mosi timing relative to rising edge of sclk:
// setup is >10ns, hold >10ns

// miso timing is relative to falling edge of sclk:
// access is <27ns, hold ~4ns

module adcspi

(

output logic sclk, mosi, ssn, // SPI master

250

4/16/2017

input logic miso,

input logic ready, // ready/valid data out
output logic valid,

output logic [31:0] data,

input logic clk, reset) ;
parameter MISO = {5'b00001,27'b0O} ;
// clock/bit counter
struct packed {
logic wordent ;
logic [3:0] bitcnt ;
logic sclk ;
logic [3:0] clkent ; } cnt, cnt next ;
logic [31:0] sr ; // shift register
logic rising, falling, done ;

assign sclk = cnt.sclk ;

// done all bits
assign done = ¢cnt ==? '{'1,'1,'1,"1} ;

// clock/bit counter
assign cnt next = (reset || done) ? 'O : cnt+l'bl ;
always@ (posedge clk)

cnt <= cnt next ;

assign rising = cnt next.sclk && ~cnt.sclk ;
assign falling = ~cnt next.sclk && cnt.sclk ;

always@ (posedge clk) begin

if (falling) // shift mosi out
mosi <= sr[31] ;

if (rising) // shift miso in
sr <= {sr[30:0],miso} ;

if (done) begin

data <= sr ; // copy to parallel out
sr <= MISO ; // channel select serial out
mosi <= MISO[31] -
valid <= "1 ; // data ready
end
if (ready && valid) // data was read
valid <= '0 ;
end
always@ (posedge clk) // run continously

ssn <= reset ;

endmodule

26()

Interface Logic

4/16/2017

statecontrol:statecontrolO

reset
write
state_next[2..0]
state_next~[2..0]
data[31.0] state[0]~reg[2..0]
clk state[2..0]
Figure 19: State Controller Schematic
i
o
= e ==l s
T el o -
w:z iomm B odata[opregl=1 0]
Th0on LessThant 3270} ==
N7 = writep_nest-2.0] wiitep(z 0] ThO oy AddD e ireacy~{2.0]
e - o o e = s et
([T == T _‘[j_u.migh_.,mi
E - Equats alvaysi=
i’“ﬁ“’ ',Mmi e
| e b

Figure 20: FIFO Schematic

270

4/16/2017

State Register

// statecontrol.sv

// Statecontrol is a register that holds the value of the next
// state for Reero. This is for interfacing between the IP block
// containing the CPU and the steering module.

// Author: Bea Venzon
// Date: April 6, 2017

module statecontrol (input logic [31:0] data, // from databus
input logic clk,
input logic write,
input logic reset,
output logic [2:0] state);

logic [2:0] state next ;

always ff @ (posedge clk) begin
state <= state next ;
end

always_comb begin

if (reset) state next = '0;

else state next <= write ? data[2:0] : state ;
end

endmodule

State Register Shim

// statecontrolshim.v

// This is a shim that defines the ports of the state module in
// Verilog-2001 syntax and instantiates it.

// Written by: Bea Venzon
// Date: April 4, 2017
module statecontrolshim
(parameter fclk = 50000000)
(

input wire avs_write, // avalon slave.write
input wire [31:0] avs writedata, // .writedata
input wire clk, // clock sink.clk
input wire reset, // reset sink.reset
output wire [2:0] coe state // conduit end.state

);

statecontrol #(fclk) statecontrolO // fclk is clock frequency, Hz
(

.data(avs_writedata), // Avalon MM bus, data
.write(avs write), // " write strobe
.state(coe state), // on/off output for audio

.reset (reset),
.clk(clk)) ;

endmodule

28()

4/16/2017

FIFO (from Lab 5)

// myfifo.sv - FIFO with ready/valid input and output
// for ELEX 7660 201710 lab 5

// Author: Bea Venzon
// Date: March 9, 2017

module myfifo
(
output logic iready, // ready/valid input
input logic ivalid,
input 1logic [31:0] idata,

input 1logic oready, // Avalon-ST output
output logic ovalid,

output logic [31:0] odata,

input logic reset, clk) ;

D W

parameter W ; // bit width of address pointer
parameter N = 3§ ; // depth of RAM

logic [31:0] RAM [0:(N-1)1
logic [(W-1):0] readp, readp next, writep, writep next ;

always ff Q@ (posedge clk) begin
readp <= readp next ;
writep <= writep next ;

