British Columbia Institute of Technology

Course Outline

Course	BHSC 1113 A	NATOMY & PHYS	SIOLOGY 1	-		
Instructor(s)	D.W. Martin	Office SW3 30		35	*********	
Office hours as	Office hours as arranged with st		udents Local			
		,		د میں میں ایک	-	
Date taught						
Term lst	No. of weeks	16 Hrs./	wk	2	Credit	2.5
Total hrs. 32	Lecture/wk	2	La	b./wk	0	
· ·	Tutorial/wk	0 ,	Pra	acticum .	0	
Offered by:	School	Health				
	Program	Basic Health Sciences				
Taught to:	School	Health				
	Program	Medical Radiography				
	Option	N/A				
Prerequisites:		none				
Requisite for:		BHSC 2213				
Prepared by:		D.W. Martin				
Associate Dean:		V. Magee-Shep	pherd			

Description/summary

An introduction to human anatomy & physiology using a systems approach. Emphasis is placed on those systems most commonly examined by the radiographic technologist. Systems covered in this course are: skeletal, integumentary, urinary, digestive and respiratory.

The remaining systems are covered in the 2nd term anatomy & physiology course, BHSC 2213.

Goal(s)

-to attain a basic understanding of human anatomy and physiology that can be applied to other courses in the Radiography program.

-to become familiar with basic sectional anatomy.

Outcomes

upon successful completion of this course the student will be able to:

STRATECOM XX (ODDADAN)

Content elaboration (optional)

- 1. Use correct terminology to describe the location & relationships of structures in the normal body.
- 2. Describe the skeletal system in terms of:
 - a. functions
 - b. types of bones
 - c. the structure of a long bone
 - d. locations of red & yellow marrow in the child and the adult
 - e. intramembranous & endochondral ossification of a long bone, & the hormonal factors affecting growth.
 - f. the structure of a synovial joint & movements at such joints
- 3. identify the components of the integument & their functions
- 4. identify the path that inspired air takes from the external nares to the alveoli
- 5. describe the lungs in terms of position in the thoracic cavity & relationships to pleura, fissures, lobes & bronchopulmonary segments.
- 6. explain the muscular activity & associated pressure changes which occur during one respiratory cycle

2

Outcomes (cont.)

- 7. describe the pulmonary circulation in terms of the arrangement of blood vessels, the transport of respiratory gases, and gaseous exchange
- 8. describe the basic structure of the urinary system, to the nephron level
- 9. use the terms filtration, secretion, and reabsorption, to describe urine formation and composition.
- 10. describe the anatomy of the lower urinary tract, and the regulation of its activity
- 11. describe the general structure of the alimentary tract and the relationships of accessory organs, together with peritoneal relationships.
- 12. describe the functions of the various parts of the alimentary tract in terms of mechanical & chemical digestion & absorption.

Delivery methods (e.g., lecture, lab, video, etc.)

lectures : 2 x 50 minutes per week throughout the term.

Evaluation

2 midterm exams (each l hour) 60% 1 final exam (2 hours) 40% (comprehensive)

TOTAL 100%

3

Texts

Required:

PRINCIPLES OF ANATOMY & PHYSIOLOGY, Tortora & Grabowski, 8th Ed, 1995, Harper Collins.

Medical dictionary, as required by program.

Reference:

The BCIT library has good holdings, which may be useful to you in your studies.

General Anatomy & Physiology books:

These are located in call number group of QP 34. e.g. Textbook of Medical physiology Guyton, QP34.5 G9.

Equipment

Required:

(

None

Recommended:

Course notes

4

FUNCTIONAL BODY ORGANIZATION (2 hrs)

organization in terms of cells, tissues, organs, & systems.

brief introduction to homeostasis, examples of nervous & hormonal feed-back mechanisms.

body cavities, gross contents, quadrants & regions of abdominopelvic cavity.

surface landmarks of walls of body cavities.

Examples of sectional relationships of cavity contents. (more details are given during discussion of the body systems).

SKELETAL SYSTEM (6 hrs)

Functions - support, protection, calcium storage, hemopoiesis, movement.

Types of bones - long, short, flat, irregular, sesamoid, wormian.

