
ELEX Αヶヶ0
Project Report

Siﾏoﾐ

Mike Bagheri

Jeremy Barbour

Alexander Bowers

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 1 of 27 17-Apr-17

ELEX 7660: Digital System Design
Final Project Report

Simon

Date Prepared: April 16, 2017

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 2 of 27 17-Apr-17

Table of Contents
0 Introduction ... 3

1 Objectives .. 3

1.1 Primary Goals ... 3

1.2 Secondary Goals ... 3

2 Game Interfacing ... 4

2.1 Human Interface ... 4

2.1.1 Display .. 4

2.1.2 Audio ... 6

2.1.3 System Block ... Error! Bookmark not defined.
3 Digital Design .. 9

4 Physical Design ... 10

4.1 Push Buttons ... 11

4.2 Display .. 12

4.3 Audio .. 14

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 3 of 27 17-Apr-17

0 Introduction
We as a group came up with an idea of making a game that is called Simon. Simon is a mixture of

hardware and software. For each level, the device creates a pattern of tones and lights and waits until a
user repeats the exact same pattern by pressing the pushbuttons. Upon user’s success, the game advances
to the next level, and the number of tones and lights keep increasing. Upon user’s failure, the game goes
back to level 1.

1 Objectives
At the beginning of the project, we set two sets of goals; primary and secondary. Primary goals are the
most essential; these are necessary for the game to function properly. Secondary goals are additional
add-ons that require more time. Due to the limited time that we had, we mainly focused on primary
goals as being our target.

1.1 Primary Goals
• Display the colour pattern to be pressed
• Display different number of colours per pattern, increasing difficulty and length
• Be able to differentiate between the push buttons that the user presses
• Recognize if the pattern entered from the user matches the generated colour pattern
• Upon entering an incorrect colour pattern the game will restart
• Display the number of consecutive rounds correctly entered on the 7-segment display

We were able to achieve all of the primary goals by the project deadline.

1.2 Secondary Goals
• Being able to limit the amount of time the user has to press the correct combination
• Upgrade the 7-segment display to an LCD display
• Making a basic game menu that would welcome a player includes; start, instruction,

difficulty
• Being able to generate a unique tone for each colour as it shows the colour pattern and as

the player presses the push buttons

We complete a sound addition to the game, and an appropriate sound is played for each pushbutton
when the colours are being displayed. We also added a feature where it would light up the pushbuttons
and play the associated sound when the user was entering the pattern but this made gameplay confusing,
and so was removed. Unfortunately, due to the limited time we were not able to achieve many secondary
goals.

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 4 of 27 17-Apr-17

2 Software and Hardware
Software and hardware used for this project are as follows:

Hardware Software

Item Quantity Quartus Prime 2016

Lamps/Pushbutton 4

4 X 7 Segment
LEDS

1

Speaker 1

Transistors 4

10K Resistors 4

Soldering Board 1

FPGA 1

3 Game Interfacing
3.1 Human Interface
3.1.1 Display
For displaying the score on the 4X7 segment display we used 3 distinct modules.

1- Decode2
2- Decodebin
3- Decode7

This module activates the appropriate VCC
1- Decode2:
module decode2 (input logic [1:0] digit,
 output logic [3:0] ct);

 always_comb begin
 case (digit)
 // Enable appropriate Vcc
 0: ct = 4'b_0001;
 1: ct = 4'b_0010;
 2: ct = 4'b_0100;
 3: ct = 4'b_1000;

 endcase
 end

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 5 of 27 17-Apr-17

endmodule

This module converts binary into seperated decimals
2- Decodebin
module Decodebin (input logic [1:0] digit, // Clock going from 0 to 3
 output logic[3:0] idnum,
 input [31:0] scount); // Single digit from my ID number
 reg [3:0] hundreds = 4'd0;
 reg [3:0] tens = 4'd0;
 reg [3:0] ones = 4'd0;
 reg [19:0] level;
 integer i;

 always@(digit) begin
 begin

 level[19:8] = 0;
 level[7:0] = scount[7:0];
 // this is the double dabble algorithm it is used to convert binary to
seperated decimal values
 for (i=0; i<8; i=i+1) begin
 if (level[11:8] >= 5)
 level[11:8] = level[11:8] + 3;

 if (level[15:12] >= 5)
 level[15:12] = level[15:12] + 3;

 if (level[19:16] >= 5)
 level[19:16] = level[19:16] + 3;

 level = level << 1;
 end

 hundreds = level[19:16];
 tens = level[15:12];
 ones = level[11:8];
 end
 // updates score to correct stage number

 unique case (digit)