RAM[writep] <= idata ; // read
odata <= RAM[readp] ; // write
end

always_comb begin
if (reset) begin
writep next = 0;
readp next = 07
end

// FIFO status bits

iready = (readp '= ((writep + 1) < N ? (writep + 1) : 0))
? 1'bl : 1'b0 ;
ovalid = (readp '= writep) ? 1'bl : 1'b0 ;

// Increment write pointer
if (ivalid && iready)
writep next = (writep < (N - 1)) ? (writep + 1)

else
writep next = writep;

// Increment read pointer
if (oready && ovalid)

readp next = (readp < (N - 1)) ? (readp + 1) : 0O
else

readp next = readp;

29©

4/16/2017

end

endmodule

FIFO Shim (from Lab 5)

// Author: Ed Casas

module myfifoshim

(
output wire iready, // "conduit" for input from ADC
input wire ivalid,
input wire [31:0] idata,

input wire ready, // Avalon ST output to strm in
output wire valid,
output wire [31:0] data,

input wire reset, clk) ;
// instantiate the System Verilog (.sv) implementation
myfifo fifoO
(
.iready(iready),
.ivalid(ivalid),
.idata (idata),
.oready (ready),
.ovalid(valid),
.odata (data),
.reset (reset), .clk(clk)) ;

endmodule

30()

4/16/2017

Motor Control Modules
Steering Control

// steercontrol.sv

// Top module to turn on and off the left and right wheel of ReeRo.
// The counter for the stepper sequence is included in this module as
// both the left and right wheel are using the same counter.

// Author: Lulu Li
// Date: March 29, 2017
// Modified Date: April 4, 2017

module steercontroller (input logic [2:0] state, // signal from data bus
output logic [3:0] stepperl, stepperR,
input logic clk) ;

// count from 0-7 corresponding to stepper sequence
logic [2:0] segcntL;
logic [2:0] segcntlL next;
logic [2:0] segcntR;
logic [2:0] segcntR next;

// Divide 50Mhz FPGA clock to 5kHz for the stepper motor.
logic [23:0] clkdiv, clkdiv next;

parameter clkdivmax = 24'd249999; // running at 200Hz
//parameter clkdivmax = 23'd2; // for testbench

motor motor L (.count(segcntl), .stepper(stepperl)):;
motor motor R (.count(segcntR), .stepper(stepperR));

always ff @ (posedge clk)begin
clkdiv <= clkdiv_next;
segcntl <= seqcntl next;
segcntR <= seqgcntR next;
end

always_comb begin
// Reset initial values.
if (state[2]) begin

seqgcntL next = '0;
seqcntR next = '0;
clkdiv _next = clkdivmax;
end
else begin
clkdiv _next = 'clkdiv? clkdivmax: clkdiv - 24'bl;

case(state[1:0])
0: begin // Stopped
segcntl next = seqcntl;
segcntR next = seqcntR;
end

// Moving forward.
// Left wheel turn ccw (counting down); right wheel turn cw (counting up)
1: begin
segcntL next = !clkdiv? (seqgentL - 1'bl)
seqcntL;

31()

4/16/2017

segcntR next

seqgcntR;
end

// Turning right.

// Left wheel on, right wheel off.
2: begin

segcntl next

seqgcntL;

segcntR next

end

// Turning left.

// Left wheel off, right wheel on.
3: begin

segcntl next
segcntR _next

seqcntR;
end
endcase
end
end
endmodule

'clkdiv? (seqgcntR + 1'bl)

'clkdiv? (seqgcntlL - 1'bl):

segcntR;

segcntL;
'clkdiv? (segcntR + 1'bl):

32()

Motor

4/16/2017

// steercontrol.sv

// This module is a lookup table for the step sequence of the 28byj-48

// unipolar stepper motor.
// Stepper[0]: Blue wire
// Stepper[l]: Pink wire
// Stepper[2]:
// Stepper[3]:

// Author: Lulu Li
// Date: March 26, 2017

// Modified Date: April 4, 2017

module motor (input logic [2:0]
output logic [3:0]

always comb begin
case (count)

0: stepper =
1: stepper =
2: stepper =
3: stepper =
4: stepper =
5: stepper =
6: stepper =
7: stepper =
endcase
end
endmodule

Yellow wire
Orange wire
// Blue and yellow wire makes one
// Pink and orange wire makes one

count,

stepper) ;

4'b0011;
4'p0010;
4'p0110;
4'p0100;
4'p1100;
4'p1000;
4'pb1001;
4'p0001;

coil.
coil.

