

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

Program: Medical Radiography **Course Delivered by:** Physics Department **School of Computing and Academic Studies** Course Outline For: PHYS 2272 Physics: Medical Radiography II

Instructor: Richard Saunders

Hours/Week:	2.4	Total Hours:	31	Term/Level:	2
Lecture: Lab: Other:	3 or 2 0 or 2	Total Weeks:	16	Credits:	3.0

Prerequisites

PHYS 1272

Course Record

Developed by:	Richard Saunders	Date:	September 1997
Approved by:	Instructor	Date:	Jester, bes) 10, 1997
	Physics Department		A I
Approved by:	Program Head of Technology	Date:	Sept. 11/97
	• v •		

Course Description and Goals

Physics of Medical Radiography (1272/2272) is an introductory level course which emphasizes the application of physical phenomena in medical radiography. Topics include structural and physical properties of matter, static electricity, direct and alternating current, magnetism, energy, heat, wave motion, electromagnetic radiation, quantum concepts, production of X-rays and interaction of X-rays with matter. Wherever appropriate, the physics of devises such as X-ray tubes, the generator, ionization chamber, photomultiplier tube, TLD, imaging devices etc. will be used to demonstrate applied physics concepts.

Evaluation

Students will be evaluated through a combination of tests, assignments, projects, examinations, or other means as specified by the instructor. See Course Specifications for evaluation details. BCIT Policy 5410 "Evaluation of Students" will apply.

Course Learning Outcomes

At the end of this course, the student will be able to:

- define relevant physics terms with units,
- explain or discuss relevant physics concepts with defined terminology,
- draw and label diagrams for relevant applied physics topics,
- demonstrate conceptual understanding of physics by solving numerical, subjective and objective problems,
- explain the radiographic image formation process to a patient

Program: Medical Radiography **Course Delivered by:** Physics Department **School of Computing and Academic Studies** Course Specifications For: PHYS 1272 Physics: Medical Radiography II

Instructor: Richard Saunders

Effective Date

This course outline takes effect September 2, 1997.

Instructor	*				· · ·
	Office No	: SW3-408	3	Phone:	5314
	E-mail:			Fax:	451-6835
Office Hours	Monday open	Tuesday open	Wednesday open	Thursday open	y Friday open

Text(s) and Equipment

Required:

- Bushong, Stewart C., Radiologic Science for Technologists: Physics, Biology and Protection, fifth edition, Mosby, (1993).
- A Manual of Experiments in Medical Radiography Technology

Recommended References (Not Required):

- Ball, J.L. and A.D. Moore, *Essential Physics for Radiographers*, second edition, Blackwell, (1986).
- Carlton, R.R. and A.M. Adler, *Principles of Radiographic Imaging: an art and a science*, Delmar Publishers, (1992).
- Hay and Hughes, First-Year Physics for Radiographers, second, Bailliere Tindall, (1978).
- Thompson, Hall, Hattaway and Dowd, *Principles of Imaging Science and Protection*, W.B. Saunders, 1994.
- Wilks, Principles of Radiological Physics, Churchill Livingston, (1981).
- Wolbarst, A.B., *Physics of Radiology*, Appleton and Lange, 1993.

Evaluation		, .			
Term Tests	2 at 25%	50	%		
Quizzes		0	%		
Laboratory Tests		0	%		
Laboratory Reports		10	%		
Final Examination		40	%		
		100	%		

Evaluation Policies

- *Passing Grade:* The passing grade in this course is 60%. The final mark is a weighted average of all tests quizzes and lab work.
- Quizzes: will be directly related on assigned problems and class lecture notes.
- *Term Tests*: will be related to assigned problems and concepts covered in classes and tutorials. Each of the term tests will examine approximately the same amount of material.
- *Laboratory Tests:* will be directly related to the assigned laboratory sessions. You will be allowed to use your lab data book on lab tests.
- *Laboratory Reports*: will be completed each week and graded by an instructor. Students must complete the laboratory exercises and hand in finished reports on time to obtain a grade. No marks will be given for experiments from which you were absent, except by special arrangement with instructor.
- Final Exam: will test material covered in the whole term.