 0: idnum = ones;
 1: idnum = tens;
 2: idnum = 4'd0;
 3: idnum = 4'd0;

 endcase
 end

endmodule

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 6 of 27 17-Apr-17

This module turns on the correct leds depending on the score number
3- Decode7
module decode7 (input logic [3:0] num, // Input num that will display on
led array
 output logic [7:0] leds); // leds that will
turn on
 always_comb begin
 unique case (num)
 // Assignment of leds for each num
 0: leds <= ~(8'b_0011_1111);
 1: leds <= ~(8'b_0000_0110);
 2: leds <= ~(8'b_0101_1011);
 3: leds <= ~(8'b_0100_1111);
 4: leds <= ~(8'b_0110_0110);
 5: leds <= ~(8'b_0110_1101);
 6: leds <= ~(8'b_0111_1101);
 7: leds <= ~(8'b_0000_0111);
 8: leds <= ~(8'b_0111_1111);
 9: leds <= ~(8'b_0110_1111);
 endcase

 end

endmodule

3.1.2 Audio

The following module was used as a tone generator for the project. The tone generator is given a
frequency to play when each pushbutton is being lit up and is given a frequency of zero (off) when the
pushbuttons are not supposed to be lit up.

module tonegen
 #(logic [31:0] fclk = 50 * 1000 * 1000) // clock frequency, Hz
 (input logic [31:0] writedata, // Avalon MM bus, data
 input logic write, // " write strobe
 output logic spkr, // on/off output for audio
 input logic reset, clk);

 enum logic [1:0] {reset_s, write_s, decr, restart} state;
 reg [31:0] frequency;
 reg signed [31:0] count;

 always_comb begin
 if (reset)
 state = reset_s;
 else if (write)
 state = write_s;
 else if (count < 1)
 state = restart;
 else
 state = decr;

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 7 of 27 17-Apr-17

 end

 always_ff @(posedge clk) begin
 if (spkr) //define register
 spkr <= 1;
 else
 spkr <= 0;
 unique case (state)
 reset_s: begin
 frequency <= 0;
 count <= fclk;
 end
 write_s:
 frequency <= writedata; // tone frequency
 decr:
 count <= count - (2 * frequency); // delay
 restart: begin
 if (!spkr)
 spkr <= 1;
 else
 spkr <= 0;
 count <= fclk * 10;
 end
 endcase
 end

 endmodule

3.1.3 Pushbuttons

The following module found on FPGA4fun [1] was used to debounce the pushbuttons, as without a
pushbutton debouncer the FPGA would think that the pushbuttons were pressed multiple times each
press due to contact bounce. We opted for a software solution for the debouncers and not hardware
solution due to ease of trouble shooting a software solution and for an easier manufacturing process.

module PushButton_Debouncer(
 input clk,
 input PB, // "PB" is the glitchy, asynchronous to clk, active low push-button
signal

 // from which we make three outputs, all synchronous to the clock
 output reg PB_state, // 1 as long as the push-button is active (down)
 output PB_down, // 1 for one clock cycle when the push-button goes down (i.e.
just pushed)
 output PB_up // 1 for one clock cycle when the push-button goes up (i.e. just
released)
);

// First use two flip-flops to synchronize the PB signal the "clk" clock domain
reg PB_sync_0; always @(posedge clk) PB_sync_0 <= ~PB; // invert PB to make
PB_sync_0 active high
reg PB_sync_1; always @(posedge clk) PB_sync_1 <= PB_sync_0;

// Next declare a 16-bits counter

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 8 of 27 17-Apr-17

reg [15:0] PB_cnt;

// When the push-button is pushed or released, we increment the counter
// The counter has to be maxed out before we decide that the push-button state has
changed

wire PB_idle = (PB_state==PB_sync_1);
wire PB_cnt_max = &PB_cnt; // true when all bits of PB_cnt are 1's

always @(posedge clk)
if(PB_idle)
 PB_cnt <= 0; // nothing's going on
else
begin
 PB_cnt <= PB_cnt + 16'd1; // something's going on, increment the counter
 if(PB_cnt_max) PB_state <= ~PB_state; // if the counter is maxed out, PB
changed!
end

assign PB_down = ~PB_idle & PB_cnt_max & ~PB_state;
assign PB_up = ~PB_idle & PB_cnt_max & PB_state;

endmodule

Once the pushbuttons have been successfully debounced, they can be polled and then it can be
determined if the correct pattern was entered. The controller simply determines if the correct button is
released each time one of the pushbuttons is released. Released was chosen and not pushed for this part
of the project because if it was when the button was pressed the next pattern would start right as the last
button was pressed and this was confusing for the user.