4/16/2017

Pin Assignments

#
Copyright (C) 2016 Intel Corporation. All rights reserved.

Your use of Intel Corporation's design tools, logic functions

and other software and tools, and its AMPP partner logic

functions, and any output files from any of the foregoing

(including device programming or simulation files), and any

associated documentation or information are expressly subject

to the terms and conditions of the Intel Program License

Subscription Agreement, the Intel Quartus Prime License Agreement,
the Intel MegaCore Function License Agreement, or other

applicable license agreement, including, without limitation,

that your use is for the sole purpose of programming logic

devices manufactured by Intel and sold by Intel or its

authorized distributors. Please refer to the applicable

agreement for further details.

#

#

#
Quartus Prime

Version 16.1.0 Build 196 10/24/2016 SJ Lite Edition
Date created = 00:42:31 February 14, 2017

#

————— #

#

Notes:

#

1) The default values for assignments are stored in the file:

lab5 assignment defaults.qgdf

If this file doesn't exist, see file:

assignment defaults.qgdf

#

2) Altera recommends that you do not modify this file. This

file is updated automatically by the Quartus Prime software

and any changes you make may be lost or overwritten.

#

set global assignment -name FAMILY "Cyclone IV E"

set global assignment -name DEVICE EP4CE22F17C6

set global assignment -name TOP LEVEL ENTITY lab5top

set global assignment -name ORIGINAL QUARTUS VERSION 16.1.0

set global assignment -name PROJECT CREATION TIME DATE "00:42:31
FEBRUARY 14, 2017"

set global assignment —-name LAST QUARTUS VERSION "16.1.0 Lite Edition"
set global assignment -name PROJECT OUTPUT DIRECTORY output files
set global assignment -name MIN CORE JUNCTION TEMP O

set global assignment -name MAX CORE_JUNCTION TEMP 85

set location assignment PIN R8 -to CLOCK 50

set location assignment PIN Al5 -to LED[O]

34O

4/16/2017

set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment

set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment

set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment

set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment

PIN Al13
PIN B13
PIN All

PIN D1
PIN F3
PIN Bl
PIN L3

PIN D5
PIN A6
PIN D6
PIN C6
PIN E6
PIN D8
PIN E9
PIN F8

PIN D5
PIN A6
PIN D6
PIN C6
PIN E6
PIN D8
PIN F8
PIN E9

PIN J15

PIN El
PIN P2
PIN N5
PIN N6
PIN M8
PIN P8
PIN T7
PIN N8
PIN T6
PIN R1
PIN P1
PIN N2
PIN N1
PIN L4
PIN M7
PIN M6
PIN L7
PIN R4
PIN P6
PIN G2
PIN G1
PIN L8
PIN K5
PIN K2
PIN J2
PIN J1
PIN R7
PIN T4
PIN T2
PIN T3

-to LED
-to LED
-to LED

-to
-to
-to
-to

-to
-to
-to
-to
-to
-to
-to
-to

-to
-to
-to
-to
-to
-to
-to
-to

LED[
LED[
LED[
LED[

~ o Ul D — — —

stepperL
stepperL
stepperL
stepperL
stepperR
stepperR
stepperR
stepperR

-to KEY[O]

-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to
-to

KEY[1]
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM ADDR [
DRAM BA[0]
DRAM BA[1]
DRAM CKE
DRAM CLK
DRAM CS N
DRAM DQ[0]
DRAM DQ[1]
DRAM DQ[2]
DRAM DQ[3]
DRAM DQ[4]
DRAM DQ[5]
[6]
[7]
[8]
[9]
[10

0]
1]
2]
3]
4]
5]
6]
7]
8]
9]
10
11
12

DRAM_DQ
DRAM_DQ
DRAM_DQ
DRAM_DQ

DRAM DQ]

35C)

4/16/2017

set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment
set location assignment

