BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

COURSE OUTLINE

COURSE NAME <u>Radiobiology and Ra</u>	diation Protection			
COURSE NUMBER	DATE January 1995			
Prepared by <u>E. Seeram, RTR., B.Sc., M.Sc.</u>	Taught to Level 3			
School Health Sciences	School <u>Health Sciences</u>			
Program <u>Medical Radiography</u>	Program			
Date Prepared December, 1994	Option			
Term 3 Hrs/Wk	3 Credits <u>1.5</u>			
No. of Weeks To	tal Hours 24			
Instructor(s) <u>Euclid Seeram</u>	Office <u>SW3083</u> Local <u>8231</u>			
Office Hours <u>As Posted</u>				
PREREQUISITES Anatomy and Physiology; Physics for Medical Radiography.				

COURSE OBJECTIVES

(Upon successful completion of this course, the student will be able to:)

A. <u>Radiobiology</u>

- 1. Define Radiobiology.
- 2. Explain briefly the terms commonly used in clinical radiobiology.
- 3. Trace the history of radiation injury.
- 4. Discuss basic radiation interactions with tissue.
- 5. Explain briefly, two theories of biologic damage by radiation.
- 6. State what is meant by the target theory.
- 7. Explain two cell compartments of tissues and organs and state the meaning of the term "differentation".
- 8. Define the term "radiosensitivity" and state the law of Bergonie and Tribondeau.
- 9. Discuss radiation effects at doses higher than the diagnostic range (High dose effects).
- 10. Discuss the radiation effects at doses within the diagnostic range.
- 11. Discuss radiation effects on the embryo, fetus and child.
- 12. Discuss the effects of low-level radiation over an extended period of time.

COURSE OBJECTIVES (Cont'd.)

B. Radiation Protection

- 1. State the objectives of radiation protection.
- 2. Explain the fundamental principles of radiation protection.
- 3. Discuss current radiation protection standards for diagnostic radiology
 - justification
 - optimization (ALARA)
 - dose limitation
- 4. State the dose limits for radiation workers and members of the public.
- 5. Discuss methods for minimizing radiation dose to both patients and personnel.
- 6. Describe equipment specifications for diagnostic radiology.
- 7. Describe shielding guides for diagnostic x-ray installations.

EVALUATION

Final Examination Mid-Term	50	% %	2 hours 1 hour
Projects		%	
Laboratory		%	You must achieve 60% to pass this course.

REQUIRED TEXT(S) AND EQUIPMENT

- 1. Primer of Medical Radiobiology by Elizabeth Travis, 2nd Edition, Year Book Medical Publishers, 1989.
- 2. Safety Code 20A: X-Ray Equipment in Medical Diagnosis, Part A, Health and Welfare Canada, 1990.

REFERENCE TEXTS AND RECOMMENDED EQUIPMENT

- 1. Current CAMRT Curriculum Guide.
- 2. Medical Radiation Biology by Pizzarello and Witcofski, 2nd Edition, Lea and Febiger, 1982.
- 3. Christensen's Physics of Diagnostic Radiology, 4th Edition, Lea and Febiger, 1990.
- 4. Radiologic Science for Technologists by Bushong, 5th Edition, C.V. Mosby, 1993.

COURSE OUTLINE (continued)

Week Lecture or Lab Number	Material Covered	References
1	Radiobiological Concepts Radiation Interaction with Tissue	2
2	Radiosensitivity Bioeffects at Doses Higher than the Diagnostic Range	
3	Bioeffects at Doses at the Diagnostic Range Effects of Radiation on Embryo, Fetus and Child	
4	Low Level Radiation Effects Principles of Radiation Protection	
BD-Feb 27	MID TERM EXAMINATION	AC-March 6
5	Dose Limits Protection of Patients and Personnel	
6	Equipment Specifications	
7	Shielding for X-ray Installations	
8	FINAL EXAMINATION	