 if ((lcount > 0) && PBUP) begin
 lcount <= lcount -1;
 case(out % (NUM_LAMPS))
 0: loser <= !PBY_up;
 1: loser <= !PBR_up;
 2: loser <= !PBB_up;
 3: loser <= !PBG_up;
 endcase // out % NUMLAMPS
 lfsrclk <= 1;

 end // end if(lcount > 0) %% PBUP

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 9 of 27 17-Apr-17

4 Digital Design

It was decided that the game would be realized using solely hardware, and so a state machine must be
created for the game. The following algorithm was implemented for the game. To randomize the game
each time a linear feedback shift register (LFSR) [2] was used. This is one of the reasons for a start
stage, the LFSR was “seeded” during the time is takes the user to press the start button to begin the
game.

Simon Game State Machine

Once the game enters the display stage of the game, the LFSR is seeded with the seed and the first
colour is displayed. Once this colour has been displayed for enough time, the LFSR is clocked and then
the new colour is displayed. Once the entire pattern is displayed, the game gets ready to poll the
pushbuttons to see if the user presses the correct pattern.
First step is the prepare poll state, where the tone generator is turned off, and the LFSR is reseeded, an
important characteristic of LFSR is used in this game, if the seed is the same to the LFSR then the
resulting pattern will be the same, so there is no need to store the displayed bits in an array, they are
stored within the algorithm of the LFSR.

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 10 of 27 17-Apr-17

The next step is to poll the push buttons and determine if the entered pattern matches the displayed
pattern. The pushbuttons Are tested for when they are released, and this signal is high for one clock
cycle when the pushbutton is just released. When the pushbutton is released the algorithm determines if
the press matches the correct one from the LFSR and if it does it clocks the LFSR and continues. If the
button pressed does not match the game restarts.

Once the player has Entered the whole pattern the game does back to the displaying stage and the game
displays the pattern again, but this time with one more colour appended on the end.

5 Physical Design
We have decided to use an enclosure for our project in order to make it neat. We have used a soldering
board to solder components such as resistors, transistors. In addition, there would be common Ground
and VCC.

Turn on designated lamp

Pushbutton

Switching Top Level

Pushbutton Debouncer

Convert to separate digits

Round

Turn on LEDs for designated
digit

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 11 of 27 17-Apr-17

5.1 Push Buttons
The holes for pushbuttons were drilled first and filled to achieve the right size. The pins of each
pushbuttons were carefully solder to VCC, Ground, and bread board. The use of transistor for this
project is to provide enough voltage to turn the lamps inside of the pushbuttons.
5 pins of each pushbutton were used for this project.

Pushbuttons Normally Close Normally Open Contact Lamp
Negative

Lamp
Positive

Yellow Ground of FPGA VCC of FPGA
FPGA input Collector of

Transistor
VCC

Red Ground of FPGA VCC of FPGA
FPGA input Collector of

Transistor
VCC

Green Ground of FPGA VCC of FPGA
FPGA input Collector of

Transistor
VCC

Blue Ground of FPGA VCC of FPGA
FPGA input Collector of

Transistor
VCC

Normally Close

Normally Open

Contact

Lamp Positive

Lamp Negative

Emitter Base

Collector

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 12 of 27 17-Apr-17

Shows the pins related to data transfer from FPGA.

5.2 Display
The same process that was used for pushbuttons were also used here, we used drill and file to achieve
the appropriate size for the display.

Pushbuttons Input to FPGA Output from FPGA for
turning on Lamps

Yellow PIN_j14 PIN_L14

Red PIN_K15 PIN_M10

Green PIN_L13 PIN_J16

Blue PIN_N14 PIN_J13

Used For Output Pins from FPGA

LED[0] PIN_A5

LED[1] PIN_B6

LED[2] PIN_B7

LED[3] PIN_A7

LED[4] PIN_C8

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 13 of 27 17-Apr-17

LED[5] PIN_E7

LED[6] PIN_E8

LED[7] PIN_F9

CT[0] PIN_A12

CT[1] PIN_C11

CT[2] PIN_E11

CT[3] PIN_C9

LED[0]

LED[2]

LED[3]

LED[6]

LED[5]

LED[4]

LED[7]

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 14 of 27 17-Apr-17

5.3 Audio
We have decided to add a speaker in order to hear a unique tone specifically for different colours. The
speaker plays a distinct sound when the colours are displayed to aid memory.

