

A POLYTECHNIC INSTITUTION

School of Manufacturing, Electronics & Industrial Processes

Program: Mechanical Engineering Technology

Option: Mechanical Systems

MSYS 3382 HVAC Load Analysis

Start Date: September 5, 2006 End Date: December 15, 2006

Total Hours: 60 Total Weeks: 15 Term/Level: 3 Course Credits: 4

Hours/Week: 4 Lecture: 2 Lab: 2 Shop: Seminar: Other:

Prerequisites MSYS 3382 is a Prerequisite for:

Course No. Course Name Course No. Course Name

MECH 1120 Energy Systems MSYS 4480 Air-conditioning systems

MSYS 4490 System Projects MSYS 4486 Energy Management

■ Course Description

Establishes analytical backgrounds for calculating heating, cooling and ventilation loads required in occupied structures. Topics include the use of climatic data, psychrometric processes, comfort conditions criteria and ASHRAE and other industry standards for determining heat loss/heat gains. Computer aided techniques will be used.

Evaluation

(Course marks weighting is subject to adjustment)

Assigment	15%	Comments:
Mid-term Exam	35%	
Final Exam	50%	Change may be allowed to suit specific purposes. Notices will
		be given should any change occur.
TOTAL	100%	

■ Course Learning Outcomes/Competencies

Upon successful completion, the student will be able to:

- 1. Calculate the heat transmission coefficients for any building construction types.
- 2. Demonstrate a working knowledge of the physiological principles governing comfort and health by applying the ASHRAE comfort charts and air quality guidelines to HVAC system design.
- 3. Establish both indoor and outdoor design conditions for any building in any climate.
- 4. Calculate sensible heat, latent heat, and sensible heat ratio.
- 5. Conduct manually the heating, cooling and ventilation load analysis for any building.
- 6. Compute the heating, cooling and ventilation loads utilizing commercial software commonly used in HVAC industry.

- 7. Estimate heating, cooling and ventilation loads for various types of building by using industry standard methods (ASHRAE).
- 8. Use psychometric chart to quantify the physical and thermodynamic properties of the working fluids.
- 9. Compute the quantity and condition of supply and return air required for a specific HVAC application by using psychometrics.
- 10. Analysis air-conditioning processes on the psychometric chart.
- 11. Use computer software to conduct process analysis and refrigeration capacity calculations.

Verification I verify that the content of this course outline is current. Authoring Instructor	Sept 1/06 Date
I verify that this course outline has been reviewed. Program Head/Chief Instructor	Sept 1 106
I verify that this course outline complies with BCIT policy. Dean/Associate Dean	2006 109/0/ Date

Note: Should changes be required to the content of this course outline, students will be given reasonable notice.

Instructor(s)

Joseph Cheung

Office Location: SW9 202

Office Phone:

604 451 6831

Office Hrs.:

By Appointment

E-mail Address: jcheung19@my.bcit.ca

Learning Resources

Required:

Lecture notes MSYS 3382 – HVAC Load Analysis Recommended:

ASHRAE Handbooks - Fundamental

Information for Students

Note: Please refer to BCIT policy number 5002, Student Regulations Policy, for additional information. Policies are available at http://www.bcit.ca/about/administration/policies.shtml.

Ethics: BCIT assumes that all students attending the institute will follow a high standard of ethics. Incidents of cheating or plagiarism may, therefore, result in a grade of zero for the assignment, quiz, test, exam or project for all parties involved and/or expulsion from the course.

Assignments: Assignments, lab reports or projects must be done on an individual basis unless otherwise specified by the instructor. Late assignments, lab reports or projects will be devalued 20% per day late to a maximum of 3 days late.

Makeup Tests, Exams or Quizzes: There will be no makeup tests, exams or quizzes. If you miss a test, exam or quiz, you will receive zero marks. Exceptions may be made for documented medical reasons or extenuating circumstances. In such a case, it is the responsibility of the student to inform the instructor immediately.

Attendance: The attendance policy as outlined in BCIT Policy 5002 will be enforced. Attendance will be taken at the beginning of each session. Students not present at that time will be recorded as absent.

Illness: If you miss an evaluation such as an assignment, quiz, exam, or project, or you miss 3 or more consecutive days of class, you must provide the department with a BCIT Student Medical Certificate (available at http://www.bcit.ca/admission/downloads.shtml). You may be asked to complete the work that you missed or the course evaluation may be adjusted to reflect the missed component(s).

Attempts: Students must successfully complete a course within a maximum of three attempts. Students with two attempts in a single course must get written permission from the Associate Dean to attempt the course for the third time. Students who have not successfully completed a course within three attempts will not be eligible to graduate from the program.

Advancement: Students who fail three or more courses in a term cannot advance to the next term and may be asked to discontinue from the program.

Course Outline Changes: The material or schedule specified in this course outline may be changed by the instructor. If changes are required, they will be announced in class.

Assignment Details

Schedule

Week of/ Number	Outcome/Material Covered	Reference/ Reading	Assignment	Due Date
Week 1	Course outline			
Lab 1	Discussion			
Week 2	Module 1 – Thermal comfort			
Lab 2	Thermal comfort	,	1	End of lab
Week 3	Module 2 – Indoor Air Quality			
Lab 3	Ventilation calculations		2	End of lab
Week 4	Shinerama – No Class			
Lab 4	Module 3 - Psychrometrics	at .		
Week 5	Module 4 – Sensible & Latent Heat			
Lab 5	Psychrometrics		3	End of lab
Week 6	Module 5 - Basic Heat Transfer	-		
Lab 6	Sensible & latent heat		4	End of lab
Week 7	Module 6 – Heating Load			
Lab 7	Basic heat transfer		5	End of lab
Week 8	Module 7 cooling Load Calculations			
Lab 8	Mid-Term Exam # 1			
Week 9	Mid-term exam answer review			
Lab 9	Heating calculation using Excel spreadsheet		6	End of lab
Week 10	Module 9 – Psychrometrics II - Heating & Cooling Processes			
Lab 10	Cooling Load Calculations using Excel Spreadsheet		7	End of lab

Week 11	Lab - Psychrometric II calculations		8	
Lab 11	Module 8 Trace Computer calculations		9	Next lab Session
Week 12	Module 10 – Indoor Air Quality II			,
Lab 12	Trace Load Calculations			Next lab Session
Week 13	Lab - Indoor air quality II			
Lab 13	Trace Load Calculations	,	10	Next lab Session
Week 14	Final exam review			
Lab 14	Trace Load Calculations	-		
Week 15	Final Examination			
I	1			1