Other Course Policies and Information

- Assignments: Late assignments or projects will not normally be accepted for marking. Assignments must be done on an individual basis unless otherwise specified by the instructor.
- *Attendance*: Students are expected to attend classes regularly in accordance with the current BCIT Calendar attendance policy.
- *Class Conduct:* Students are expected to act professionally during class. Students disrupting classes or disturbing others during class will be asked to leave and their behaviour will be reported to their program head.
- *Course Outline Changes*: The material specified in this course outline may be changed by the instructor. If changes are required, they will be announced in class.
- *Ethics*: BCIT assumes that all students attending the Institute will follow a high standard of ethics. Incidents of cheating or plagiarism will be dealt with in accordance with BCIT's Conduct and Attendance Policy in the calendar and, may result in a grade of zero for the assignment, quiz, test, exam, or project for all parties involved and/or expulsion from the course.

Other Course Policies and Information, cont'd

- *Illness*: A doctor's note is required for any illness causing you to miss an assignment, quiz, test, or exam. At the discretion of the instructor, you may complete the work missed or have an agrotat mark (i.e. an average is given according ' your performance on other tests or assignments).
- Labs: Lab attendance is mandatory.
- *Makeup Tests, Exams or Quizzes*: There will be no makeup tests, exams or quizzes. If you miss a test, exam or quiz, you will receive zero marks. Exceptions may be made for documented medical reasons or extenuating circumstances.
- *Physics Learning Centre*: Additional help may be obtained in the Physics Learning Centre, Room SW3-4785, during posted hours.
- **Problem-Solving:** Students are expected to show all work in solving problems. Equations should be rearranged solving for the unknown quantity; numbers and units must be substituted in equations and the answer must be written with proper significant figures and units. Marks will not be given for unsupported answers.
- *Workload:* The time that you will need to succeed in this course depends on your own background and abilities. It is very important to study regularly, keep up with the work and seek the assistance of the instructor when problems arise. The course load is quite heavy and to succeed you must be prepared to make the appropriate personal time commitment.

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

Program: Medical Radiogrphy **Course Delivered by:** Physics Department **School of Computing and Academic Studies** Schedule For: PHYS 2272 Physics: Medical Radiography II

Instructor: Richard Saunders

* This schedule is subject to change at the discretion of the instructor.

Chapter	Topics	Reference /Reading
1	Electromagnetic Radiation	
1	• Wave motion	
	Wave equation	
a	• EM waves	
	amplitude frequency and period	
	velocity	
	wavelength	
	Electromagnetic radiation	
8	sources	
	wave and particle nature photo diode and photomultiplier tube	
<u>8</u>	EM spectrum	
2	X-ray Production	
	• Definitions	
	• Electron-target interaction, no X-rays	-
~	heat production	
	back scatter	
	• Electron-target interaction, X-rays	
	bremsstrahlung production	
	characteristic production	
	• X-ray spectrum	
	brems	
	characteristic	
	alternate units for axes	×

Chapter	Topics	Reference /Reading
	total X-ray spectrum	· · · · · ·
	Energy level diagram	
	Relative importance of brems and characteristic	
	• Total X-ray power output (x-ray quantity)	
	X-ray production efficiency	
	Changing the X-ray spectrum	
	mA	
	kV	
	target	
	filtration	-
	voltage wave form	
3	X-ray Attenuation	5
	Subject Contrast	
	Attenuation, absorption and scatter	
	Exponential Attenuation	
	linear attenuation coefficient	
	half value layer	
	alternate attenuation equation (in HVL)	
ι, (Heterogeneous X-ray beams	
	• X-ray beam filtration	
	anode heel effect	
	Mass attenuation coefficient	
	Attenuation mechanisms	
	unmodified scatter (Thomson)	-
	modified scatter (Compton)	· .
	photoelectric	
	pair production	
	Total mass attenuation graphically	
	Relative importance of attenuation mechanisms	
	by number of attenuation events	
	by absorbed dose	
	• Attenuation edges (k-edge)	
	best attenuator	
	k-edge filters	
	rare earth elements	
	screen speed	
	Quantum mottle	
	Measurement of radiation	

Chapter	Topics	Reference /Reading
4	Temperature and Heat	
	• Temperature and temperature scales (review)	
	• Internal energy or heat	
	units	
	mechanical equivalent of heat	
	specific heat capacity	
	heat equation	
	compound anode	
	Thermal expansion anode disk	
	housing	
5	Heat Transfer	
	Thermal conductivity	a
	Convection	
	Radiation	
6	Heat and the x-ray Tube	
	• Fixed anode	
	Rotating anode	
	• Heat units	
	Maximum power input curve	
	Heating and cooling curves	