6 References

[1] "FPGA fun," [Online]. Available: http://www.fpga4fun.com/Debouncer2.html. [Accessed 3 April
2017].

[2] D. K. Tala, "asic world," 9 February 2014. [Online]. Available: http://www.asic-
world.com/examples/verilog/lfsr.html. [Accessed 28 March 2017].

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 15 of 27 17-Apr-17

7 Appendix: Source Code
The following code is all of the modules in the game, including the top level module.
 parameter NUM_LAMPS = 4;
 parameter SEED_BITS = 16;
 parameter NOTE_C = 2616;
 parameter NOTE_D = 2937;
 parameter NOTE_E = 3296;
 parameter NOTE_F = 3492;
 parameter NOTE_G = 3920;

module lab1 (input logic CLOCK_50, // 50 MHz clock
 output logic [3:0] LAMPS, output logic [7:0] leds,
 output logic [3:0] ct,
 input logic PBY, input logic PBR, input logic PBB, input
logic PBG,
 output logic spkr) ;

 reg [31:0]count = 0;
 reg [(SEED_BITS - 1):0]out = 0;
 reg rst = 0, loser = 0, lfsrclk, reset = 0, write = 1, PBPRESS,
PBDOWN, PBUP, PBY_state, PBY_down, PBY_up, PBR_state, PBR_down, PBR_up, PBB_state,
PBB_down, PBB_up ,PBG_state, PBG_down, PBG_up;
 reg [31:0] scount = 0, speakerfreq = 0, finishcount = 0;
 reg signed [31:0] lcount = 0;
 reg [(SEED_BITS - 1):0] seed = 8'b0101_0101; // lfsr seed
 enum {start, init, display, preparepoll, poll, polltodisplay,
finish} state = start, statenext;

 lab1clk lab1clk_0 (CLOCK_50, clk) ;
 decode2 decode2_0 (.digit,.ct) ;
 bcitid bcitid_0 (.digit,.idnum, .scount) ;
 decode7 decode7_0 (.num(idnum),.leds) ;

 logic [1:0] digit ;
 logic [3:0] idnum ;
 lfsr lfsr_0(.out, .clk(lfsrclk), .rst, .seed);

 PushButton_Debouncer YellowPB(.clk(CLOCK_50), .PB(PBY),
.PB_state(PBY_state), .PB_down(PBY_down), .PB_up(PBY_up));
 PushButton_Debouncer RedPB(.clk(CLOCK_50), .PB(PBR), .PB_state(PBR_state),
.PB_down(PBR_down), .PB_up(PBR_up));
 PushButton_Debouncer BluePB(.clk(CLOCK_50), .PB(PBB), .PB_state(PBB_state),
.PB_down(PBB_down), .PB_up(PBB_up));
 PushButton_Debouncer GreenPB(.clk(CLOCK_50), .PB(PBG),
.PB_state(PBG_state), .PB_down(PBG_down), .PB_up(PBG_up));

 tonegen tonegen_0(.clk(CLOCK_50), .reset, .spkr, .write,
.writedata(speakerfreq));
 logic clk ;

 always_ff @(posedge clk)
 digit <= digit + 1'b1 ;
 always_ff @(posedge CLOCK_50) begin

 write <= 0;

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 16 of 27 17-Apr-17

 rst <= 0;
 lfsrclk <= 0;
 state <= statenext;

 case(state)

 start: begin

 seed <= seed + 1;
 count <= count + 1;
 if (count > 50*1000*1000) begin
 count <= 0;
 if((LAMPS >= (1 << 3)) || (LAMPS == 0))
 LAMPS <= 1;
 else
 LAMPS <= LAMPS << 1;
 end

 end // end case start:

 init: begin
 write <= 1;
 rst <= 1;
 lfsrclk <= 1;
 count = 0;
 end // end begin

 display: begin
 count <= count + 1;

 if(count < 10 * 1000 * 1000) begin
 LAMPS <= '0;
 write <= 1;
 case(out % (NUM_LAMPS))
 0: speakerfreq <= NOTE_C;
 1: speakerfreq <= NOTE_D;
 2: speakerfreq <= NOTE_E;
 3: speakerfreq <= NOTE_F;
 endcase // endcase
 end // end if
 else begin
 LAMPS <= (1 << (out % (NUM_LAMPS)));
 end // end else

 if (count > 35 * 1000 * 1000) begin
 lfsrclk <= 1;
 count <= 0;
 lcount <= lcount + 1;
 end

 end // end display

 preparepoll: begin
 rst <= 1; // reset the LFSR
 write <= 1;
 speakerfreq <= 0;
 end