PIN R3
PIN R5
PIN P3
PIN N3
PIN K1
PIN R6
PIN T5
PIN L1
PIN L2
PIN C2

-to
-to
-to
-to
-to
-to
-to
-to
-to
-to

DRAM DQ][
DRAM DQ |
DRAM DQ |
DRAM DQ |
DRAM DQ |
DRAM_DQM
DRAM_DQM
DRAM CAS
DRAM RAS N
DRAM WE N

—,— R e

set global assignment -name PARTITION NETLIST TYPE SOURCE -section_ id

Top

set global assignment -name PARTITION FITTER PRESERVATION LEVEL

PLACEMENT AND ROUTING -section id Top
set global assignment -name PARTITION COLOR 16764057 -section_id Top
set global assignment -name POWER PRESET COOLING SOLUTION "23 MM HEAT
SINK WITH 200 LFPM AIRFLOW"

set global assignment -name POWER BOARD THERMAL MODEL "NONE

(CONSERVATIVE) "

set location assignment
set location assignment
set location assignment
set location assignment

set global assignment -name QIP FILE reero/synthesis/reero.qip
set global assignment -name SYSTEMVERILOG FILE statecontrol.sv
set global assignment -name SYSTEMVERILOG FILE steercontroller.sv
set global assignment -name SOURCE FILE lab5.gsf

set global assignment -name SYSTEMVERILOG FILE motor.sv

set global assignment -name SYSTEMVERILOG FILE lab5top.sv

PIN A10 -to ADC_CS N
PIN B10 -to ADC_SADDR
PIN Bl4 -to ADC SCLK
PIN A9 -to ADC_SDAT

set global assignment -name SDC_FILE lab5.sdc
set instance assignment -name PARTITION HIERARCHY root partition -to |

-section id Top

36()

Testbench
Steering Control Test Bench

4/16/2017

// steercontrol tb.sv
// Test bench code for steercontrol.sv

// Author: Lulu Li
// Date: March 29, 2017

module steercontrol tb();
logic clk;
logic reset;
logic write;
logic [31:0] data;
wire [3:0] stepperl, stepperR;
steercontrol dut(.¥*);
initial begin

// initial state

reset = 0;
clk = 0;

write = 0;
data = '0;

repeat(2) begin
#10ns; clk = ~clk;
end

// write a reset
write = 1;
data = 32'd4;
repeat(?) begin
#10ns; clk = ~clk;

end
write = 0;
data = "x;

// idle for a bit
repeat (20) begin

#10ns; clk = ~clk;
end

// write a direction
write = 1;
data = 32'd2;
repeat(2) begin
#10ns; clk = ~clk;

end
write = 0;
data = '"x;

// idle for a bit
repeat(20) begin

7 ©

4/16/2017

end

endmodule

#10ns; clk = ~clk;

end

// write a direction
write = 1;
data = 32'dl;
repeat(?) begin
#10ns; clk = ~clk;

end
write = 0;
data = 'x;

// idle for a bit
repeat(20) begin

#10ns; clk = ~clk;
end

38()

4/16/2017

MECHANICAL DRAWINGS

1. Cone

2. Wheel

3. Body

4. Shelf

5. CoverPlate

Note that all dimensions are stated in mm.

39@

4/16/2017

@35.18

@10

72.88

DIMENSIONS ARE IN INCHES NAME DATE
TOLERANCES: DRAWN Bea Venzon 2017-03-14
FRACTIONAL®
ANGULAR: MACH# BEND & | CHECKED
TWO PLACE DECIMAL ENG APPR
PROPRIETARY AND CONFIDENTIAL THREE PLACE DECIMAL = MFG APPR.
THE INFORMATION CONTAINED IN MATERIAL ana
THIS DRAWING IS THE SOLE N ,
PROPERTY OF <COMPANY NAME >, COMMENTS:
ANY REPRODUCTION IN PART OR AS FINISH
A WHOLE WITHOUT THE WRITTEN NEXT ASSY | USED ON SIZE | DWG. NO. . REV.
PERMISSION OF <COMPANY NAME> MIC_Cyl 1 1
IS PROHIBITED. APPLICATION DO NOT SCALE DRAWING

SCALE:1:1 WEIGHT:

2 1

SHEET 1 OF 1

40@

FRONT VIEW

SIDE VIEW

BACK VIEW

PROFRIETARY AND CONFIDENTIAL
THE [FCRMAATICH SORTARED [N
THS DRAWNG 15 THE 3C4E
PROPERT Y OF «OOMPANT MAME =
ANY REPRCDUCTION BN PART O AS =
A WHDLE WITHOAUT THE WRITIEN
MAZSIN OF TP ANT HAME
PROFERTED.

