

A POLYTECHNIC INSTITUTION

School of Computing and Academic Studies Program: Medical Radiography Option:

Physics 2285 Physics: Medical Radiography 2

Start Date:	September 4				End Date:	December 12			
Total Hours: Hours/Week:	21 3	Total Weeks: Lecture:	7 1	Lab:	2	Term/Level: Shop:	2	Course Credits: Seminar:	1.5 Other:
Prerequisites Course No. Physics 1275	Course Name Physics Medical Radiography 1			Course No.	5 is a Prerequisite for: Course Name Physics Medical Radiography 3				

Course Description (required)

Physics of Medical Radiography 2 (2285) is an introductory level course that emphasizes the application of physical phenomena in medical radiography. Topics include production of X-rays, interactions of X-rays with matter and measurement of radiation. The physics of such devices as X-ray tubes, K-edge filters, intensifying screens and ionization chambers will be discussed.

Evaluation		
Term Test	35%	Comments:
Laboratory Reports	25%	
Final Exam	40%	
TOTAL	100%	

Course Learning Outcomes/Competencies

Upon successful completion, the student will be able to:

- · define relevant physics terms with units,
- explain and discuss concepts relevant to x-ray production, attenuation and measurement,
- draw and label diagrams for relevant x-ray physics topics,
- demonstrate conceptual understanding of x-ray physics by solving subjective and objective problems,
- explain the radiographic image formation process to a patient

Competency profile

This course provides a foundation of applied science for the Radiography program, and in the process, covers a portion of the following competencies:

- A2.6, A4.2, A4.10, A5.4, A5.6, A5.7, A5.8, A7.5, A7.7 •
- B1.5, B1.6, B1.7, B1.8, B2.1, B2.2, B2.3, B2.5, B3.2, B3.3, B4.1, B4.2, B5.1, B5.2, B5.3 •
- C2.4,C2.7
- D1.13, D1.14, D2.2, D3.1, D3.2

Verification

I verify that the content of this course outline is current.

Authoring Instructor

I verify that this course outline has been reviewed.

not

I verify that this course outline complies with BCIT policy.

Dean/Associate Dean

fugust 29/ Date

Note: Should changes be required to the content of this course outline, students will be given reasonable notice.

Instructor(s)

J. Talman M.Sc.

Office Location: SW3-4096 Office Hrs.: TBA Office Phone: 451-7151 E-mail Address: jtalman@bcit.ca

Learning Resources

Required:

- Bushong, Stewart C., *Radiologic Science for Technologists: Physics, Biology and Protection*, 7'th edition, Mosby, (2001).
- A Manual of Experiments in Medical Radiography Technology

Recommended:

- Ball, J.L. and A.D. Moore, *Essential Physics for Radiographers*, second edition, Blackwell, (1986).
- Carlton, R.R. and A.M. Adler, *Principles of Radiographic Imaging: an art and a science*, Delmar Publishers, (1992).
- Hay and Hughes, First-Year Physics for Radiographers, second, Bailliere Tindall, (1978).
- Thompson, Hall, Hattaway and Dowd, *Principles of Imaging Science and Protection*, W.B. Saunders, 1994.
- Wilks, Principles of Radiological Physics, Churchill Livingston, (1981).
- Wolbarst, A.B., *Physics of Radiology*, Appleton and Lange, 1993.

Information for Students

(Information below can be adapted and supplemented as necessary.)

Passing Grade: The passing grade in this course is 60%. The final mark is a weighted average of all tests and lab work. **Laboratory Reports:** will be completed each week and graded by an instructor. **Students must complete the laboratory exercises and hand in finished reports on time to obtain a grade.** No marks will be given for experiments from which you were absent, except by special arrangement with instructor.

Final Exam: will test material covered in the whole term.

Assignments: Late assignments, lab reports or projects will not be accepted for marking. Assignments must be done on an individual basis unless otherwise specified by the instructor.

Makeup Tests, Exams or Quizzes: There will be no makeup tests, exams or quizzes. If you miss a test, exam or quiz, you will receive zero marks. Exceptions may be made for documented medical reasons or extenuating circumstances. In such a case, it is the responsibility of the student to inform the instructor immediately.

Ethics: BCIT assumes that all students attending the Institute will follow a high standard of ethics. Incidents of cheating or plagiarism may, therefore, result in a grade of zero for the assignment, quiz, test, exam, or project for all parties involved and/or expulsion from the course.

Attendance: The attendance policy as outlined in the current BCIT Calendar will be enforced. Attendance will be taken at the beginning of each session. Students not present at that time will be recorded as absent.

Illness: A doctor's note is required for any illness causing you to miss assignments, quizzes, tests, projects, or exam. At the discretion of the instructor, you may complete the work missed or have the work prorated.

Course Outline Changes: The material or schedule specified in this course outline may be changed by the instructor. If changes are required, they will be announced in class.

Schedule

Chapter in Notes	Topics	Reference /Reading
1	 X-ray Production Review: Electron-Target Interactions Heat production Back-scatter Brems x-ray production X-ray Spectrum Brems Characteristic Total x-ray spectrum Energy Level Diagram Relative Importance of Brems and Characteristic Total X-ray Power (X-ray Output) X-ray Production Efficiency The 15% Rule X-ray Beam Quality and Quantity (Review) Changing the X-ray Spectrum (Review) mA kV target filtration voltage wave-form 	Bushong: • Chapter 11, pp. 141- 152 • Chapter 12, pp. 154- 163 • Related topics
2	 X-ray Attenuation Subject Contrast Attenuation, Absorption and Scatter Exponential Attenuation Half-value layer Attenuation equation (in terms of the HVL) Linear attenuation coefficient Exponential attenuation equation Heterogeneous X-ray Beams X-ray Beam Filtration Anode Heel Effect Attenuation Mechanisms Compton scatter 	 Bushong: Chapter 13, pp. 164-175 Related topics

Chapter in Notes	Topics	Reference /Reading		
	Photoelectric attenuation			
	Dominant Attenuation Process			
	Attenuation Events and Absorbed Dose			
	 Absorption Edges K-edge filters Intensifying screen phosphors (rare earth elements) 			
	 Impact of attenuation on: Screen Speed Quantum Mottle 			
	Measurement of Radiation (intro)			