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 17 of 27 17-Apr-17

 poll: begin
 if ((lcount > 0) && PBUP) begin
 lcount <= lcount -1;
 case(out % (NUM_LAMPS))
 0: loser <= !PBY_up;
 1: loser <= !PBR_up;
 2: loser <= !PBB_up;
 3: loser <= !PBG_up;
 endcase // out % NUMLAMPS
 lfsrclk <= 1;
 end // end if(lcount > 0) %% PBUP

 end // end poll

 polltodisplay: begin
 scount <= scount + 1; // next level!
 rst <= 1; // reseed lfsr
 count <= 0; // reset timer
 end // endpolltodisplay

 finish: begin
 scount <= 0;
 loser <= 0;
 LAMPS <= '1;
 end

 endcase
end

always_comb begin
 PBPRESS = PBY_state || PBR_state || PBB_state || PBG_state;
 PBDOWN = PBY_down || PBR_down || PBB_down || PBG_down;
 PBUP = PBY_up || PBR_up || PBB_up || PBG_up;
 if ((state == start) && (PBY_state || PBR_state || PBB_state || PBG_state))
 statenext = init;
 else if (state == init)
 statenext = display;
 else if ((state == display) && (lcount > (scount)))
 statenext = preparepoll;
 else if (state == preparepoll)
 statenext = poll;
 else if ((state == poll) && (loser || (lcount < 1)))
 statenext = loser ? finish : polltodisplay;
 else if (state == polltodisplay)
 statenext = display;
 else if ((state == finish) && (finishcount < 50 * 1000 * 1000 * 10))
 statenext = start;
 else
 statenext = state;
end

endmodule

module decode2 (input logic [1:0] digit,
 output logic [3:0] ct);

 always_comb begin
 case (digit)
 // Enable appropriate Vcc

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 18 of 27 17-Apr-17

 0: ct = 4'b_0001;
 1: ct = 4'b_0010;
 2: ct = 4'b_0100;
 3: ct = 4'b_1000;

 endcase
 end

endmodule

module bcitid (input logic [1:0] digit, // Clock going from 0 to 3
 output logic[3:0] idnum,
 input [31:0] scount); // Single digit from my ID number
 reg [3:0] hundreds = 4'd0;
 reg [3:0] tens = 4'd0;
 reg [3:0] ones = 4'd0;
 reg [19:0] level;
 integer i;

 always@(digit) begin
 begin

 level[19:8] = 0;
 level[7:0] = scount[7:0];

 for (i=0; i<8; i=i+1) begin
 if (level[11:8] >= 5)
 level[11:8] = level[11:8] + 3;

 if (level[15:12] >= 5)
 level[15:12] = level[15:12] + 3;

 if (level[19:16] >= 5)
 level[19:16] = level[19:16] + 3;

 level = level << 1;
 end

 hundreds = level[19:16];
 tens = level[15:12];
 ones = level[11:8];
 end

 unique case (digit)

 0: idnum = ones; // Last ID number
 1: idnum = tens;
 2: idnum = 4'd0;
 3: idnum = 4'd0; // Fist ID number

 endcase
 end
endmodule

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 19 of 27 17-Apr-17

module decode7 (input logic [3:0] num, // Input num that will display on
led array
 output logic [7:0] leds); // leds that will
turn on
 always_comb begin
 unique case (num)
 // Assignment of leds for each num
 0: leds <= ~(8'b_0011_1111);
 1: leds <= ~(8'b_0000_0110);
 2: leds <= ~(8'b_0101_1011);
 3: leds <= ~(8'b_0100_1111);
 4: leds <= ~(8'b_0110_0110);
 5: leds <= ~(8'b_0110_1101);
 6: leds <= ~(8'b_0111_1101);
 7: leds <= ~(8'b_0000_0111);
 8: leds <= ~(8'b_0111_1111);
 9: leds <= ~(8'b_0110_1111);
 endcase

 end

endmodule

module lfsr (output reg [(SEED_BITS - 1):0]out, input clk, input rst, input
[(SEED_BITS - 1):0] seed);

 wire feedback;

 assign feedback = ~(out[7] ^ out[2]);

always @(posedge clk, posedge rst)
 begin
 if (rst)
 out = seed;
 else
 out = {out[(SEED_BITS - 2):0],feedback};
 end
endmodule

module PushButton_Debouncer(
 input clk,
 input PB, // "PB" is the glitchy, asynchronous to clk, active low push-button
signal