~-—————— 6%.88

3 A _3{:. —_— |

PLANE CTE

SICMNS ARE M CHES

TOHERAMCES! CRAWH. Bee Vergor 2017-03-14
FRACTIONAL: I I I
CHECKED
EMG AFFR
MG APPR
MATEIAL |
COMMERE
FRAT

DO HOT SCALE DRAWING

SE (WS, MO

SCALERZ WERCHT

r1M61»017

Wheel

SEETZOFT

4/16/2017

3——f -

DETAILD

SCALET: 1

DETAILE
SCALE:2

+@+j

CIMENSIONS ARE N INCHES

TOHERANCES!

FRACTIONALS

AHGULAR MACHE BEND £

TWOPLACE DECIMAL =
PROFRIETARY AND CONFIDENTIAL PEERDACE D LML
THE IR CRAMATICN CONTARED I MATERAL
THE DRAWKG IS THE 5048
PROPERTY OF cOOMPANY NAME >
AXY REPRCCUCTION 1N PART OF AS
A WHOLE WITHCAT THE WRITTEN
FERMISSION OF oCOMPANT HAME= 1
3 PROVERTED, APTLIC ATOM DO HOT SCALE DRAWING

2

HENT ASSY | LEED O

220
— 7 15
JJ. et
/
!
&
& £
150
LR 7
—
Pt d
HANE CIATE
CRANM. §eq Vergor] 201 7-03-14
CHECERD
NG AFFR |
MR APFTE |
=1 [

COMMERT:

SE | OWG. MO

Body
SCALETE | WEIGHT FEF ACFA

PROPRIEVARY AND CONFIDENTIAL |

THE BFORMATION OONTARED
THS DRAWRNG IS THESDIE
PROPERT YV OF <OOMPARNT HAME >
ANY REPRODUCTION IN PART OR AS
A WHTLE WITRICUT THE WRITTEN
PERMISSICN OF DCOMPAMY HAME"
EPROHBITED.

2

4/16/2017

B
* 173
19.90 __q} {Igﬁ
t o
68
82
5 e R %
3 @4
® @
& & @ |
A @@@@@ — 06

MENT ASSY | LGED Om

APPHC AT

DAMENIICHS ARE B INTHES
TOAERARCFS:
FRACTICHAL
ANGULAR MACH E
TWOPLATE DECIMAL
THREE PLACE DECIMAL +

BEND £

MATERIAL

FRd5H

Do HOT SCALE DRAWRG

oo
i |

MANE DATE
DRAWN Beo Verod 20170314
CHECKED .
EMG AFFR. |

PG AFFR.

| @a

COMMENT

TOP VIEW

7
-

~—*

4/16/2017

DETAIL G
SCALE1:1

| 5 PROHBTED, |

2

DETAIL H

SCALE1.5:1

197.71
147.71
—
r— |80 ———
(_/‘H
150
BACK VIEW

[|cwEnsicns ARE N EHE. || MME | oeE

| TOMERANCES: CRAMN. Beq Verion 2017-03-14

| | FRACTIONAL2 e = -

| | AMGULAR MACHE BENDE [Tl | |

| | | WO PLACE DECIMAL = ENG AFFR. |
e R | THREE FLACE DECIMAL + S
| THE IMFCRAMATION CONTABED N | | vy Tax |
THE CRAWKG IS THE SOIE —_ = z
| PROPERTY CiF <COMPANY MAME > | | | [FREMAENTS
| AR REPRODUCTION IN PART OR AS 'TF R
| A WHOLE WITHOAT THE WRITTEN | FENT. 00 | SOEON |
| PERMNSSION OF <OIMPARY RAMES | % T —

AFTLIC ATION | DO NOT SCALE DRAWING

A" CoverPlate

| |
|SCALETS | WEIGHT: SHEET 5CF 5

1

4/16/2017

PHOTOS

Printing Process

Figure 21: 3D Printing Process — Body

Figure 22: 3D Printing Process — Wheels

45©

4/16/2017

Final Results

3 b
"\ -

7=
=t

?

L

Figure 24: Ree-Ro Front View

46@

4/16/2017

Figure 25: Ree-Ro Angle View

Figure 26: Ree-Ro Side View

47©

