

Course Outline

A POLYTECHNIC INSTITUTION

School of	Manufacturing,	Electronics	and	Industrial	Processes
Program:	Mechanical Eng	ineering			

CHSC 2205 Engineering Materials 2

Start Date:	January 4, 2006	End Date:	May 26, 2006		
Total Hours: Hours/Week:	80 Total Weeks: 204 Lecture:2 Lab: 2	Term/Level:	2 Course Credits: 5.5		
Prerequisites		CHSC 2205 is a Prerequisite for:			
Course No.	Course Name	Course No.	Course Name		
CHSC 1105	Engineering Materials 1	MSYS 2380 MANU 3316	Building Construction Advanced Materials		

Course Description

Continues from CHSC 1105. Selection of alloy steels, cast-irons, non-ferrous alloys, polymers, composites, concrete and ceramics for practical applications. Common causes of service failures are discussed, including fatigue, embrittlement and corrosion. Laboratory sessions emphasize mechanical testing, interpretation of microstructures and nondestructive testing.

Evaluation

Test 1	17.5%	Comments:
Test 2	17.5%	
Labs	25%	
Final Exam	40%	
TOTAL	100%	

Course Learning Outcomes/Competencies

Upon successful completion, the student will be able to:

- 1. Recommend from a list of alternatives, appropriate ferrous and non-ferrous alloys for practical uses:
 - Categorize basic types of steels together with basic properties, common uses, industrial number designation. Steels considered include Plain Carbon, AISI Machinery (low alloy) Steels, Stainless, Tool and Die, Structural, Austenitic Manganese, and Maraging Steels.
 - Categorize basic types of Cast Irons together with basic properties, common uses and industrial number designation. Cast Irons considered are Grey, White, Malleable, Ductile, and Alloy types.
 - Describe properties and uses for alloys of aluminum, copper, magnesium, titanium, nickel and zinc.
 - Specify appropriate heat treatments for non-ferrous alloys.
- 2. Distinguish the structures, properties and applications of metallic and non-metallic materials including:
 - ferrous and non-ferrous alloys
 - plastics
 - ceramics
 - concrete
 - composite materials
- 4. To recognize the causes and recommend preventative measures for minimizing materials failures due to fatigue, creep, embrittlement, corrosion and processing defects.
- 5. To perform nondestructive tests at an elementary level and interpret the results.
- 6. Recognize nine corrosion forms and sketch simple cathodic protection circuits using sacrificial anodes or impressed current methods.

Verification

I verify that the content of this course outline is current.

Authoring Instructor: Lynn Erickson

I verify that this course outline has been reviewed.

Program Head: Mark McDonald

I verify that this course outline complies with BCIT policy.

Associate Dean: Paul Morrison

Date

Date

2004

Note: Should changes be required to the content of this course outline, students will be given reasonable notice.

Instructor(s)

Lynn Erickson	Office Location: SW1 - Office Hrs.: As pos	604-456-1102 lynn_erickson@bcit.ca
Mark Gendron	Office Location: SW1 - Office Hrs.: As pos	604-434-5734 local 5769 mark_gendron@bcit.ca

Learning Resources

Required:	Engineering Materials 2 Lecture Notes (BCIT)
	Laboratory Manual in Engineering Materials (BCIT)
	Calculator: Sharp EL 520W (Required for tests and final exam)

Suggested: "Engineering Materials Properties and Selection", Budinski & Budinski

Information for Students

The following statements are in accordance with the BCIT Student Regulations Policy 5002. To review the full policy, please refer to: http://www.bcit.ca/~presoff/5002.pdf.

Attendance/Illness:

In case of illness or other unavoidable cause of absence, the student must communicate as soon as possible with his/her instructor or Program Head, indicating the reason for the absence. Prolonged illness of three or more consecutive days must have a BCIT medical certificate sent to the department. Excessive absence may result in failure or immediate withdrawal from the course or program.

Note: For technology programs, a student who is absent for more than 10% of the time prescribed for the course (for <u>any</u> cause) may be prohibited from completing the course and assigned a failing grade.

Academic Misconduct:

Violations of academic integrity, including dishonesty in assignments, examinations, or other academic performances are prohibited and will be handled in accordance with the 'Violations of Standards of Conduct' section of Policy 5002.

Attempts:

Students must successfully complete a course within a maximum of three attempts at the course. Students with two attempts in a single course will be allowed to repeat the course only upon special written permission from the Associate Dean. Students who have not successfully completed a course within three attempts will not be eligible to graduate from their respective program.

Schedule

Week	Week Starting	CHSC 2205 LECTURE TOPIC (2hrs/wk)	LAB (2hrs/wk)	lah	SW1	Lab Groups
1	02-Jan-06	C. STEELS: Machinery, Stainless, Tool & Die		6	1075	-
2	09-Jan-06	HSLA, Structural, Hadfields' Steel, Steelmaking	Metallography	6	1075	ALL
3	16-Jan-06	Cast Irons, D. NONFERROUS ALLOYS: Precipitation	Case Hardening	7	*1075	#2
4	23-Jan-06	Hardening, Al, Cu, Ni, Mg, Ti, Zn overview	Case Hardening	7	*1075	#1
5	30-Jan-06	E. PLASTICS: Main types, Molecular structure, Polymerization	Precip. Harden.	8	*1075	#2
6	06-Feb-06	Isomers, Blends, Orienting, Weathering	Precip. Harden.	8	*1075	#1
7	13-Feb-06	Additives, Plastics forming methods	Plastics 1	10	*1075	#2, All Set A
8	20-Feb-06	F. COMPOSITE MATERIALS: Types, Test 1 prep.	Plastics 1	10	*1075	#1
9	27-Feb-06	Fiber/Matrix Interactions, Manufacture and Applic's	Test 1		1090	ALL
10	06-Mar-06	G. CONCRETE: Types, W/C Ratio, Degradation	Test 1 Review		1090	ALL
11	13-Mar-06	SPRING BREAK	BREAK	-	-	-
12	20-Mar-06	Reinforced & pre-stressed concrete	Plastics 2	10	1090	#2, All Set B
13	27-Mar-06	I. CORROSION: Basic cells, Reactions	Plastics 2	10	1090	#1, All Set B
14	03-Apr-06	Corrosion Forms, Measurement of Potential	NDT	11	1075	#2
15	10-Apr-06	Cathodic Protection	NDT	11	1075	#1
16	17-Apr-06	Anodic Protection, Design	Corrosion	-	1090	#2
17	24-Apr-06	Inhibitors, Coatings, Test 2 Prep.	Corrosion	-	1090	#1, All Set C
18	01-May-06	H. CERAMICS: Classification, Manufacture	Test 2	12	1090	ALL
19	08-May-06	Refractories, Glass Heat Treat, Toughening	Test 2 Review	12	1090	ALL
20	15-May-06	Review and preparation for Final Exam	Make-up week	-	-	-
21	22-May-06	EXAM WEEK	EXAMS			

*1075: Meet in SW1-1075. Facilities in other labs (1540, 1090) may also be used during the session.