 // from which we make three outputs, all synchronous to the clock
 output reg PB_state, // 1 as long as the push-button is active (down)
 output PB_down, // 1 for one clock cycle when the push-button goes down (i.e.
just pushed)
 output PB_up // 1 for one clock cycle when the push-button goes up (i.e. just
released)
);

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 20 of 27 17-Apr-17

// First use two flip-flops to synchronize the PB signal the "clk" clock domain
reg PB_sync_0; always @(posedge clk) PB_sync_0 <= ~PB; // invert PB to make
PB_sync_0 active high
reg PB_sync_1; always @(posedge clk) PB_sync_1 <= PB_sync_0;

// Next declare a 16-bits counter
reg [15:0] PB_cnt;

// When the push-button is pushed or released, we increment the counter
// The counter has to be maxed out before we decide that the push-button state has
changed

wire PB_idle = (PB_state==PB_sync_1);
wire PB_cnt_max = &PB_cnt; // true when all bits of PB_cnt are 1's

always @(posedge clk)
if(PB_idle)
 PB_cnt <= 0; // nothing's going on
else
begin
 PB_cnt <= PB_cnt + 16'd1; // something's going on, increment the counter
 if(PB_cnt_max) PB_state <= ~PB_state; // if the counter is maxed out, PB
changed!
end

assign PB_down = ~PB_idle & PB_cnt_max & ~PB_state;
assign PB_up = ~PB_idle & PB_cnt_max & PB_state;
endmodule

module tonegen
 #(logic [31:0] fclk = 50 * 1000 * 1000) // clock frequency, Hz
 (input logic [31:0] writedata, // Avalon MM bus, data
 input logic write, // " write strobe
 output logic spkr, // on/off output for audio
 input logic reset, clk);

 enum logic [1:0] {reset_s, write_s, decr, restart} state;
 reg [31:0] frequency;
 reg signed [31:0] count;

 always_comb begin
 if (reset)
 state = reset_s;
 else if (write)
 state = write_s;
 else if (count < 1)
 state = restart;
 else
 state = decr;
 end

 always_ff @(posedge clk) begin
 if (spkr) //define register
 spkr <= 1;
 else
 spkr <= 0;
 unique case (state)
 reset_s: begin

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 21 of 27 17-Apr-17

 frequency <= 0;
 count <= fclk;
 end
 write_s:
 frequency <= writedata; // tone frequency
 decr:
 count <= count - (2 * frequency); // delay
 restart: begin
 if (!spkr)
 spkr <= 1;
 else
 spkr <= 0;
 count <= fclk * 10;
 end
 endcase
 end

 endmodule

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 22 of 27 17-Apr-17

8 Appendix: PINOUTS
The following file is the pinouts assigned for the project.
CLOCK_50 Location PIN_R8 Yes
LED[4] Location PIN_D1 Yes
LED[5] Location PIN_F3 Yes
LED[6] Location PIN_B1 Yes
LED[7] Location PIN_L3 Yes
KEY[0] Location PIN_J15 Yes
KEY[1] Location PIN_E1 Yes
SW[0] Location PIN_M1 Yes
SW[1] Location PIN_T8 Yes
SW[2] Location PIN_B9 Yes
SW[3] Location PIN_M15 Yes
DRAM_ADDR[0] Location PIN_P2 Yes
DRAM_ADDR[1] Location PIN_N5 Yes
DRAM_ADDR[2] Location PIN_N6 Yes
DRAM_ADDR[3] Location PIN_M8 Yes
DRAM_ADDR[4] Location PIN_P8 Yes
DRAM_ADDR[5] Location PIN_T7 Yes
DRAM_ADDR[6] Location PIN_N8 Yes
DRAM_ADDR[7] Location PIN_T6 Yes
DRAM_ADDR[8] Location PIN_R1 Yes
DRAM_ADDR[9] Location PIN_P1 Yes
DRAM_ADDR[10] Location PIN_N2 Yes
DRAM_ADDR[11] Location PIN_N1 Yes
DRAM_ADDR[12] Location PIN_L4 Yes
DRAM_BA[0] Location PIN_M7 Yes
DRAM_BA[1] Location PIN_M6 Yes
DRAM_CKE Location PIN_L7 Yes
DRAM_CLK Location PIN_R4 Yes
DRAM_CS_N Location PIN_P6 Yes
DRAM_DQ[0] Location PIN_G2 Yes
DRAM_DQ[1] Location PIN_G1 Yes
DRAM_DQ[2] Location PIN_L8 Yes