Description of a long bone - epiphysis, diaphysis, metaphysis, articular cartilage, cancellous & compact bone, periosteum, endosteum, marrow cavity, lamellae, Haversian & Volkmann's canals, canaliculi, Sharpey's fibres, nutrient foramina.

Bone marrow - location of red & yellow marrow in non-adults & adults.

- Development & growth of bone intramembranous ossification, endochondral ossification of a long bone - primary & secondary ossification centres, effects of diet, somatotropic hormones, androgens & estrogens.
- Joints brief description of synarthroses, amphiarthroses, diarthroses, structure of a generalized synovial joint - joint cavity, synovial membrane & fluid, bursae, ligaments, menisci, joint capsule.

Movements - adduction, abduction, flexion, extension, supination, pronation, rotation, circumduction, inversion, eversion, protraction, retraction, dorsiflexion, hyperextension.

INTEGUMENT (1 Hr)

Epidermis - germinal layer, melanocytes, keratinization.

- **Dermis** blood vessels, sense receptors, sweat & sebaceous glands, hair roots.

RESPIRATORY SYSTEM (7 Hrs)

Structure - nasal cavities, external & internal nares, septum, turbinates, olfactory epithelium, sinuses(maxillary, frontal, ethmoid, sphenoid), naso- & oropharynx, larynx, (thyroid & cricoid cartilages, epiglottis, vocal cords, glottis), trachea, primary, secondary & tertiary bronchi, bronchioles, alveolar ducts, sacs, & alveoli. "bronchial tree".

Position of lungs, lobes, visceral & parietal pleura, intrapleural space & fluid, intraalveolar space.

Ventilatory mechanics - inspiratory & expiratory muscles, pressure changes.

Pulmonary circulation - pulmonary arteries & veins, gaseous exchange in alveoli, hemoglobin & oxygen transport.

Basic structures:

Kidney

blood supply & drainage.

cortex, medulla, renal pyramids, renal columns, calyces, renal pelvis, nephron, (Bowman's capsule, PCT, descending & ascending limbs of Loop of Henle, DCT, afferent & efferent arterioles, glomerulus, peritubular capillaries), collecting duct.

-7-

Ureters, urinary bladder, urethra

Urine formation & composition

Filtration - effects of blood, capsular, & osmotic pressures on G.F.R.

Tubular reabsorption & secretion - Na+ movement, influence of aldosterone, water reabsorption, effect of A.D.H, brief mention of H+ manipulation.

Urine compositon & pH range.

Other kidney functions - B.P. & erythropoiesis influence (details in cardiovascular section).

Micturition - muscles involved & neural control.

DIGESTIVE SYSTEM (10 Hrs)

General structure of alimentary canal & relationship of accessory organs.

Mouth - hard & soft palates, deciduous & permanent dentition. parotid, submaxillary, & sublingual glands & ducts, tongue, uvula. Oropharynx, laryngopharynx, esophagus.

Stomach Blood supply & drainage

cardiac & pyloric sphincters, fundus, body, pylorus, rugae, greater & lesser curvatures, greater & lesser omenta.

Small intestine Blood supply & drainage

duodenum, jejunum, ileum, Peyer's Patches, villi, ileocecal valve, Meckel's diverticulum.

Liver

Blood supply & drainage

Segmental anatomy

Biliary system

biliary tree, hepatic, cystic, & common bile ducts, ampulla of Vater, sphincter of Oddi.

Pancreas

Pancreatic duct & accessory duct, relationship to biliary system.

Large intestine Blood supply & drainage.

cecum, vermiform appendix, ascending, transverse & descending colon, hepatic(R. colonic) & splenic(L .colonic) flexures, sigmoid colon, rectum, anal canal, anal columns, anus, internal & external sphincters, haustra, taenia coli.

Relationship of alimentary canal & accessory organs to peritoneum.

Digestion & absorption

Definition of mechanical & chemical digestion --

role of teeth, tongue, amylase.

Deglutition.

digestion in stomach -composition & function of "gastric juice"

digestion in small intestine - composition & function of pancreatic secretions, bile, intestinal wall secretions, factors affecting contraction of gall bladder. End products of protein, carbohydrate & lipid digestion, absorption of amino acids, monosaccharides, & glycerol & fatty acids into hepatic portal & lymphatic systems.

Elimination - formation of fecal material & defecation