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 23 of 27 17-Apr-17

DRAM_DQ[3] Location PIN_K5 Yes
DRAM_DQ[4] Location PIN_K2 Yes
DRAM_DQ[5] Location PIN_J2 Yes
DRAM_DQ[6] Location PIN_J1 Yes
DRAM_DQ[7] Location PIN_R7 Yes
DRAM_DQ[8] Location PIN_T4 Yes
DRAM_DQ[9] Location PIN_T2 Yes
DRAM_DQ[10] Location PIN_T3 Yes
DRAM_DQ[11] Location PIN_R3 Yes
DRAM_DQ[12] Location PIN_R5 Yes
DRAM_DQ[13] Location PIN_P3 Yes
DRAM_DQ[14] Location PIN_N3 Yes
DRAM_DQ[15] Location PIN_K1 Yes
DRAM_DQM[0] Location PIN_R6 Yes
DRAM_DQM[1] Location PIN_T5 Yes
DRAM_CAS_N Location PIN_L1 Yes
DRAM_RAS_N Location PIN_L2 Yes
DRAM_WE_N Location PIN_C2 Yes
I2C_SCLK Location PIN_F2 Yes
I2C_SDAT Location PIN_F1 Yes
G_SENSOR_CS_N Location PIN_G5 Yes
G_SENSOR_INT Location PIN_M2 Yes
GPIO_2[0] Location PIN_A14 Yes
GPIO_2[1] Location PIN_B16 Yes
GPIO_2[2] Location PIN_C14 Yes
GPIO_2[3] Location PIN_C16 Yes
GPIO_2[4] Location PIN_C15 Yes
GPIO_2[5] Location PIN_D16 Yes
GPIO_2[6] Location PIN_D15 Yes
GPIO_2[7] Location PIN_D14 Yes
GPIO_2[8] Location PIN_F15 Yes
GPIO_2[9] Location PIN_F16 Yes
GPIO_2[10] Location PIN_F14 Yes
GPIO_2[11] Location PIN_G16 Yes
GPIO_2[12] Location PIN_G15 Yes

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 24 of 27 17-Apr-17

GPIO_2_IN[0] Location PIN_E15 Yes
GPIO_2_IN[1] Location PIN_E16 Yes
GPIO_2_IN[2] Location PIN_M16 Yes
GPIO_0_IN[0] Location PIN_A8 Yes
GPIO_0[0] Location PIN_D3 Yes
GPIO_0_IN[1] Location PIN_B8 Yes
GPIO_0[1] Location PIN_C3 Yes
GPIO_0[2] Location PIN_A2 Yes
GPIO_0[3] Location PIN_A3 Yes
GPIO_0[4] Location PIN_B3 Yes
GPIO_0[5] Location PIN_B4 Yes
GPIO_0[6] Location PIN_A4 Yes
GPIO_0[7] Location PIN_B5 Yes
GPIO_0[8] Location PIN_A5 Yes
GPIO_0[9] Location PIN_D5 Yes
GPIO_0[10] Location PIN_B6 Yes
GPIO_0[11] Location PIN_A6 Yes
GPIO_0[12] Location PIN_B7 Yes
GPIO_0[13] Location PIN_D6 Yes
GPIO_0[14] Location PIN_A7 Yes
GPIO_0[15] Location PIN_C6 Yes
GPIO_0[16] Location PIN_C8 Yes
GPIO_0[17] Location PIN_E6 Yes
GPIO_0[18] Location PIN_E7 Yes
GPIO_0[19] Location PIN_D8 Yes
GPIO_0[20] Location PIN_E8 Yes
GPIO_0[21] Location PIN_F8 Yes
GPIO_0[22] Location PIN_F9 Yes
GPIO_0[23] Location PIN_E9 Yes
GPIO_0[24] Location PIN_C9 Yes
GPIO_0[25] Location PIN_D9 Yes
GPIO_0[26] Location PIN_E11 Yes
GPIO_0[27] Location PIN_E10 Yes
GPIO_0[28] Location PIN_C11 Yes
GPIO_0[29] Location PIN_B11 Yes

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 25 of 27 17-Apr-17

GPIO_0[30] Location PIN_A12 Yes
GPIO_0[31] Location PIN_D11 Yes
GPIO_0[32] Location PIN_D12 Yes
GPIO_0[33] Location PIN_B12 Yes
GPIO_1_IN[0] Location PIN_T9 Yes
GPIO_1[0] Location PIN_F13 Yes
GPIO_1_IN[1] Location PIN_R9 Yes
GPIO_1[1] Location PIN_T15 Yes
GPIO_1[2] Location PIN_T14 Yes
GPIO_1[3] Location PIN_T13 Yes
GPIO_1[4] Location PIN_R13 Yes
GPIO_1[5] Location PIN_T12 Yes
GPIO_1[6] Location PIN_R12 Yes
GPIO_1[7] Location PIN_T11 Yes
GPIO_1[8] Location PIN_T10 Yes
GPIO_1[9] Location PIN_R11 Yes
GPIO_1[10] Location PIN_P11 Yes
GPIO_1[11] Location PIN_R10 Yes
GPIO_1[12] Location PIN_N12 Yes
GPIO_1[13] Location PIN_P9 Yes
GPIO_1[14] Location PIN_N9 Yes
GPIO_1[15] Location PIN_N11 Yes
GPIO_1[16] Location PIN_L16 Yes
GPIO_1[17] Location PIN_K16 Yes
GPIO_1[18] Location PIN_R16 Yes
GPIO_1[19] Location PIN_L15 Yes
GPIO_1[20] Location PIN_P15 Yes
GPIO_1[21] Location PIN_P16 Yes
GPIO_1[22] Location PIN_R14 Yes
GPIO_1[23] Location PIN_N16 Yes
GPIO_1[24] Location PIN_N15 Yes
GPIO_1[25] Location PIN_P14 Yes
GPIO_1[26] Location PIN_L14 Yes
GPIO_1[27] Location PIN_N14 Yes
GPIO_1[28] Location PIN_M10 Yes

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 26 of 27 17-Apr-17

GPIO_1[29] Location PIN_L13 Yes
GPIO_1[30] Location PIN_J16 Yes
GPIO_1[31] Location PIN_K15 Yes
GPIO_1[32] Location PIN_J13 Yes
GPIO_1[33] Location PIN_J14 Yes
qspb Location PIN_A2 Yes
qsa Location PIN_A8 Yes
qsb Location PIN_B8 Yes
ct[0] Location PIN_A12 Yes
leds[0] Location PIN_A5 Yes
ct[1] Location PIN_C11 Yes
leds[1] Location PIN_B6 Yes
ct[2] Location PIN_E11 Yes
leds[2] Location PIN_B7 Yes
ct[3] Location PIN_C9 Yes
leds[3] Location PIN_A7 Yes
leds[4] Location PIN_C8 Yes
leds[5] Location PIN_E7 Yes
leds[6] Location PIN_E8 Yes
leds[7] Location PIN_F9 Yes
kpc[3] Location PIN_D5 Yes
kpc[2] Location PIN_A6 Yes
kpc[1] Location PIN_D6 Yes
kpc[0] Location PIN_C6 Yes
kpr[0] Location PIN_E9 Yes
kpr[1] Location PIN_F8 Yes
kpr[2] Location PIN_D8 Yes
kpr[3] Location PIN_E6 Yes
rgb_din Location PIN_D9 Yes
rgb_clk Location PIN_E10 Yes
rgb_cs Location PIN_B11 Yes
rgb_dc Location PIN_D11 Yes
rgb_resLocation PIN_B12 Yes
jstk_sel Location PIN_G15 Yes
adc_cs_n Location PIN_A10 Yes

BCIT, BEng Electrical ELEX 7620: Signal Processing and Filtering Report for Simon Game Project

 27 of 27 17-Apr-17

adc_saddr Location PIN_B10 Yes
adc_sdat Location PIN_A9 Yes
adc_sclk Location PIN_B14 Yes
spkr Location PIN_B3 Yes
point Location PIN_D12 Yes
jstk_sel Weak Pull-Up Resistor On Yes lab1
PBY Location PIN_J14 Yes
PBR Location PIN_K15 Yes
PBG Location PIN_L13 Yes
PBB Location PIN_N14 Yes
LAMPS[0] Location PIN_L14 Yes
LAMPS[1] Location PIN_M10 Yes
LAMPS[2] Location PIN_J16 Yes
LAMPS[3] Location PIN_J13 Yes

